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Abstract: In this paper, we compare the capabilities of two open source near-wall-modeled
large eddy simulation (NWM-LES) approaches regarding prediction accuracy, computational costs
and ease of use to predict complex turbulent flows relevant to internal combustion (IC) engines.
The applied open source tools are the commonly used OpenFOAM, based on the finite volume method
(FVM), and OpenLB, an implementation of the lattice Boltzmann method (LBM). The near-wall
region is modeled by the Musker equation coupled to a van Driest damped Smagorinsky-Lilly
sub-grid scale model to decrease the required mesh resolution. The results of both frameworks are
compared to a stationary engine flow bench experiment by means of particle image velocimetry (PIV).
The validation covers a detailed error analysis using time-averaged and root mean square (RMS)
velocity fields. Grid studies are performed to examine the performance of the two solvers. In addition,
the differences in the processes of grid generation are highlighted. The performance results show
that the OpenLB approach is on average 32 times faster than the OpenFOAM implementation for the
tested configurations. This indicates the potential of LBM for the simulation of IC engine-relevant
complex turbulent flows using NWM-LES with computationally economic costs.

Keywords: turbulent flow; large-eddy simulation; wall function; IC engine; OpenLB; OpenFOAM;
particle image velocimetry

1. Introduction

Due to the complex turbulent nature of internal combustion (IC) engine flows, their accurate
prediction is a major challenge to numerical and experimental investigations. Additional difficulties
arise from the interconnection of multiphysical processes, including multiphase flow phenomena, heat
transfer and chemical reactions. Each process features different time and length scales, often varying
in orders of magnitude, which further increases the complexity.

A particularly important turbulent flow structure for the analysis of IC engines is the intake jet [1].
This high-speed flow over the valves is critical in generating a charge motion, which is commonly
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referred to as a tumble motion. The tumble breakdown in engine compression results in turbulent
structures, which dominate the mixing, ignition and combustion processes and in turn, the engine
efficiency and pollutant emissions. Therefore, it is necessary to understand the complex processes in
turbulent IC engine intake flows to improve the combustion performance and reduce cycle-to-cycle
variability [2–7].

Optically accessible research engines enable the detailed investigation and visualization of the
processes inside IC engines, often with simplified geometries for numerical validation. High-speed laser
diagnostics have long been utilized in engine experiments and have provided more insight into the
turbulent structures present in engine flows [8–11]. Simplified flow bench setups with steady state or
transient operation are common tools to optimize cylinder head or intake port geometries and have been
used to investigate the intake flow in industrial and scientific research [12,13]. Recent studies examined
intake phenomena using magnetic resonance velocimetry (MRV) in a steady water flow bench [1] or
low-speed particle image velocimetry (PIV) in a steady air flow bench [14,15]. The data from these
experiments have been used as validation for large eddy simulation (LES) approaches [14–18].

However, high-speed PIV data for a flow bench with a realistic engine geometry is limited.
Therefore, numerical simulations are another essential tool for the analysis of IC engine flows.
In particular, the 3D flow data and turbulence structures obtained with LES offer data which are
nearly impossible to obtain in experimental investigations. The choice of LES instead of commonly
used Reynolds-averaged Navier–Stokes (RANS) approaches is justified by its ability to resolve the
intrinsic unsteady flow motion resulting from the moving valves and pistons. The study of unsteady
phenomena such as cycle-to-cycle variability, misfire and knock are especially important factors
influencing the geometric design and the operating conditions [2]. The use of LES, which is known to be
computationally expensive, is often favored with moderate Reynolds numbers (10, 000 < Re < 30, 000)
and relatively small regions of interest. However, the fast prediction of accurate and detailed LES
results to accelerate design cycles is still a challenge due to the increased number of cells and time
required to generate adequate statistics when comparison with RANS approaches.

LES studies of fired and non-fired engine cases including moving piston and valves are reported
by many researchers, e.g., [3–7]. Most of these numerical studies are focused on the analysis of
cycle-to-cycle variations of in-cylinder flow fields and its influence on the mixing dynamics, combustion
and pollutant emission. In this respect, it is worth mentioning that systematic evaluation studies of
different LES approaches and models under engine-like operating conditions are rarely reported in the
literature. This is mainly because of the considerable numerical effort required to carry out LES of many
engine cycles of fired and non-fired cases with moving piston/valves. Furthermore, the complexity of
in-cylinder flows impedes in-depth studies of individual processes and model evaluation. Therefore,
it is useful to reduce the complexity of the engine configuration and evaluate LES approaches and
numerical models by means of simplified flow bench configurations that represent most of the flow
and mixing phenomena relevant to IC engines.

The aforementioned studies are based on traditional discretization methods like the finite volume
method (FVM). In recent years, an alternative approach called the lattice Boltzmann method (LBM)
has gained increasing attention in research and industry. LBM is useful in a wide range of applications,
e.g., thermal flow simulations [19,20] or flows in complex geometries [21,22], due to its highly efficient
parallel algorithm [23,24]. Such efficiency offers a high potential in reducing computation times for
the simulation of high Reynolds number flows using DNS or LES approaches, which is usually a
bottleneck in the field of turbulent flow simulations.

Qualitative and quantitative comparisons were made to estimate the capabilities of LBM
based implementations for the simulation of turbulent flows in comparison with FVM-based
implementations. In 2014 Kajzer et al. [25] evaluated the performance differences between an LBM
and FVM implementation for the simulation of homogeneous isotropic turbulence. They found
that in particular the scalability of LBM methods and the adaptivity for computations on graphics
processing units (GPU) lead to a significant performance advantage compared with the tested FVM
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implementation in OpenFOAM. Two years later Pasquali et al. [26] showed that the calculation of the
external aerodynamics of a car also benefits from the use of LBM on GPUs. A further comparison
between LBM and FVM depicted that the higher grid resolution obtained by LBM leads to more
resolved vortex structures in the outer layer of turbulent channel flows [27]. Barad et al. [28] compared
a higher order finite difference method (FDM) with LBM in a software framework that uses the
same Cartesian mesh structure. They showed that for the simulation of airframe noise the LBM
implementation is 15 times faster than the higher order FDM scheme at a similar accuracy.

Most of the LBM studies related to engine flows that have been conducted to date deal with the
injection process. Therefore, a multiphase approach is chosen to simulate spray formation, bubble break
up and flow induced cavitation. A summary of these studies can be found in the book of Montessori
and Falcucci [29]. A moving valve/pistion arrangement was simulated by Dorschner et al. [30] using
the parameter-free Karlin–Bösch–Chikatamarla (KBC) collision operator. They showed that the results
are in good agreement with a DNS reference.

In contrast to all these previous contributions, we focus on the implementation of open source
near-wall-modeled LES (NWM-LES) to achieve fast and accurate results, which is relevant to users in
academia and industry. Therefore, a recent version of the established FVM-based implementation of
OpenFOAM is compared with OpenLB [31], an open source LBM framework. To get a fair comparison,
we solve the same target equation in both software frameworks, including an explicit sub-grid scale
(SGS) modeling and the use of a wall function. Furthermore, we do not limit the grid to a certain amount
of cells or type of mesh elements so that each implementation can show its advantages. The grid
generation process is also taken into account to compare the time spent on pre-processing. This is one
of the first studies where in-house-conducted experimental data are used to validate two open source
implementations. Moreover, a detailed error analysis of both methods covering the grid convergence
of time-averaged and root mean square (RMS) velocity fields in the context of engine flows is a novelty.
Additionally, a performance analysis compares the solver runtime of each implementation that is
needed to calculate the statistics for the different grids. The comparison in the theory section aims
to highlight the differences between both discretization methods. In addition, the differences in the
implementation of wall-modeled LES in LBM and FVM are described. The NWM-LES implementation
in LBM is ongoing research due to the complex boundary treatment in LBM. As a result, a new
LBM wall function approach is proposed which extends the previous approaches [32,33] to curved
boundaries.

This paper is organized as follows: Section 2 introduces the applied modeling approaches and
shows the differences and similarities using LBM or FVM. Next, the experimental and numerical setup
is described in Section 3. The related results using NWM-LES obtained with OpenFOAM and OpenLB
for different grid resolutions are presented and compared to the PIV results in Section 4. Finally,
Section 5 summarizes the results and draws a conclusion.

2. Applied Modeling Approaches

2.1. Filtered Navier–Stokes Equations

The filtered incompressible Navier–Stokes equations consist of the continuity equation

∂uα

∂xα
= 0, (1)

and the momentum equation according Leonard’s decomposition [34] which reads

∂uα

∂t
+

∂uαuβ

∂xβ
= ν

∂

∂xβ

(
∂uα

∂xβ
+

∂uβ

∂xα

)
−

∂TSGS
αβ

∂xβ
− 1

ρ

∂p
xα

, (2)
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where Greek indices obey the Einstein notation, uα is the filtered velocity, p is the filtered pressure
field, TSGS

αβ is the SGS stress tensor, ρ is the density and ν is the viscosity. This set of equations can be
closed by using a linear eddy viscosity hypothesis for the SGS stress tensor

TSGS
αβ = −νSGS

(
∂uα

∂xβ
+

∂uβ

∂xα

)
, (3)

where νSGS is the SGS viscosity that can be modeled by an SGS viscosity model (see Section 2.2).
In Equation (2) no volume force is applied and will not be considered hereafter.

2.1.1. Finite Volume Method

In dealing with the FVM of incompressible fluid flow, the discretization process of the balance laws
of fluid motion can be divided into two steps: (1) the spatial and temporal discretization of the solution
domain and (2) the discretization of the spatial and temporal terms in the Navier–Stokes equations [35].
Then, the partial differential equations can be converted into a corresponding set of algebraic
equations and solved numerically. Additionally, nonlinearities in the Navier–Stokes equations and
the pressure-velocity coupling require some special numerical treatment. The second-order solution
procedure employed in the open source C++ library OpenFOAM 2.4.0, which is used in the present
LES study, is briefly outlined in the following. A detailed description can be found, e.g., in [36–38].

In the standard FVM framework of OpenFOAM, the continuum space and time domain are
divided into a finite number of discrete regions called control volumes (CV) and time intervals,
respectively. Thereby, the CVs completely bound the solution domain and the solution variables,
such as velocity and pressure, are colocated at the cell centroids of the CVs [39]. In contrast to a
staggered grid arrangement, this allows an arbitrary topology of CVs, e.g., hexahedrons, tetrahedrons,
prisms, pyramids or general polyhedrons, which has significant advantages in the discretization of
complex solution domains.

Several approximation schemes and solution procedures are available in the OpenFOAM
framework to discretize and solve the Navier-Stokes equations. In this study, the standard
pimpleFOAM solver of OpenFOAM 2.4.0 is applied, which is based on a merged PISO [40]-SIMPLE [41]
algorithm for the coupling of pressure and velocity. Thereby, the governing equations are numerically
solved in a segregated manner using a momentum predictor, pressure solver and momentum corrector.
This iterative solution procedure is applied with a second-order implicit backward-differencing
scheme for the time integration. Regarding spatial terms, a low-dissipative second-order flux-limiting
differencing scheme is employed for the convection terms and a conservative scheme is used for the
Laplacian and gradient terms. The resulting systems of linear equations are iteratively solved using a
geometric agglomerated algebraic multigrid solver. Thereby, convergence of the overall procedure
is obtained if all normalized residuals are smaller than 10−4. Validation and verification studies of
this specific solution procedure for LES of complex fluid flows relevant to IC engines are provided
in [18,42,43].

2.1.2. Lattice Boltzmann Method

The lattice Boltzmann equation discretizes the velocity space of the kinetic Boltzmann equation
to a discrete set of lattice velocities ci, i = 0, 1, ..., q − 1. Common velocity sets to recover
the three-dimensional incompressible Navier–Stokes equations are D3Q15, D3Q19 and D3Q27.
The present work uses a discrete velocity D3Q19 set, which is given by

ci =





(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18

(4)
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The descriptor set is chosen due to the higher computation performance and the lower memory
demand in the used LBM implementation. However, higher errors due to a violation of the rotational
invariance are taken into account in comparison with a D3Q27 stencil [44].

The filtered lattice Boltzmann equation without external forces is given by

f i

(
xLB + ci, tLB + 1

)
= f i

(
xLB, tLB

)
+ Ωi, (5)

where f i is the filtered particle distribution function at discrete lattice position xLB and time step
tLB. The filtered collision operator Ωi is implemented by a single-relaxation time model proposed by
Bhatnagar, Gross and Krook [45]. It can be written as

Ωi = −
1

τef f

(
f i(t

LB, xLB)− f
eq
i (ρLB, uLB)

)
, (6)

where τef f is the effective relaxation time towards the filtered discrete particle distribution function
at equilibrium state f

eq
i , ρ is the filtered lattice density and u the filtered velocity field. The collision

operator satisfies the conservation of mass and momentum. The particle distribution function
equilibrium is described by a low Mach number truncated Maxwell-Boltzmann distribution

f
eq
i

(
ρLB, uLB

)
= ρLBωi

[
1 +

ciαuLB
α

c2
s

+
uLB

α uLB
β (ciαciβ − c2

s δαβ)

2c4
s

]
, (7)

where ωi are the lattice weights obtained by the Gauss-Hermite quadrature [46,47], cs = 1/
√

3 is the
speed of sound of the lattice and δαβ is the Kronecker operator.

The moments of the particle distribution functions f i yield macroscopic flow quantities.
The density ρLB, the momentum ρLBuLB and momentum flux Π are obtained by the zeroth, first
and second moments, which are given by

ρLB =
q−1

∑
i=0

f i , (8)

ρLBuLB =
q−1

∑
i=0

ci f i, (9)

Παβ =
q−1

∑
i=0

ciαciβ f i . (10)

The lattice effective kinematic viscosity of the fluid νef f is connected to the effective relaxation
time τef f as follows

νLB,ef f = c2
s

(
τef f − 0.5

)
. (11)

Assuming a simplified isothermal equation of state the filtered lattice pressure is related to the
filtered density by

pLB = c2
s ρLB. (12)

Finally, the lattice Boltzmann algorithm is divided in 2 steps: the collision step and the streaming
step. The local collision step is represented by the right-hand side of Equation (5) and the subsequent
streaming step is associated with the left-hand side of Equation (5).
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2.2. Sub-Grid Scale Modeling

The introduced eddy viscosity νSGS in Equation (3) is estimated by an SGS viscosity model,
which can be generally written as

νSGS = (CM∆grid)
2DM, (13)

where CM is a model coefficient, ∆grid is the grid filter and DM a model-related operator. The present
work uses a Smagorinsky-Lilly model [48], where the model operator is defined as

DM =
√

2SαβSαβ, (14)

where Sαβ is the filtered strain rate. The literature values for the Smagorinsky-Lilly model constant
CM are in the range of CM = 0.065...0.24 [49,50]. For a complex turbulent flow, a Smagorinsky-Lilly
constant of CM = 0.1 is a common choice [51]. The Smagorinsky–Lilly model suffers from a too
dissipative behavior in the near-wall region [42,52]. One possibility to prevent this aspect is the
introduction of a damping function that reduces the SGS viscosity depending on the wall distance.
The van Driest damping function [53] can be incorporated in the grid filter ∆grid by

∆grid = min
[

3
√

∆x∆y∆z,
κy
C∆

(
1− e(−

y+

A+ )
)]

, (15)

where y is the wall distance, A+ = 26 is the van Driest parameter, C∆ = 0.158 is a model constant
and κ = 0.41 is the von Kármán constant [54]. The dimensionless wall distance y+ in Equation (15) is
defined as

y+ =
uτy

ν
, (16)

where uτ =
√

Tw
ρ is the friction velocity and Tw the wall shear stress.

2.2.1. SGS Model for Finite Volume Method

In the FVM framework of OpenFOAM, the SGS viscosity νSGS is calculated explicitly for each
time step using the resolved velocity field. Then, the turbulent and molecular diffusion contributions
are combined into an effective stress tensor by means of the Boussinesq approximation as

Tef f
αβ = −

(
ν + νSGS

)(∂uα

∂xβ
+

∂uβ

∂xα

)
,

= −νef f

(
∂uα

∂xβ
+

∂uβ

∂xα

)
,

(17)

where νef f represents the effective viscosity. For the sake of computational efficiency, the velocity
gradient and transposed velocity gradient terms in Equation (17) are treated separately. Thereby,
the velocity gradient term is treated implicitly as a diffusion, while the transposed velocity is treated
as an explicit source term. The latter is therefore calculated using the velocity at the previous iteration.
Further information on the implementation of eddy viscosity turbulence in OpenFOAM can be found,
e.g., in [55].

2.2.2. SGS Model for Lattice Boltzmann Method

Eddy viscosity models are often introduced in LBM by adding turbulent viscosity to the molecular
viscosity [56], which results in an effective viscosity

νLB,ef f = νLB + νLB,SGS. (18)
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A consistent approach to implement eddy viscosity models in LBM was derived by Malaspinas
and Sagaut [57]. They presented that due to the connection between lattice viscosity and
lattice relaxation time (see Equation (11)), the relaxation time is also divided in a molecular and
SGS contribution

τef f = τ + τSGS, (19)

where τSGS = νLB,SGS

c2
s

is the eddy contribution. The filtered strain rate SLB
αβ in the SGS operator

formulation in Equation (14) can be obtained by a finite difference scheme or locally in the LBM
framework by

SLB
αβ = −

Πneq
αβ

2ρLBτef f c2
s

, (20)

where Πneq
αβ is the second moment of the non-equilibrium parts of the particle distribution function,

which can be calculated according to Equation (10) by replacing f i with f
neq
i = ( f i − f

eq
i ). This implicit

relation of the effective relaxation time τef f and the filtered strain rate SLB
αβ can be replaced by an explicit

expression for the Bhatnagar–Gross–Krook (BGK) collision operator by a local method proposed by
Malaspinas and Sagaut [57]. This explicit expression for determining the effective relaxation time τef f

is given by

τef f =

√
τ2 +

2C2
M

ρLB c4
s

√
2Πneq

αβ Πneq
αβ +

τ

2
. (21)

2.3. Wall Function Approach

In contrast to a near-wall resolved LES, the NWM-LES requires additional effort to model the
effects occurring in the boundary layer. However, NWM-LES allows grid spacing up to y+ = 200,
which results in a significantly smaller amount of grid points. In the present work, we use the idea
of Werner and Wengle [58], which describes an instantaneous connection between the wall shear
stress and the velocity. This consideration only applies for averaged quantities and therefore a RANS
hypothesis is assumed for the boundary node. A fully developed turbulent boundary layer can be
described by the Musker profile [59] which reads

u+ = 5.424 arctan
(

2.0y+ − 8.15
16.7

)

+ log10

(
(y+ + 10.6)9.6

(y+2 − 8.15y+ + 86.0)2

)

− 3.5072790194.

(22)

This empirical formulation is based on a logarithmic law and is able to describe the turbulent
boundary layer from the viscous sublayer (y+ ≥ 1). The solution of the implicit function (22) requires
an iterative scheme.

2.3.1. Wall Function for Finite Volume Method

Analogous to wall-shear stress models often used in the context of RANS, the boundary
condition of the SGS viscosity νSGS is corrected for each time step by means of a wall function
in the NWM-LES approach of OpenFOAM. The numerical procedure can be divided into two steps.
First, the friction velocity uτ is approximated iteratively according to Musker’s wall function. Thereby,
the Newton–Raphson method is applied to find the root of the wall function. Then, in the second step,
νSGS at the wall is calculated as
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νSGS = u2
τ

yp

u‖
, (23)

where yp denotes the wall distance of the cell centroid and u‖ the stream-wise velocity. It is important
to note that a boundary condition of νSGS based on Musker’s wall function is not available in
OpenFOAM and was therefore added to the standard framework. A detailed description of the
wall function approach in OpenFOAM including comprehensive validation studies in turbulent
channel and impinging flows were provided by the authors in [60].

2.3.2. Wall Function for Lattice Boltzmann Method

The implementation of wall functions in the context of LBM is not straightforward due to
numerous boundary scheme approaches. The idea of the wall model approach applied in this
work was proposed by Malaspinas and Sagaut [32] and adapted to the BGK collision operator by
Haussmann et al. [33]. They validated the wall function scheme using a bi-periodic turbulent channel
flow. We adapt this scheme to curved boundaries using a curved link-wise instead of a wet-node
boundary scheme. Our proposed algorithm is parted in two steps: the curved boundary approach and
a velocity correction step according to the wall function. For better comprehension, the used indexing
convention for the following two paragraphs is depicted in Figure 1.

xLB
b

xLB
f

xLB
f f xLB

n

boundary
wall

xLB
w

cn

cī ci qB

y1

Figure 1. Illustration of the indexing convention for the curved wall function approach applied in
this work.

Curved Boundary Step

In the present work, we use the curved boundary approach proposed by Bouzidi et al. [61].
This approach is an extension of a half-way bounce back scheme and characterized as precise, stable
and computationally efficient for the simulation of turbulent flows [62]. The interpolated bounce-back
approach uses a linear interpolation based on the dimensionless distance qB, which is defined as:

qB =
|xLB

f − xLB
w |

|xLB
f − xLB

b |
. (24)

Without altering the streaming step for boundary cells the unknown particle distribution function
after the streaming step f ī(xLB

f , tLB + 1) can be replaced by
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f ī(xLB
f , tLB + 1) =





1
2qB

fi(xLB
b , tLB + 1) + 2qB−1

2qB
f ī(xLB

f f , tLB + 1) for qB ≥ 1
2 ,

2qB fi(xLB
b , tLB + 1) + (1− 2qB) fi(xLB

f , tLB + 1) for qB < 1
2 ,

(25)

where index ī indicates the particle distribution function in the opposite direction of index i. For qB =

0.5 the approach is equal to the half-way bounce back boundary condition.

Velocity Correction Step

The velocity correction step is used to correct the velocity in the particle distribution functions at
node position xLB

f according the wall function. Firstly, the distance to the boundary yLB
1 is defined in

the discrete normal direction cn. Accordingly, the distance from the neighbor fluid node at position
xLB

n to the boundary is given by
yLB

2 = yLB
1 + |cn|. (26)

Due to the fact that the wall profile uses only the stream-wise velocity component, a local
stream-wise unit vector es is obtained by

es =
uLB

n − (uLB
n · cn)cn

|uLB
n − (uLB

n · cn)cn|
. (27)

Subsequently, the stream-wise component uLB
2 of uLB

n is calculated by

uLB
2 = uLB

n · es. (28)

The boundary distance yLB
2 and the stream-wise velocity component uLB

2 are inserted in the
Musker profile Equation (22) to obtain the averaged wall shear stress T̃LB

w . Therefore, the solution of
the implicit equation is approximated by the Newton method. Afterwards, the stream-wise component
ũLB

1 of ũLB
f is calculated by the Musker profile Equation (22) using the boundary distance yLB

1 and the

averaged wall shear stress T̃LB
w . Then, the velocity ũLB

f of the first fluid is computed by

ũLB
1 = ũLB

f · es. (29)

Finally, the particle distribution function at node position xLB
f is corrected as follows

fi(xLB
f , tLB + 1) = f eq

i (ρLB,∗, ũLB
f ) + f neq,∗

i , (30)

where superscript ∗ denotes the quantities calculated after Equation (25). This means only the velocity
is altered according the wall function, while the density and the non-equilibrium parts are preserved.

3. Setup of the IC Engine Test Case

In this work, a flow bench setup of an IC engine was chosen as a benchmark for the numerical
comparison. With this setup, the intake flow with the focus on the intake jet over the valves into the
cylinder can be examined in a realistic engine geometry and at the same time the overall complexity
can be reduced compared with a real engine. The optically-accessible single cylinder engine at TU
Darmstadt (Darmstadt Engine, [10]) was converted into a steady-state flow bench by removing and
replacing the piston with an outlet channel open to ambient conditions (see Figure 2). As opposed to
the previous flow bench studies of Freudenhammer et al. [63] in which the same spray-guided cylinder
head geometry was fitted in a continuous water flow configuration for MRV measurements, the flow
bench of the present study uses dry air and allows for instantaneous flow measurements. For this
configuration, the cylinder liner was extended and the outlet channel geometry was optimized by
means of unsteady RANS to suppress recirculation of the flow. For added simplicity to the engine
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geometry, the spark plug and fuel injector were replaced by flat plugs; but otherwise, the four-valve
spray-guided pent-roof cylinder head (AVL) and fused-silica cylinder liner with a bore of 86 mm as
well as the intake system remained unchanged. Figure 2 shows a diagram of the intake system and
engine geometry of the flow bench experiment. As indicated by the red boxes, the flow bench has
three optical access sections. The first section (I) represents the standard engine optical access which
was fitted to the new flow bench extension (experimental sections II and III). Experimental section
II allows for the characterization of the flow inside the flow bench extension for the verification of
the flow structures present. Finally, experimental section III allows optical access and flow validation
of the outflow through the bottom of the flow bench via a flat fused-silica plate and movable mirror.
Intake valves were positioned at a fixed valve lift of 9.21 mm corresponding to 270 ◦CA (crank angles
before top dead center) and exhaust valves were kept closed, thus mimicking the intake flow during
regular engine operation.

y

x

ṁin

Pin,1 ϑin,1

16D

7D

Pin,2 ϑin,2 Pout,2

Pout,1ṁout

I

II
III

Figure 2. Flow bench and intake system overview. The inner diameter of the intake pipes D is 56.3 mm.
Experimental sections include the standard engine- (I), the Flow bench- (II) and the Outlet duct optical
access (III).

The flow bench experiment was conducted under controlled boundary conditions for consistent
operation. Two mass flow controllers (Bronkhorst) were used to set a defined mass flow of 94.1 kg

h ,
which corresponds to the respective instantaneous mass flow at 270 ◦CA under normal engine
operation with a speed of 800 rpm and intake pressure of 0.95 bar. Since the instantaneous mass
flow of engine operation is not available, the velocities in the intake jet were compared and matched
such that the phase-averaged velocity (average of 400 cycles at 270 ◦CA) in motored engine operation
matched the average velocities of the flow bench near the intake valve. As indicated in Figure 2, two
absolute pressure sensors (Pin,1, Pin,2, PAA-M8cool HB, Keller) measured the static pressure and two
PT100 temperature sensors (ϑin,1, ϑin,2) measured the temperature of the flow within the intake pipe.
Additionally, two more absolute pressure sensors (Pout,1, Pout,2, PMP4070, Kistler) measured the static
pressure inside the flow bench. Table 1 summarizes the experimental boundary conditions.
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Table 1. Flow bench boundary conditions. Values in brackets represent estimates of the measurement
uncertainty (total error band corresponding to a rectangular distribution with mean ± uncertainty).

Valve Lift 9.21(0.15) mm

ϑin,2 22.7(0.5) ◦C
Pin,2 1.000(0.001) bar
Pout,2 0.998(0.001) bar
ṁin 94.10(1.00) kg/hr
η 18.26× 10−6 kg/(m s)
ρ 1.18 kg/m3

ϑwall (estimated) 22(1) ◦C

3.1. Experimental Setup

High-speed PIV was used to measure the in-cylinder flow velocity field in the valve plane (VP,
z = −19 mm) (see Figure 3). For this configuration a laser light sheet (850 µm thickness) from two
high-speed frequency-doubled Nd:YAG cavities (IS4II-DE Edgewave), operated at 12.5 kHz each with
a time separation of 8 µs, entered the cylinder volume via the bottom glass plate of the outlet channel.
DOWSIL 510 (Dow Corning) silicone oil was atomized by a fluid seeder (AGF 10.0, Palas) with an
average particle size of 0.5 µm and introduced to the intake system as tracer particles. The Mie-scattered
light was imaged with a high-speed CMOS camera (Phantom v2640) equipped with a Nikon lens
(85 mm f/1.4 with 35 mm distance rings) in HS Binned double-frame mode.

I E

CAM

z

x

Nd:YAG
Sheet
Optics

y

x

Intake (I) Exhaust (E)

m
.
in

m
.
out

Figure 3. Arrangement of particle image velocimetry (PIV) measurement system.

The commercial software DaVis 10.0.5 (LaVision) was used to calculate flow fields. After a time
filter background subtraction, a cross-correlation with multi-pass iterations of decreasing window
size (twice: 48 × 48 pixel; twice: 24 × 24 pixel, 75% overlap) resulted in vector fields which where
post-processed with a peak ratio threshold of 1.3 and a universal outlier median filter to remove
spurious vectors. The dynamic range of the velocity measurement is limited by the minimum and
maximum resolved pixel shift. The frame separation time of the setup was optimized to yield a pixel
shift of maximum 4.5 pixels in the intake jet region, since the jet characteristics are the main interest.

The uncertainty of velocity measurements by means of PIV depends on parameters such as the
optical setup defined by imaging optics, camera and light sheet as well as tracer properties, the PIV
algorithm and the flow itself. Common approaches to estimate the uncertainty as a function of different
influencing variables employ artificial PIV images generated by Monte Carlo simulations [64]. Newer
methods use the actual experimental data to estimate the uncertainty [65–67] and have been validated
by a benchmark experiment [68].

The commercial software DaVis estimates the uncertainty based upon a correlation statistics
approach [67]. In this study, the time-averaged uncertainty of the instantaneous velocity magnitudes
is approximately 3% to 6% (normalized to the global maximum velocity range of 35 m s−1).
This uncertainty range is valid for the jet region and lower velocity regions below the valves. Near the
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exhaust side cylinder walls, where the intake jet is curved downwards due to the influence of the walls,
the normalized uncertainties increase to a maximum of 10%. This approach considers random errors
inherent to the correlation process for particle images. Therefore, the reported uncertainties apply for
instantaneous velocity fields and propagate to RMS velocity values, but are reduced to� 1% for the
time-averaged velocity, since most of the 25,000 pairs of particle images are uncorrelated to each other.

Other sources of error introduce a bias in the velocity calculation. Sharp gradients in the flow,
e.g., at the edge of the intake jet, are underestimated due to the spatial averaging of the PIV algorithm.
Acknowledging reported uncertainty assessments [64], this normalized error is assumed to be on
the order of 3% to 9% for the jet region in instantaneous velocity fields and is slightly lower in
the time-averaged velocity field due to the non-stationary jet position. The spatial average of the
normalized uncertainty due to flow gradients amounts to 1%.

Additional systematic errors stem from the non-zero light sheet thickness and strong out-of-plane
velocity components, which are detected as in-plane components due to the camera‘s perspective.
This error is zero in the center, increases linearly to the edges of the field-of-view and can amount to
more than 10% [64]. However, if the averaged out-of-plane velocity component is zero this error source
is statistically zero. In the central tumble plane this assumption is justified, but less so in the valve
plane, where mean out-of-plane velocity components exist. The uncertainty due to perspective errors
was calculated with the time-averaged LES flow field, which provides all three velocity components.
This normalized uncertainty contribution amounts to up to 10% locally and to 0.2% in the spatial
average. Altogether, the spatially averaged accumulated normalized uncertainty of the time-averaged
PIV measurements within this work is estimated to be 1%.

3.2. Numerical Setup

The fluid domain is depicted in Figure 4 in a clip representation. The inlet patch is colored in blue
and the outlet patch in red. In contrast to the experimental setup, both the inflow and outflow regions
are shortened in order to reduce the computational effort. The reduction of the inflow length to 2.62D
is justified by the applied inlet boundary condition (see Section 3.3). For the estimation of the outflow
length as 1.88D, the tumble flow area and the integral time scale were considered to ensure that the
influence of the flow upstream is negligible.

y

x

Figure 4. Clip representation of the simulation geometry with (x,y)-plane coordinate system.
The boundary contains inlet (blue), outlet (red) and wall patches (metallic).
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3.3. Boundary Conditions and Initial Conditions

The initial and boundary conditions play an important role in LES, because they mainly influence
the time for statistically independent results. The inlet condition is especially challenging; the often
used approaches that assume random fluctuations are not sufficient. The result is an energy signal,
which equally distributes the energy in the wave number regime. Therefore, in the present study,
we apply a digital filter-based operation proposed by Klein et al. [69]. This approach is able to
reproduce prescribed Reynolds stresses. Considering the measured mass flow in the experiment and
assuming a plug flow profile, the Dirichlet condition for the time-averaged inflow velocity is given by

〈u〉in = (7.941,−4.047, 0.0)
m
s

. (31)

The superimposed fluctuations use an integral length of L = 0.25D according to the work of
Ries et al. [42]. The calculation of the prescribed Reynolds stress tensor 〈u′αu′β〉in, taking the hypothesis
of homogeneous isotropic turbulence into account, reads

〈u′αu′β〉in = δαβ |〈u〉in| I, (32)

where I = 0.06 is the turbulence intensity. The outlet condition is a free outflow condition, where the
Dirichlet pressure condition is set to

pout = 0 Pa. (33)

3.3.1. Finite Volume Method

In the case setup of OpenFOAM, no-slip conditions are utilized for the velocity and the zero
Neumann condition is used for the kinematic pressure at the solid walls. Furthermore, the wall
function approach is employed for the SGS viscosity at the walls. At the outlet, a velocity inlet/outlet
boundary condition is used to allow back-flow of air from downstream. Thereby, the incoming fluid
velocity is obtained by the internal cell value, while the zero Neumann condition is employed in the
case of outflow. Finally, as mentioned above, synthetic turbulent inflow conditions are employed at
the inflow based on the digital filter method of Klein et al. [69].

3.3.2. Lattice Boltzmann Method

As previously mentioned in Section 2.3.2, the boundary conditions in the LBM are a critical
challenge, especially in turbulent flows, where both accuracy and stability are important. The inflow
condition is realized by a non-local regularized approach (see boundary scheme BC4 in [70]). The used
inflow velocity is obtained by the digital filter approach, which is bilinear interpolated and mapped
to each cell position. The outflow condition uses a wet-node equilibrium condition. Every particle
distribution in each boundary cell before the regular collision occurs is replaced by

fi(xLB, tLB) = f eq
i (ρLB

out, uLB(xLB + cn, tLB)), (34)

where ρLB
out is the prescribed lattice density and uLB(xLB + cn, tLB) the velocity of the neighbor cell in the

normal direction. It is noteworthy that boundary approaches that also reconstruct the non-equilibrium
part (e.g., BC3 and BC4 in [70]) show stability issues for this flow configuration.

The flow field is initialized by the equilibrium distribution f eq
i (ρLB, uLB), where ρLB = 1 and

uLB = 0. Then, the velocity at the inflow is increased at the inlet for t = 0.05 s and is updated until
the considered mass flow is reached. This procedure results in non-equilibrium parts of the particle
distribution function that are adjusted according to the velocity field.
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3.4. Statistics

The flow field is assumed to be statistically stationary after tss = 0.5 s. After this start-up time,
sampling is started within the LBM and FVM frameworks. The statistics are used to calculate the
time-averaged velocity 〈u〉 and the RMS velocity uRMS, which can be calculated by

uα,RMS =

√
〈(u′α)2〉 =

√
〈u2

α〉 − 〈uα〉2, (35)

where 〈u2
α〉 is the time-averaged square of the velocity. The averaging time for uRMS is calculated

according to the engineering correlation proposed by Ries et al. [42] as

tav =
L

|〈u〉| ε2
RMS

, (36)

where εRMS is the desired maximum sampling error. Inserting a sampling error εRMS = 0.025,
the averaging time is calculated as tav = 2.524 s.

3.4.1. Finite Volume Method

An adaptive time stepping technique is applied in the OpenFOAM setup in order to ensure a
Courant–Friedrichs–Lewy (CFL) number smaller than one. Thereby, the time-averaged velocities are
defined as

〈uα〉 =
1

tav

Nt

∑
n=0

(un
α∆tn) , (37)

where ∆tn is the time step at tn and Nt the total number of time steps within tav. Analogously,
the time-averaged square of the velocity 〈u2

α〉 is given by

〈u2
α〉 =

1
t2
av

Nt

∑
n=0

(un
α∆tn)2 . (38)

3.4.2. Lattice Boltzmann Method

Due to the use of fixed time steps, ensemble averaging is applied. The time-averaged velocity
〈uα〉 is given as

〈uα〉 =
1

Ne

tss+tav

∑
tss

(uα(t)) , (39)

where number Ne is the number of independent ensembles. In the same way the time-averaged square
of the velocity 〈u2

α〉 is evaluated as

〈u2
α〉 =

1
N2

e

tss+tav

∑
tss

(uα(t))
2 . (40)

Assuming Taylor’s hypothesis of frozen turbulence and a spatial decorrelation distance of two
integral length scales L, the number of independent ensembles Ne is calculated by

Ne =
tav|〈u〉in|

2L
. (41)

This results in 800 independent ensembles.

3.5. Grid Configurations

Both OpenFOAM and OpenLB are evaluated with three different grids in this work. There are
certain differences between the grid structures, see Figure 5.
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OpenLB uses a uniform Cartesian mesh without grid refinement. The fluid cells are indicated
by checking if each grid point is inside or outside the geometry. The resulting grid is not volume
conservative. In contrast, body-fitted meshes are favored by OpenFOAM. Therefore, prisms and
polyhedral mesh elements are applied to reconstruct the geometry shape and preserve the volume.
Furthermore, refinement layers are used to resolve more scales, especially near the wall. A detailed
comparison between the three grid configurations used: low resolution (LR), medium resolution (MR)
and high resolution (HR) for both OpenFOAM and OpenLB can be found in Table 2.

Acoustic scaling ∆t ∝ ∆x is used for the presented OpenLB configuration, which provides a
constant compressibility error with respect to the incompressible Navier–Stokes equations but in return,
requires less computational increase for smaller grid spacing than diffusive scaling. The application
of acoustic scaling leads to a constant lattice Mach number MaLB = 0.026 for the OpenLB setups.
The resulting compressibility error is assumed to be sufficiently small. In terms of the inlet diameter
D, Cartesian grid resolutions of N = 53, 77 and 111 are generated, approximately tripling the cell
number in every configuration consisting of OpenFOAM meshes. Due to the adaptive time step and
grid refinement in OpenFOAM, the size of the displayed grid spacing ∆x and time step ∆t is space-
and time-averaged, respectively.

(a) OpenFOAM (b) OpenLB
Figure 5. Slice representation of the Finite Volume and Lattice Boltzmann computational meshes.
For OpenFOAM (a) an unstructured graded mesh and for OpenLB (b) a uniform Cartesian mesh
is used.

Table 2. Discretization parameters for the three grid configurations: low resolution (LR), medium
resolution (MR) and high resolution (HR) for both OpenFOAM and OpenLB.

Solver Identifier Ngrid ∆x ∆t MaLB CFL

OpenFOAM LRFVM 1.153× 106 1.060× 10−3 3.000× 10−6 − 1
OpenFOAM MRFVM 3.121× 106 7.610× 10−4 2.250× 10−6 − 1
OpenFOAM HRFVM 8.712× 106 5.410× 10−4 1.600× 10−6 − 1

OpenLB LRLBM 1.300× 106 1.061× 10−3 1.786× 10−6 0.026 −
OpenLB MRLBM 3.846× 106 7.303× 10−4 1.230× 10−6 0.026 −
OpenLB HRLBM 1.123× 107 5.066× 10−4 8.526× 10−7 0.026 −

4. Results of the IC Engine Test Case

In this section, PIV and LES results of the in-cylinder fluid flow are analyzed. At first, the ability
of LBM and FVM to predict characteristic features of engine flows is assessed. Then, predicted
time-averaged and RMS velocity profiles at several locations downstream of the valve are compared
with each other and with the high-speed PIV measurements. Subsequently, the prediction accuracy of
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both numerical techniques are evaluated based on error analysis. Finally, the computational cost of
OpenLB and OpenFOAM is appraised in terms of meshing and simulation performance.

4.1. Characterization of the In-Cylinder Flow

Figure 6 depicts the magnitude of the two dimensional time-averaged velocity |〈U〉| at the VP
section obtained from (a) PIV measurements, (b) OpenLB and (c) OpenFOAM. Whereby |〈U〉| is
defined by means of the in-plane velocity components as

|〈U〉| =
√
〈ux〉2 + 〈uy〉2. (42)

The absence of the plane normal components is due to the two-dimensional PIV measurement
data (see Section 3.1).
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(a) PIV (b) HRLBM (c) HRFVM

Figure 6. Line integral convolution visualization of the averaged velocity field with local characteristic
flow patterns (I-V) of the PIV measurements (a), along with the OpenLB (b) and OpenFOAM (c)
numerical results.

Characterized by strong flow/wall interaction processes, the turbulent flow inside IC engines
features very complex flow and mixing dynamics. Considering Figure 6, some of the complex types of
flow relevant to IC engines can also be found in the flow bench configuration; namely, (I) boundary
layer flow, (II) impingement/stagnation, (III) wall-jets, (IV) flow separation/reattachment and (V) the
so-called tumble flow. By comparing the LES results with the PIV measurements in Figure 6, it appears
that LBM as well as FVM are able to properly predict such flow types. Furthermore, it can be clearly
seen that predictions of LBM and FVM are quite similar to each other and also generally similar to the
PIV measurements. This confirms the validity of LBM and FVM for such a fluid flow application.

The complex physics of engine flows are further analyzed and highlighted in Figure 7,
which shows a snapshot of turbulent structures in the vicinity of the valve visualized by means
of the Q-criterion [71]. Thereby, iso-surfaces of Q = 7× 10−7 are colored by the magnitude of the
instantaneous velocity.

As is visible in Figure 7, a highly turbulent flow is generated around the intake valve. This gas
stream separates from the valve and initiates large-scale turbulent structures, which cascade into
smaller ones until they dissipate further downstream. Such a complex disintegration process is
essential in the context of IC engine flows since it influences the mixing and subsequent flow pattern
inside the combustion chamber. It is nearly impossible to capture these three dimensional turbulent
scales experimentally. However, as seen in Figure 7, it can be well represented by means of LBM and
FVM techniques.



Computation 2020, 8, 43 17 of 32

0

10

20

30

40

|u| in m/s

Figure 7. Turbulent structures as smoothed iso-surfaces of Q-criterion with Q = 7 × 10−7 and
magnitude of velocity from HRLBM.

4.2. Validation of In-Cylinder Fluid Flow

For further comparison, the magnitudes for the two-dimensional time-averaged velocity |〈U〉|
and RMS velocity |URMS| are plotted over three lines positioned at y = −7 mm, −12 mm and −17 mm,
see Figure 8.

y

x

−7mm
−12mm
−17mm

z=19mm

Figure 8. Positions of the three considered lines at y = −7 mm, −12 mm and −17 mm in the mid valve
plane at z = 19 mm.

The magnitude for the two-dimensional RMS velocity vector is again obtained from the two
in-plane components

|URMS| =
√

u2
RMS,x + u2

RMS,y. (43)

For these three lines, each grid configuration of both solvers and the PIV results are presented in
Figure 9.

It can be seen that the highest grid resolutions HRLBM and HRFVM agree well with the trends
of the PIV results. Furthermore, the different convergence behaviors in the near-wall region are
observable. Due to the used grid refinement, the wall jet can be described more precisely by LRFVM

and MRFVM compared with LRLBM and MRLBM. In contrast, OpenLB is able to predict the transition
area of the tumble flow to the right-side wall jet more accurately than OpenFOAM, even with the
lower resolutions LRLBM and MRLBM.
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(a) y = −7 mm (b) y = −7 mm

(c) y = −12 mm (d) y = −12 mm

(e) y = −17 mm (f) y = −17 mm

HRFVM MRFVM LRFVM

HRLBM MRLBM LRLBM

PIV

Figure 9. Magnitude of the two dimensional time-averaged velocity |〈U〉| and root mean square (RMS)
velocity |URMS| at y = −7 mm,y = −12 mm and y = −17 mm in low, medium and high resolution
grids for Lattice Boltzmann Method (LBM) and finite volume method (FVM) in comparison with
PIV data.
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4.3. Prediction Accuracy

The prediction accuracy of the numerical results calculated by OpenLB and OpenFOAM is
compared with each other by means of the PIV measurement data. Therefore, we introduce the
normalized absolute error nAE as the error criterion. The nAE for variable φ at position x is defined as

nAEφ(x) =
|φsim(x)− φPIV(x)|

max(φPIV(x))−min(φPIV(x))
, (44)

where φsim is the simulated data and φPIV is the PIV measurement data, which is used as the reference
value. The normalization is obtained by the interval length of the experimental data. The nAE|〈U〉|,
concerning the time-averaged velocity |〈U〉|, is depicted for the three different grid resolutions LR,
MR and HR in Figure 10. The region of interest is in accordance with the experimental data (VP,
see Figures 3 and 8).

For the low grid resolution LR, both OpenFOAM and OpenLB show the largest errors in the
jet region (see Figure 10a,b. Also, the tumble flow prediction accuracy is diminished in comparison
with higher grid resolutions. It can be observed that especially the approximation of the jet region
in LRLBM is worse than LRFVM, due to the larger grid spacing in the near-wall region around the
valve. In contrast, the medium grid resolution exhibits in both cases that the error in the jet region
is reduced (see Figure 10c,d. The high deviation region at the starting point of the jet is related to a
shifted separation point of the boundary layer on the valve surface. Overall, the flow field of MRFVM

approximates the PIV measurement data better than MRLBM, which is due to the higher accuracy
in the jet and tumble flow range. In Figure 10e,f, the error maps for the highest grid resolution are
presented. The error maps for HRLBM and HRFVM are in good agreement with each other and to the
PIV measurement. Both the jet and the tumble flow region are well predicted. Again, it is noticeable
that the highest deviation in the jet region is related to a shifted separation point.

For the RMS velocity |URMS|, high errors are more spread over the jet region compared with the
mean velocity |〈U〉| errors, reaching into the tumble region as the fluctuation due to turbulent kinetic
energy is amplified by the velocity (see Figure 11). For both LR and MR, OpenFOAM is able to predict
the turbulent velocity fluctuations in the jet region better than OpenLB as a result of the graded mesh
(see Figure 11a–d). For the same reason, OpenLB shows much smaller errors in the tumble region,
while OpenFOAM suffers from greater errors at MRFVM and LRFVM (see Figure 11a,c). Similar to the
|〈U〉| error map, |URMS| is in good agreement with the PIV measurements for HRLBM and HRFVM

given in Figure 11e,f.
A global error criterion can be defined by the arithmetic mean of the normalized error nAEφ.

This normalized mean absolute error nMAEφ is given by

nMAEφ =
1

NPIV

NPIV

∑
k=1

nAEφ(xk), (45)

where NPIV is the number of experimental data points in the plane. Figure 12 depicts the normalized
mean absolute error of the mean velocity nMAE|〈U〉| and the RMS velocity nMAE|URMS|.

It can be seen that the nMAE decreases with an increasing number of cells. Both errors for the
time-averaged velocity and the RMS velocity are lower than nMAE|〈U〉| < 0.08 and nMAE|URMS| < 0.15,
respectively, which is satisfactory for such coarse meshes. The errors for the highest resolution are very
similar, which is also indicated by the corresponding error maps (see Figure 10e,f). The convergence
order for the OpenLB and OpenFOAM configurations is lower than the first order. This diminished
convergence order can be justified by the experimental reference data, where the estimated PIV
measurement uncertainty is nMAE|〈U〉| = 0.01. Another source of error for the RMS velocity, besides
the uncertainty of the PIV data, is the sampling error εRMS = 0.025. This may also affect the convergence
order of nMAE|URMS|.
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(a) LRFVM

nAE|〈U〉|

(b) LRLBM

(c) MRFVM

nAE|〈U〉|

(d) MRLBM

(e) HRFVM

nAE|〈U〉|

(f) HRLBM

Figure 10. Normalized absolute error (nAE) map representation of the time-averaged velocity nAE|〈U〉| for
in-cylinder flow against PIV data for OpenFOAM (left) and OpenLB (right) at different grid resolutions.
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(a) LRFVM

nAE|URMS|

(b) LRLBM

(c) MRFVM

nAE|URMS|

(d) MRLBM

(e) HRFVM

nAE|URMS|

(f) HRLBM

Figure 11. Normalized absolute error (nAE) map representation of the RMS velocity nAE|URMS| for
in-cylinder flow against PIV data for OpenFOAM (left) and OpenLB (right) at different grid resolutions.
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Figure 12. Normalized mean absolute error of the time-averaged velocity nMAE|〈U〉| and the RMS
velocity nMAE|URMS| for three different grids: LR, MR and HR. The number of cells are normalized by
the coarse grid LR.
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Figure 12. Normalized mean absolute error of the time-averaged velocity nMAE|〈U〉| and the RMS
velocity nMAE|URMS| for three different grids: low resolution (LR), median resolution (MR) and high
resolution (HR). The number of cells are normalized by the coarse grid LR.

4.4. Computational Cost

Besides the accuracy, the computational costs are a key factor to analyze the suitability of a
numerical method. Therefore, the runtime of the mesh generation and the solver was evaluated on a
single node which consists of two dodeca-core Intel Xeon processors E5-2680 v3 that support AVX2.
The node provides 64 GB main memory. The use of a single node for estimating runtime performance
was chosen because the parallel scalability is not in the scope of this study. The estimation of parallel
scalability requires extensive testing due to the strong influence by the cells per core ratio, the load
balancing method and the connection between the nodes of the cluster system. Comprehensive studies
that deal with the parallel scalability of OpenFOAM and OpenLB can be found in [43,72,73].

4.4.1. Meshing Performance

Due to the straightforward approach in the case of OpenLB, the grid generation is fully automatic
and does not require any additional preparation steps. On the contrary, the meshing process for FVM
is very time-consuming if the grid is manually obtained. Internal OpenFOAM tools can drastically
reduce the effort, but require an experienced user. This study uses the built-in OpenFOAM meshing
tool snappyHexMesh. Still, writing a script for grid generation for a complex geometry can take several
days. Nevertheless, we only take the runtime for the mesh generation into account. The meshing time
is estimated by

tcore,mesh = Ncore tnode,mesh , (46)

where tnode,mesh is the runtime on the node and Ncore the amount of used cores. The comparison of the
meshing time for the three different resolutions is represented in Figure 13.
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Figure 13. Meshing runtime tcore,mesh comparison between OpenFOAM and OpenLB for the three grid
configurations: LR, MR and HR.

It can be observed that the meshing time in OpenLB is more than doubled each time the higher
grid resolution is used. In contrast, the results of OpenFOAM show a certain overhead with the
high resolution grid, i.e. The grid generation for OpenFOAM takes considerably more time with
each increase in resolution. This can be justified by the complex meshing procedure, which consists
of a castellation, snapping and adding layers step including several optimization cycles. Overall,
the meshing time in OpenLB is on average 424 times shorter than in OpenFOAM. In the case of
a static mesh, this performance benefit is not decisive. However, the use of a moving mesh, e.g.,
if piston motions are taken into account, requires several mesh updates in one cycle. Therefore, a fast
grid creation process, such as that with OpenLB, can be essential in the context of engine relevant
flows. The suitability of LBM for describing moving boundaries has been demonstrated in extensive
comparisons for different moving boundary methods, e.g., in [74,75].

4.4.2. Simulation Performance

For the comparison of the simulation performance difference for each grid, a runtime metric is
introduced. At tss = 0.5 s, the beginning of the statistics computation, the runtime tracker is started.
The tracked runtime tnode,solver is divided by the according past simulation time tsim,solver and scaled
with the number of cores Ncore. This core time tcore,solver is written as

tcore,solver =
Ncoretnode,solver

tsim,solver
. (47)

This means that the runtime metric calculates the core hours for one second of simulation time
including the additional time for processing the turbulence statistics. The direct comparison of each
grid resolution is justified by the comparable accuracy, see Section 4.3. The performance results for the
three different grid resolutions are presented in Figure 14.

The bar chart reveals that the simulations obtained by OpenLB are significantly faster than the
OpenFOAM simulations. The resulting performance factor can be determined by dividing tcore,solver
for the corresponding grid resolutions. If each grid configuration is taken into account, the mean
performance factor for OpenLB to OpenFOAM can be estimated as 32.03. It is noteworthy that the
performance factor varies greatly between the different grid resolutions, 21.76 for LR and 46.49 for
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HR. Additional quantities are introduced to further investigate the variance of the performance factor.
The mean cells per core (MCPc) are given by

MCPc =
Ngrid

Ncore
. (48)

Another performance metric are the cell updates per core and second (CUPcs), which are
defined as

CUPcs =
Ngrid

tcore,solver∆t
. (49)
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Figure 14. Solver runtime tcore,solver comparison between OpenFOAM and OpenLB for the three grid
configurations: LR, MR and HR.

Both quantities MCPc and CUPcs are listed for the three grid configurations in Table 3.

Table 3. Mean cells per core (MCPc) and cell updates per core and second (CUPcs) for the three
grid configurations: low resolution (LR), medium resolution (MR) and high resolution (HR) for both
OpenFOAM and OpenLB.

Solver Identifier MCPc CUPcs

OpenFOAM LRFVM 5.016× 104 2.934× 104

OpenFOAM MRFVM 1.357× 105 2.424× 104

OpenFOAM HRFVM 3.788× 105 2.023× 104

OpenLB LRLBM 5.654× 104 1.208× 106

OpenLB MRLBM 1.672× 105 1.521× 106

OpenLB HRLBM 4.885× 105 2.283× 106

The solvers show a contrary behavior, while OpenLB benefits from an increased MCPc and almost
doubles the CUPcs from LR to HR, OpenFOAM has a decrease of about 45 percent. Consequently,
OpenFOAM seems to be less affected by the used MCPc. The reasons for the different behavior
can be manifold and range from the influence of the load balancing method to cache effects and
communication effects. A detailed discussion of these influencing factors can be found in [72,76,77].
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5. Conclusions and Outlook

The purpose of this paper is to evaluate NWM-LES for complex turbulent flows using LBM by
comparison with FVM simulations and PIV experiments. Thereby, a van Driest damped Smagorinsky
model coupled to the Musker equation was used to model the turbulent boundary layer. Both LBM
and FVM NWM-LES approaches were outlined in detail. Three different grid resolutions were
used to simulate an engine relevant in-cylinder flow with the open source frameworks OpenLB and
OpenFOAM. Characteristic flow features of the in-cylinder flow were highlighted and compared
side-by-side. In addition to the quantitative comparison, the errors of the tested grid configuration
were calculated against a highly precise PIV measurement and analyzed in detail. It was shown
that the matching grid configurations of both numerical methods had similar errors. Surprisingly,
OpenLB requires only slightly more cells than OpenFOAM to produce the same accuracy, although
no grid refinement was used. This can be justified by the chosen region of interest, which is
remote from the wall, and also the incorporated near-wall treatment based on the wall function
approach. The time-averaged and the RMS velocity at the highest grid resolution for OpenLB
and OpenFOAM were in good agreement with the PIV measurement (nMAE|〈U〉| < 0.038 and
nMAE|URMS| < 0.098, respectively). The performance estimation revealed that the meshing process
in OpenLB was 424 times faster and the simulation process approximately 32 times faster for the
investigated setup. These significant performance differences in meshing and solver runtime indicate
that LBM is a valuable and viable alternative to FVM in simulating IC engine relevant flows with
NWM-LES. In particular, the fast grid generation process in OpenLB further reduces computational
costs, if moving meshes are applied. The faster calculation speed for NWM-LES using LBM is
advantageous to address industrial applications and to enable "overnight" calculations that previously
took weeks. Therefore, faster design cycles and operating condition tests are feasible. The performance
advantage can also be used to provide more precise results in the same time and finally paves the way
for near-wall-resolved LES in the future [78].

Nevertheless, LBM still needs additional research to gain the maturity of NWM-LES with FVM.
The applied equilibrium wall function approach based on Musker’s law of the wall is strictly speaking
only valid in fully developed turbulent boundary layers. In contrast, turbulent boundary layers
of complex turbulent flows deal with pressure gradients, separation and recirculation, variable
physical properties, compressibility effects and many more. Therefore, a further step is to implement
a generalized wall function such as [79–81] in OpenLB that is able to model these flow features.
In addition, the simple SGS model employed in this study can be replaced by more advanced
turbulent models, e.g., models based on dynamic procedures [82], the scale similarity hypothesis [83]
or wall-adapted SGS models [52], which have shown an increased accuracy for IC engine flows [2,42].
If reactive turbulent flows are considered, further investigations have to be done. In this respect,
a modeling approach based on detailed chemistry with a large number of species as well as tabulated
chemistry is a challenging task, especially for LBM due to the high memory requirements [84].
However, given the benefits of the mesh generation and computation time reductions shown in
this work, LBM is a promising alternative to FVM in IC engine and many other complex turbulent
flow applications in the future.
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Abbreviations

The following nomenclature is used in this manuscript:

BGK Bhatnagar–Gross–Krook
CFL Courant–Friedrichs–Lewy number
CUPcs cell updates per core and second
CV control volumes
FDM finite difference method
FVM finite volume method
GPU graphics processing unit
HR high resolution
IC internal combustion
LBM lattice Boltzmann method
LES large eddy simulation
MCPc mean cells per core
MR medium resolution
MRV magnetic resonance velocimetry
nMAE normalized mean absolute error
nAE normalized absolute error
NWM near-wall-modeled
PIV particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
RMS root mean square
SGS sub-grid scale
LR low resolution
VP valve plane

Roman

A+ van Driest parameter
c set of discrete lattice velocity vectors
cn discrete lattice normal velocity vector
C∆ van Driest model constant
CM sub-grid scale model coefficient
cs speed of sound of the lattice
D intake pipe diameter
DM model related operator
es stream-wise unit vector
f filtered particle distribution vector
f

eq
filtered particle distribution vector at equilibrium state

f
neq

non-equilibrium of the particle distribution function vector
I turbulence intensity
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L integral length scale
MaLB lattice Mach number
ṁin massflow into the flow bench
ṁout massflow out of the flow bench
N resolution
Ncore number of cores
Ne number of independent ensembles
Ngrid number of grid cells
NPIV number of PIV data points
Nt total number of time steps within tav

p filtered pressure
pLB filtered lattice pressure
pout pressure at the numerical outflow
Pin,1 absolute pressure at pressure sensor inlet 1
Pin,2 absolute pressure at pressure sensor inlet 2
Pout,1 absolute pressure at pressure sensor outlet 1
Pout,2 absolute pressure at pressure sensor outlet 2
qB dimensionless distance
Q Q-criterion
Re Reynolds number
S filtered strain rate tensor

SLB filtered lattice strain rate tensor
t time
tav averaging time
tLB lattice time
tcore,mesh runtime on the core for meshing
tnode,mesh runtime on the node for meshing
tcore,solver runtime on the core for the solver per second simulation time
tnode,solver runtime on the node for the solver
tsim,solver passed simulation time
tss time to a statistically stationary flowfield
Tef f effective stress tensor
TSGS sub-grid scale stress tensor
Tw wall shear stress
T̃LB

w averaged wall shear stress assuming RANS hypothesis
u filtered velocity vector
uLB filtered lattice velocity vector
ũLB

f averaged velocity vector assuming RANS hypothesis

uLB
n filtered lattice velocity vector at position xLB

n
ũLB

1 stream-wise component of ũLB
f

uLB
2 stream-wise component of uLB

n
uτ friction velocity
u+ dimensionless friction velocity
u‖ stream-wise velocity
〈u〉 time-averaged velocity vector
〈u〉in time-averaged velocity vector at the numerical inflow
u′ velocity fluctuation vector
〈u′〉 time-averaged velocity fluctuation vector
〈u′u′〉 Reynolds stress tensor
〈U〉 two dimensional time-averaged velocity vector
URMS two dimensional root mean square velocity vector



Computation 2020, 8, 43 28 of 32

x position vector
xLB lattice position vector
xLB

f lattice position vector in ci direction

xLB
f f lattice position vector in 2ci direction

xLB
n lattice position vector in cn direction

xLB
w lattice wall position vector

y wall distance
yLB

1 lattice distance from the the node at position xLB
f distance to the boundary

yLB
2 lattice distance from the the node at position xLB

n to the boundary
y+ dimensionless wall distance
yp wall distance of the cell centroid

Greek

δ Kronecker operator
∆grid grid filter
∆t time step
∆x grid spacing
ε maximal sampling error
η dynamic viscosity
ϑin,1 temperature at temperature sensor 1
ϑin,2 temperature at temperature sensor 2
ϑwall wall temperature
κ von Kármán constant
ν kinematic viscosity
νef f effective kinematic viscosity
νSGS sub-grid scale kinematic viscosity
νLB lattice kinematic viscosity
νLB,ef f lattice effective kinematic viscosity
νLB,SGS lattice sub-grid scale kinematic viscosity
Π filtered lattice momentum flux
Πneq filtered second moment of the non-equilibrium of the particle distribution function
ρ density
ρLB filtered lattice density
ρLB

out lattice density at the outflow
τ lattice relaxation time
τSGS lattice sub-grid scale relaxation time
τef f lattice effective relaxation time
φPIV PIV measurement data
φsim simulated data
ω lattice weight vector
Ω filtered collision operator vector
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