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Abstract: A thorough and detailed investigation of an unsteady free convection boundary layer flow
of an incompressible electrically conducting Williamson fluid over a stretching sheet saturated with a
porous medium has been numerically carried out. The partial governing equations are transferred
into a system of non-linear dimensionless ordinary differential equations by employing suitable
similarity transformations. The resultant equations are then numerically solved using the spectral
quasi-linearization method. Numerical solutions are obtained in terms of the velocity, temperature
and concentration profiles, as well as the skin friction, heat and mass transfers. These numerical
results are presented graphically and in tabular forms. From the results, it is found out that the
Weissenberg number, local electric parameter, the unsteadiness parameter, the magnetic, porosity
and the buoyancy parameters have significant effects on the flow properties.

Keywords: Williamson fluid; stretching sheet; unsteady MHD boundary layer flow; porous medium;
spectral quasi-linearization method

1. Introduction

The study of non-Newtonian fluids has attracted many researchers owing to its enormous
applications in industrial and engineering sectors, especially in manufacturing and processing
industries. Unlike Newtonian fluids, Kahshan et al. [1], non-Newtonian fluids are more complicated
because there is no single construction relation that can be used to explain them all, Hussanan et al. [2].
The relationship between the shear stress and rate of strain is non-linear at a given temperature
and pressure in a non-Newtonian fluid. To this end, these fluids cannot be modelled using the
classical Navier-Stokes equations. Non-Newtonian fluids have the ability to: (i) shear-thin or shear
thicken, (ii) exhibit thixotropy, (iii) allow stress relaxation, (iv) creep in a nonlinear manner, (v) develop
normal stress differences, and (vi) exhibit a threshold for the shear stress before it starts to flow.
Many non-Newtonian fluids possess one or more of these characteristics.

Non-Newtonian fluids are generally classified into three main categories, namely: (i) the differential
type, (ii) the rate type and (iii) the integral type. The detailed descriptions of each category can be
found in Cioranescu et al. [3]. In non-Newtonian fluids, pseudoplastic fluids are the most frequently
encountered fluids. But as expected, Navier-stokes equations alone are insufficient to describe the
rheological properties of these fluids. Therefore, to overcome this challenge, many rheological models
like Maxwell model, Jeffrey model, Ellis model, Power law model, Carreau model, among others,
have been developed. The Williamson fluid model is another powerful model used to explain the
rheological properties of pseudoplastic fluids. A pseudoplastic is a shear-thinning fluid and has less
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resistance at high strain rates like polymer solution, paint, blood, plasma. In rheology, shear thinning is
the pseudoplastic fluid whose viscosity decreases under shear strain. The shear thinning fluid behaviour
is usually exhibited by inks which are used in inkjet printing as discussed by Miccichè et al. [4] and
Dybowska-Sarapuk et al. [5].

A lot of authors have investigated the flow of non-Newtonian fluids due to their vast applications
especially when with suspensions of nano-sized particle. Some work on nanoparticles was done by
Mozaffari et al. [6], Mozaffari et al. [7], Darjani et al. [8] and Xing et al. [9]. Considering a flow
underlying spreading surface through a non-Darcian porous medium, Elgazery [10] anlayzed the
effects of internal heat generation/absorption of a non-Newtonian Casson fluid with suspension of
gold and alumina nanoparticles. Hsiao [11] presented a study for thermal energy extrusion system
conversion problem with electric hydromagnetic heat and mass mixed convection of a viscoelastic
non-Newtonian Carreau-Nanofluid with radiation and viscous dissipation effects. Khan et al. [12]
studied the influence of the nanoparticles and uniform magnetic field on the slip flows in arterial
vessels with blood conveyed through hollow arterial tubes described as a third grade non-Newtonian
fluid. An investigation on the multislip effects on the magnetohydrodynamic mixed convection
unsteady flow of microploar nanofluids over a stretching/shrinking sheet along with radiation in the
presence of a heat source was done by Abdal et al. [13]. Adesanya et al. [14] investigated the steady
flow of the non-Newtonian fluid via the inclined channel heated isothermally at the boundaries.

Williamson [15] pioneered the discussion of the flow of pseudoplastic materials and proposed a
model equation to describe the flow of pseudoplastic fluids and experimentally verified the results.
Nadeem et al. [16] presented a paper modelling a two-dimensional Williamson fluid flow over a
stretching sheet. Nadeem and Hussain [17] explored the effects of heat transfers on the Williamson
fluid over a porous exponentially stretching sheet surface. The study also considered the two cases of
heat transfer, namely, the prescribed exponential order surface temperature case and the prescribed
exponential order heat flux case. Khan et al. [18] described the effect of thermal radiation on the
thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid
properties. Ijaz Khan et al. [19] developed a model for a boundary layer stagnation point flow of an
electrically conducting Williamson fluid in the presence of a constant magnetic field.

Monica et al. [20] presented an analysis that dealt with the study of stagnation point flow of a
Williamson fluid over nonlinearly stretching sheet with thermal radiation. Malik et al. [21] studied
the Williamson fluid past a stretching cylinder with combined effects of variable thermal conductivity
and heat generation/absorption. Mabood et al. [22] performed an analysis for MHD Williamson
nanofluid flow over a continuously moving heated surface with thermal radiation and heat source.
Dawar et al. [23] did an analysis of the flow of a Williamson fluid taken over a linear porous stretching
sheet under the influence of thermal radiation.

Kurmar et al. [24] carried out a mathematical analysis of two-phase boundary layer flow and
heat transfer of a Williamson fluid with particle suspension over a stretching sheet. Shateyi et al. [25]
investigated a Casson fluid flow in the presence of free convection of combined heat and mass transfer
towards an unsteady permeable stretching sheet with thermal radiation, viscous dissipation and chemical
reaction. Hayat et al. [26] studied the unsteady two-dimensional boundary layer flow of an incompressible
Williamson fluid over an unsteady permeable stretching surface with thermal radiation. Khan et al. [27]
examined the influence of chemically reactive species and mixed convection on the magnetohydrodynamic
Williamson nanofluid induced by a nonisothermal cone and plate in a porus medium.

Recently, Panezai et al. [28] examined the influence of thermal radiation on two-dimensional
incompressible MHD mixed convective heat transfer flow of Williamson fluid flowing over a porous
wedge. Hsu et al. [29] numerically analysed the heat and mass transfer characteristics of the influence of
uniform blowing/suction and MHD (magnetohydrodynamic) on the free convection of non-newtonian
fluids over a vertical plate in porous media with internal heat generation and soret/dufour effects.
Kebede [30] presented an analytic approximation to the heat and mass transfer characteristics of
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Williamson nanofluid flow. Reddy et al. [31] studied MHD flow and heat transfer characteristics of
Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity.

Lastly, Megahed [32] researched on Williamson boundary layer fluid flow and heat transfer due
to a nonlinearly stretching sheet. Many researchers have been attracted to study viscous flows due
to a stretching sheet. This has been necessitated by their several applications in polymer processing
industries, environmental pollution, biological processes and aerodynamic extrusion of plastic sheets,
among other applications. Sakiadis [33] pioneered the discussion of the fluid flow due to a stretching
surface. Crane [34] extended the work of Sakiadis to study the problem of fluid flow of Blasius type due
to a stretching sheet. The literature on the stretching sheet topic is quite extensive and hence cannot be
listed here in detail. The most recent works of great researchers regarding the flow over stretching sheet
can be found in Hsiao [35,36], Shateyi [37], Sharma et al. [38], Shamashuddin et al. [39], Nagalakshm
and Vijaya [40].

Motivated by the above mentioned studies as well as the vast applications of the different types of
non-Newtonian fluids, the current study seeks to investigate unsteady free convection boundary layer
flow of an electrically conducting Williamson fluid over a stretching sheet. The sheet is saturated with a
porous medium under the combined effects of viscous dissipation, chemical reaction, thermal radiation
as well as a uniform magnetic field. It is well known that fluid dynamics problems are analysed through
material and virtual experimentation, Vedovoto et al. [41]. Material modeling entails the construction
of benches and models of the physical problems, as well as instrumentation for gathering information.
However, the virtual experimentation requires mathematical modeling which leads to models with
differential equations, integral equations and/or intro-differential equations. It is remarked that
valuable information about the problem is provided by virtual experimentation. Numeric algorithms
and quantitative information about the problem are generated through computational modelling.
The data is then used to perform the visualization of the simulation results ad the statistical analysis of
the numerical experiment. To that end, the current study also seeks to use the virtual experimentation
approach. We are also employing recently developed numerical technique known as the spectral
quasi-linearization method. Therefore, novelty of the current paper lies in the application of the
numerical technique to solve this two dimensional, unsteady free convection boundary layer flow
of an incompressible electrically conducting Williamson fluid over a stretching sheet saturated with
a porous medium. The innovation of this study lies in putting together more factors into the basic
Williamson fluid model to give a through analysis of the model.

2. Mathematical Formulation

We consider a two dimensional, unsteady free convection boundary layer flow of an
incompressible electrically conducting Williamson fluid over a stretching sheet saturated with a
porous medium. The x-axis is taken parallel to the stretching sheet and the y-axis is in the vertical
direction. We assume that the sheet is moving with a velocity Uw = ax

1−ct , where a > 0 is a stretching
rate along the x-axis. If a < 0, then it becomes a shrinking velocity constraint. The the constant ct
is such that ct < 1. A uniform transverse magnetic field ~B = (0, B0, 0) and uniform electric field
~E = (0, 0,−E0) are applied to the flow region as shown in Figure 1. The magnetic Reynolds number is
assumed to be much less than unity and hence the induced magnetic field is negligible in comparison
to the applied magnetic field. This is made possible by the fact that the fluid is assumed to be slightly
conducting. In this study we also neglect the Hall effect/currents. We note that the magnetic field is
weaker than the electric field and also that the magnetic field obeys Ohm’s law J̌ = σ(

−→
E + V ×−→B ),

where J̌ is the Joule current, σ is the electrical conductivity and V is the velocity. We take into account
frictional heating in the from of viscous dissipation. Thermal radiation and chemical reaction are also
considered in this study. We neglect the induced magnetic field and the hall effect.
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Figure 1. Flow configuration and coordinate system.

The relevant governing flow equations through the conservation laws of mass, linear momentum,
energy and mass by using the boundary layer approximations give the following Hayat et al. [26]

∂u
∂x + ∂v

∂y = 0, (1)

∂u
∂t + u ∂u

∂x + v ∂u
∂y = ν ∂2u

∂y2 + 2νΓ ∂u
∂y

∂2u
∂y2 + gβ(T − T∞) + gβc(C− C∞)

+ σ
ρ (E0B0 − B2

0u), (2)

∂T
∂t + u ∂T

∂x + v ∂T
∂y = K

ρcp
∂2T
∂y2 + µ

ρcp

(
∂u
∂y

)2
+ µΓ

ρcp

(
∂u
∂y

)3
+ σ

ρcp
(β0u− E0)

2 − 1
ρcp

∂qr
∂y , (3)

∂C
∂t + u ∂C

∂x + v ∂C
∂y = D ∂2C

∂y2 − Kr(C− C∞), (4)

subject to boundary conditions{
u(x, 0) = Uw, v(x, 0) = Vw, T(x, 0) = Tw, C(x, 0) = Cw,

u→ 0, T → T∞, C → C∞, as y→ ∞.
(5)

Here u and v are the velocity components in the x and y directions, respectively, ν is the kinematic
viscosity, Γ is the relaxation time, g is the acceleration due to gravity, T and C are the fluid temperature
and concentration, respectively, T∞ and C∞ are the respective ambient temperature and concentration,
β and βc are the respective coefficients of thermal and concentration expansion, σ is the electrical
conductivity, ρ is the fluid density, µ is the dynamic viscosity, κ is the permeability parameter, cp is
the specific heat at constant pressure, qr is the radiative heat flux, Kr is the chemical reaction rate, K is
thermal conductivity and lastly, D is the mass diffusivity. Vw is expressed by Vw = − V0

(1−ct)
1
2

.

As now known, Vw express the mass transfer at the surface with Vw < 0 for injection and Vw > 0
being for suction. The surface temperature Tw(x, t) and the surface concentration Cw(x, t) are given
respectively as:

Tw(x, t) = T∞ +
ax

2ν(1− ct)2 T0 and Cw(x, t) = C∞ +
ax

2ν(1− ct)2 C0, (6)

where c ≥ 0. T0(0 ≤ T0 ≤ Tw) and C0(0 ≤ C0 ≤ Cw) are the reference temperature and
concentration respectively.
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By employing the Rosseland approximations, we have

qr = −
4σ∗

3k1

∂T4

∂y
, (7)

where σ∗ is the Stefan-Boltzmann constant and k1 is the mean absorption coefficient. Applying Taylor’s
series, we have T4 ' 4T3

∞T − 3T4
∞, where T∞, is the ambient temperature and the energy equation

now becomes:

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
1

ρcp

(
16σ∗T3

∞
3k1

+ K
)

∂2T
∂y2 +

µ

ρcp

(
∂u
∂y

)2
+

µΓ
ρcp

(
∂u
∂y

)3
+

σ

ρcp
(β0u− E0)

2. (8)

Similarity Transformation

Following Hayat et al. [26], among others, we introduce the following dimensionless variables.

η =

√
Uw

xν
y, ψ =

√
νxUw f (η), θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
, (9)

with the velocity components given by u = ∂ψ
∂y and v = − ∂ψ

∂x .
The continuity equation is satisfied and the resulting governing partial differential equations

together with the boundary conditions become:

(1 + 2We f ′′) f ′′′ + f f ′′ − ( f ′)2 − S
(

f ′ + η
2 f ′′

)
+ M2(E1 − f ′) + λ1θ + λ2φ = 0, (10)

1
Pr

(
1 + 4R

3

)
θ′′ + f θ′ − Sη

2 θ′ − (2S + f ′)θ + Ec(( f ′′)2 + We( f ′′)3) + M2Ec( f ′ − E1)
2 = 0, (11)

1
Sc φ′′ +

(
f − Sη

2

)
φ′ + (2S− f ′ − γ)φ = 0. (12)

The corresponding boundary conditions become:

f (0) = fw, f ′(0) = 1, θ(0) = 1, φ(0) = 1, (13)

f ′(∞)→ 0, f ′′(∞)→ 0 θ(∞)→ 0, φ(∞)→ 0, (14)

where S
(
= c

a
)

is the unsteadiness parameter, fw

(
= V0√

aν

)
is the suction/injection parameter,

We
(

= ΓUw
√

a
ν(1−ct)

)
is the Weissenberg number, M2

(
=

σB2
0(1−ct)

ρa

)
and M is the magnetic field

parameter, E1

(
= E0(1−ct)

B0ax

)
is the local electric parameter, R

(
= 4σ∗T3

∞
κK

)
is the thermal radiation

parameter, Sc
(
= ν

D

)
is the Schmidt number, Pr

(
=

µcp
K

)
is the Prandtl number, γ

(
= Kr(1−ct)

a

)
is

the chemical reaction parameter, λ1

(
= gβT0

2aν

)
is the thermal buoyancy parameter, λ2

(
= gβcC0

2aν

)
is

the solutal buoyancy parameter, Ec
(
= U2

w
cp(Tw−T0)

)
is the Eckert number.

The flow characteristics which are of engineering significance are the skin friction coefficient, the local
Nusselt number and the Sherwood number. These are respectively, defined as: (Hayat et al. [26])

C f =
τw

ρU2
w

, Nux =
xqw

K(Tw − T∞)
, Shx =

xjw
k∞(Cw − C∞)

. (15)
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Upon applying the necessary expressions for τw, qw, and jw, we get the following:

C f = Re−1/2
x [ f ′′(0) + We f ′′2(0)], Nux = −Re1/2

x

(
1 +

4R
3

)
θ′(0), Shx = −Re1/2

x φ′(0). (16)

3. Method of Solution

In this section we present a spectral method based on a quasi-linearization method called
the spectral quasi-linearization method (SQLM), Motsa et al. [42]. The SQLM combines two
methods, the quasi-linearization method (QLM) and a Chebyshev spectral collocation method (CSCM).
The QLM, a Newton-Raphson based quasi-linearzation method which was introduced by Bellman and
Kalaba [43], is used to linearize the governing non-linear equations. The CSCM is used to integrate the
resulting iterative sequence of linear differential equations.

3.1. Quasi-Linearization

With reference to Equations (10)–(12), we derive the quasi-linearization formula by considering a
system of differential equations

Λp[ζ
1, ζ2, ζ3] = 0, p = 1, 2, 3, (17)

where Λp(p = 1, 2, 3) are non-linear operators, ζ1 = { f , f ′, f ′′, f ′′′}, ζ2 = {θ, θ′, θ′′} and
ζ3 = {φ, φ′, φ′′}. Denote fs, θs, φs and fs+1, θs+1, φs+1 be the solutions of Equation (17) at the previous
and the current iteration levels, respectively. Assuming the difference between the solution at the
previous and the current iteration levels and its derivatives is small enough, linear Taylor series
expansion of Equation (17) about some previous solution, upon simplification yields

ζ1
s+1 · ∇ f Λp[ fs, θs, φs] + ζ2

s+1 · ∇θΛp[ fs, θs, φs] + ζ3
s+1 · ∇φΛp[ fs, θs, φs] =

ζ1
s · ∇ f Λp[ fs, θs, φs] + ζ2

s · ∇θΛp[ fs, θs, φs] + ζ3
s · ∇φΛp[ fs, θs, φs]

−Λp[ fs, θs, φs], s = 0, 1, 2, · · · , (18)

where ∇ f = { ∂
∂ f , ∂

∂ f ′ ,
∂

∂ f ′′ ,
∂

∂ f ′′′ }, ∇θ = { ∂
∂θ , ∂

∂θ′ ,
∂

∂θ′′ } and ∇φ = { ∂
∂φ , ∂

∂φ′ ,
∂

∂φ′′ }. Applying the formula
Equation (18) to the system Equations (10)–(12) results in an iterative sequence of linear equations

a0,s f ′′′s+1 + a1,s f ′′s+1 + a2,s f ′s+1 + a3,s fs+1 + a4,sθs+1 + a5,sφs+1 = R1,s, (19)

b0,sθ′′s+1 + b1,sθ′s+1 + b2,sθs+1 + b3,s f ′′s+1 + b4,s f ′s+1 + b5,s fs+1 = R2,s, (20)

c0,sφ′′s+1 + c1,sφ′s+1 + c2,sφs+1 + c3,s f ′s+1 + c4,s fs+1 = R3,s, (21)

where the variable coefficients are given by

a0,s = 1 + 2We f ′′s , a1,s = 2We f ′′′s + fs −
η

2
S, a2,s = −2 f ′s − S−M2, a3,s = f ′′s , a4,s = λ1,

a5,s = λ2, b0,s =
1

Pr
(1 +

4
3

R), b1,s = fs −
η

2
S, b2,s = −2S− f ′s , b3,s = 2Ec f ′′s + 3EcWe( f ′′s )

2,

b4,s = 2M2Ec( f ′s − E1)− θs, b5,s = θ′s, c0,s =
1
Sc

, c1,s = fs −
η

2
S, c2,s = 2S− f ′s − γ,

c3,s = −φs, c4,s = φ′s.

The terms on the right are defined as follows:

R1,s = 2We f ′′s f ′′′s + fs f ′′s − ( f ′s)
2 −M2E1,

R2,s = fsθ′s − f ′sθs + Ec( f ′′s )
2 + 2EcWe( f ′′s )

3 + M2Ec[( f ′s)
2 − E2

1 ],

R3,s = fsφ′s − φs f ′s .
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3.2. Chebyshev Differentiation

We approximate the solutions of Equations (10)–(12) by functions of the form

f (η) =
N

∑
k=0

f (ηk)Lk(η), θ(η) =
N

∑
k=0

θ(ηk)Lk(η),

φ(η) =
N

∑
k=0

φ(ηk)Lk(η), (22)

where

Lk(η) =
N

∏
j=0
k 6=j

η − ηj

ηk − ηj
,

is the Lagrange interpolating polynomial. For convenience in the application of the collocation method,
we transform the semi-infinite physical domain [0, ∞) in the η-direction to [−1, 1] in the x-direction
using the linear transformation η = l∞

2 (1 + x). (l∞ is a number chosen to be large enough that
boundary conditions at ∞ hold). Evaluating the approximating functions (22) and their derivatives at
Chebyshev-Gauss-Lobatto points

{ηi} = cos
(

πi
N

)
, i = 0, 1, · · · , N,

gives

d f
dη

∣∣∣∣
η=ηi

=
N

∑
k=0

f (ηk)
d

dη
Lk(ηi) = DF, (23)

⇒ dn f
dηn

∣∣∣∣
η=ηi

= DnF,

where D =

(
2

l∞

)
D, D is an (N + 1) × (N + 1) Chebyshev differentiation matrix, Trefethen [44],

F = [ f (η0), f (η1), · · · , f (ηN−1), f (ηN)]
T and T denotes matrix transpose. θ and φ have similar

expressions for derivatives. Evaluating Equations (19)–(21) at the collocation points and approximating
derivatives with Chebyshev derivatives gives, in vector matrix form, the systemA11 A12 A31

A21 A22 A23

A31 A32 A33


Fs+1

Φs+1

Θs+1

 =

R1,s
R2,s
R3,s

 , (24)

where

A11 = a0,sD3 + a1,sD2 + a2,sD + a3,s, A12 = a4,s, A13 = a5,s

A21 = b3,sD2 + b4,sD + b5,s, A22 = b0,sD2 + b1,sD + b2,s. A23 = 0,

A31 = c3,sD + c4,s, A32 = 0, A33 = c0,sD2 + c1,sD + c2,s,

Rk,s = {Rk,s(η0), Rk,s(η1), · · · , Rk,s(ηN−1), Rk,s(ηN)}T , (k = 1, 2, 3).

4. Results and Discussions

The spectral quasi-linearization method was used to generate the results to be discussed in this
section. All the numerical results were obtained using MATLAB 2016. For all the computations,
the default parameters considered, unless otherwise stated, are N = 60, Pr = 1.0, We = 0.1, E1 = 0.3,
Ec = 0.5, R = 0.3, λ1 = 0.1, λ2 = 0.1, Sc = 0.1, γ = 1.0 and fw = 0.3.
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The error infinity norms defined by

Error(f) = max
0≤i≤N

∣∣∣∣Fs+1,i − Fs,i
∣∣∣∣

∞, Error(θ) = max
0≤i≤N

∣∣∣∣Θs+1,i −Θs,i
∣∣∣∣

∞,

Error(φ) = max
0≤i≤N

∣∣∣∣Φs+1,i −Φs,i
∣∣∣∣

∞,

are used to confirm the convergence of the SQLM solution. The accuracy of the SQLM is tested using
the residual error infinity norms defined as follows:

||Res( f )||∞ = ||(1 + 2We f ′′) f ′′′ + f f ′′ − ( f ′)2 − S
(

f ′ +
η

2
f ′′
)
+ M2(E1 − f ′)

+λ1θ + λ2φ||∞,

||Res(θ)||∞ = || 1
Pr

(
1 +

4R
3

)
θ′′ + f θ′ − Sη

2
θ′ − (2S + f ′)θ + Ec(( f ′′)2

+We( f ′′)3) + M2Ec( f ′ − E1)
2||∞,

||Res(φ)||∞ = || 1
Sc

φ′′ +

(
f − Sη

2

)
φ′ + (2S− f ′ − γ)φ||∞.

Figure 2 shows the convergence and accuracy of the SQLM. We note that an increase in the
number of iterations results in a decrease of the error infinity norm and method converges after six
iterations. Also, the decrease in residual error infinity norms against the number of iterations confirms
the accuracy of the numerical method. The SQLM achieves an accuracy of order 10−15 after five
iterations, showing that the method is highly accurate.
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Figure 2. (a) Error infinity norms for f (η), θ(η) and φ(η) and (b) Residual error infinity norms for f (η),
θ(η) and φ(η).

Figure 3 shows the sensitivity of temperature and concentration profiles with the unsteadiness
parameter S and the chemical reaction parameter γ, respectively. It is shown that for values of
S ≥ 0, the temperature profiles show the expected trend, satisfying boundary conditions (13) and (14).
For values of S < 0, the profiles behave unexpectedly. Similarly, the concentration profiles show
the desired pattern for values of γ > 0, satisfying the underlying boundary conditions (13) and (14).
We remark that these chaotic and high sensitivity behaviour happen when the method has not yet
reached the convergence stage. Once convergence has been reached, the behaviour becomes normal as
expected. This can clearly be observed in subsequent figures.
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Figure 3. (a) Sensitivity analysis of θ with the variation of S and (b) Sensitivity analysis of φ with the
variation of γ .

The effects of the emerging physical parameters of importance in this study on the fluid velocity,
temperature and concentration fields are shown in Figures 4–12. The effects of the Weissenberg number
We on the fluid velocity f ′(η) and the fluid temperature θ(η) is shown in Figure 4. It is noted that the
velocity profiles are decreasing functions of We. The Weissenberg number gives the ratio of relaxation
time to specific process time. Increasing We translates to a decrease in the specific process time which in
turn will cause a decrease in the velocity component as well as the boundary layer thickness. Increasing
the values of We results in a decrease in the fluid temperature profiles.
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Figure 4. (a) Effects of We on f ′(η) and (b) Effects of We on θ.

Figure 5 shows the graphs of the dimensionless concentration profiles for different values of the
Schmidt number Sc and the chemical reaction parameter γ. We can observe that increasing Sc results
in a decrease in the fluid concentration. Physically, since Sc is dependent on fluid mass diffusivity,
high values of Sc correspond to a decrease in mass diffusion hence the concentration profile is reduced.
The concentration profiles are also decreased by increasing the chemical reaction. This is due to the
fact that a higher chemical reaction results in a decrease in chemical molecular diffusivity leading to a
reduction in mass diffusion. The decrease in concentration of the diffusing species will result in the
thinning of the concentration boundary layer.
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Figure 5. (a) Effects of Sc on φ and (b) Effects of γ on φ.

The influence of the magnetic field parameter on the fluid velocity and temperature is presented in
Figure 6. We notice that increasing the values of the magnetic field parameter has an effect of slowing
down the fluid motion. Physically, the presence of a magnetic field creates a drag-like force called the
Lorentz force that opposes the motion of the fluid and resists the velocity of the fluid. The variation of
the magnetic parameter M on θ(η) shows an opposite trend. We observe that the temperature profiles
increase as the magnetic field parameter increases. This is because, as mentioned earlier on, an increase
in M reduces the magnitude of the velocity profiles in the boundary layer, hence will cause a rise in
the temperature in the boundary layer.
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Figure 6. (a) Effects of M on f ′(η) and (b) Effects of M on θ.

Figure 7 shows that an increase in the magnetic parameter causes an increase in the concentration
field. We noted earlier that increasing the magnetic parameter reduces the velocity profiles in the
boundary which in turn induces the diffusion of the particles in the boundary layer. The increment of
the thermal buoyancy parameter λ1 causes a decline in the fluid concentration.
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Figure 7. (a) Effects of M on φ and (b) Effects of λ1 on φ.

The effects of the thermal radiation parameter R and the Prandtl number Pr on the temperature
profiles are depicted on Figure 8. We can see that the fluid temperature increases with increasing values
of the thermal radiation parameter R. Pr is inversely proportional to thermal diffusivity. Increasing the
values of Pr causes a decrease in the temperature field. Physically, high values of Pr are associated with
low thermal conductivity which reduces conduction and hence the thermal boundary layer resulting
in a decrease in fluid temperature.
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Figure 8. (a) Effects of R on θ and (b) Effects of Pr on θ.

As shown in Figure 9, the temperature profiles decrease with the increase in the values of the
buoyancy parameters λ1 and λ2. It is clearly noted that an increase in thermal buoyancy parameter
causes a decrease in the thermal boundary layer thickness and consequently the fluid temperature
decreases due to the buoyancy effect.



Computation 2020, 8, 55 12 of 19

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

η

-0.2

0

0.2

0.4

0.6

0.8

1

θ

λ2 = 0.1, 0.4, 0.7, 1.0

We = 0.1, Pr = 1.0, E1 = 0.3, R = 0.3, Ec = 0.5, λ1 = 0.1, M = 0.1,

Sc = 0.1, γ = 0.1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6

η

-0.2

0

0.2

0.4

0.6

0.8

1

θ

λ1 = 0.2, 0.8, 1.0, 1.4

We = 0.1, Pr = 1.0, S = 0.2, E1 = 0.3, R = 0.3, Ec = 0.5,

λ2 = 0.1, M = 0.1, Sc = 0.1, γ = 1.0

(b)

Figure 9. (a) Effects of λ2 on θ and (b) Effects of λ1 on θ.

From Figure 10 it can be seen that the velocity and temperature profiles decrease as the
unsteadiness parameter S increases. The effect of E1 on the fluid velocity is the opposite of that
of S. Figure 11 depicts that increasing the values of the local electric parameter E1 results in an increase
in both the velocity and concentration fields. Figure 12 shows the effects of increasing the values
of Eckert number Ec on the temperature profiles and λ1 on velocity profiles. The Eckert number
characterize the influence of self heating of a fluid as a consequence of dissipation effects. Viscous
dissipation due to internal friction of the fluid will cause an increase in the fluid temperature. Increasing
the value of the thermal buoyancy parameter λ1 leads to an increase in the velocity profiles.
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Figure 10. (a) Effects of S on f ′(η) and (b) Effects of S on θ.
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Figure 11. (a) Effects of E1 on f ′(η) and (b) Effects of E1 on φ.
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Figure 12. (a) Effects of Ec on θ and (b) Effects of λ1 on f ′(η).

The examination of influence of the emerging parameters on the physical quantities of engineering
importance, namely the skin friction coefficient, Nusselt number and Sherwood number is depicted
in Tables 1–3. Table 1 shows that the skin friction increases as the values of S, M, Pr, γ, Sc and Ec are
increased. The opposite trend is observed for the parameters E1, λ1, R and We. In Table 2, we can
see that the heat transfer rate increased by the increasing values of S, E1, λ1, λ2, Pr and R. The heat
transfer rate is depressed as the the values of M, γ, Sc and Ec. Table 3 shows that the coefficient of the
Sherwood number is an increasing function of E1, λ1, λ2, γ, Sc, R and Ec and a decreasing function of
S, M, Pr and We.
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Table 1. The numerical values of C f Re
1
2
x for different values of the parameters We, S, M, E1, λ1, λ2, Pr,

R, Ec, γ and Sc when η = 0.5.

S M E1 λ1 λ2 Pr γ Sc R Ec We −C f Re
1
2
x

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 1.078951883204829
0.2 1.104506706276102
0.3 1.129271687273391
0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 1.078951883204829

0.8 1.100265152109772
0.9 1.120409610249936

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 1.078951883204829
0.2 1.033110225329453
0.3 0.987166455664011

0.1 0.7 0.1 0.2 0.1 1.0 0.5 0.2 0.1 0.1 0.1 1.046544533993518
0.4 0.981494769194006
0.6 0.916019062597979

0.1 0.7 0.1 0.1 0.2 1.0 0.5 0.2 0.1 0.1 0.1 1.025760860799882
0.4 0.921685018418928
0.6 0.819005181818752

0.1 0.7 0.1 0.1 0.1 2.0 0.5 0.2 0.1 0.1 0.1 1.091693867285284
3.0 1.103983070497612
4.0 1.112467387854574

0.1 0.7 0.1 0.1 0.1 1.0 1.0 0.2 0.1 0.1 0.1 1.085984779187155
2.0 1.090279447513868
3.0 1.093114307914497

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.1 0.1 0.1 0.1 1.078951883204829
0.15 1.081939366249072
0.2 1.084395556441141

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 1.078951883204829
0.4 1.076840518443974
0.8 1.074763680141721

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 1.0 0.1 1.076389805314664
2.0 1.071224585593461
3.0 1.066003195448882

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.2 0.948884379906569
0.4 0.620322356942535
0.6 0.194330797445648

Table 2. The numerical values of NuxRe
1
2
x for different values of the parameters We, S, M, E1, λ1, λ2,

Pr, R, Ec, γ and Sc when η = 0.5.

S M E1 λ1 λ2 Pr γ Sc R Ec We NuxRe
1
2
x

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.915860341811270
0.2 1.017901652122212
0.3 1.109121647214719
0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.915860341811270

0.8 0.895915260713988
0.9 0.876756392212799

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.915860341811270
0.2 0.977894447068897
0.3 1.030403768637055

0.1 0.7 0.1 0.2 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.929041372189117
0.4 0.953439839063926
0.6 0.975582164474820

0.1 0.7 0.1 0.1 0.2 1.0 0.5 0.2 0.1 0.1 0.1 0.948908798318697
0.4 1.001281793736204
0.6 1.041796255284524
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Table 2. Cont.

S M E1 λ1 λ2 Pr γ Sc R Ec We NuxRe
1
2
x

0.1 0.7 0.1 0.1 0.1 2.0 0.5 0.2 0.1 0.1 0.1 1.304303729032015
3.0 1.597280137353339
4.0 1.845769077311545

0.1 0.7 0.1 0.1 0.1 1.0 1.0 0.2 0.1 0.1 0.1 0.907214610540086
2.0 0.902204998128932
3.0 0.899080115679210

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.1 0.1 0.1 0.1 0.907214610540086
0.15 0.903342484386425
0.2 0.900478136478512

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.907214610540086
0.4 0.992636450654252
0.8 1.093677046062223

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 1.0 0.1 0.636725832004835
1.5 0.367594034183057
3.0 0.099808347796939

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.2 0.914843548830036
0.4 0.936472243301972
0.6 0.967724950819449

Table 3. The numerical values of ShxRe
1
2
x for different values of the parameters We, S, M, E1, λ1, λ2,

Pr, R, Ec, γ and Sc when η = 0.5.

S M E1 λ1 λ2 Pr γ Sc R Ec We ShxRe
1
2
x

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.223598982783657
0.2 0.137162963897435
0.3 0.062147655092748
0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.223598982783657

0.8 0.221909175374051
0.9 0.220302263370217

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.220302263370217
0.2 0.244356594673201
0.3 0.262718334286973

0.1 0.7 0.1 0.2 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.222825140750917
0.4 0.227598540998689
0.6 0.232071072563289

0.1 0.7 0.1 0.1 0.2 1.0 0.5 0.2 0.1 0.1 0.1 0.232796360927152
0.4 0.252429377039816
0.6 0.267886177341174

0.1 0.7 0.1 0.1 0.1 2.0 0.5 0.2 0.1 0.1 0.1 0.218996596175997
3.0 0.218382226977623
4.0 0.218017429115231

0.1 0.7 0.1 0.1 0.1 1.0 1.0 0.2 0.1 0.1 0.1 0.220049536513613
2.0 1.090279447513868
3.0 1.093114307914497

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.1 0.1 0.1 0.1 0.220049536513613
0.15 0.286846328785100
0.2 0.351830465481003

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.1 0.351830465481003
0.4 0.352601074008495
0.8 0.353544944638484

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 1.0 0.1 0.352768392930626
2.0 0.353807745690575
3.0 0.354844653039502

0.1 0.7 0.1 0.1 0.1 1.0 0.5 0.2 0.1 0.1 0.2 0.349345275097305
0.4 0.343567754574247
0.6 0.337874422565249



Computation 2020, 8, 55 16 of 19

5. Conclusions

A Williamson fluid is characteristic of a non-Newtonian fluid model with shear thinning property.
The model constitute a coupled system of nonlinear partial differential equations. The transformed
coupled system of dimensionless non-linear ordinary differential equations was successfully solved using
the spectral quas-linearization method. The use of error infinity norms and residual error infinity norms
confirmed that the numerical technique is convergent and accurate, respectively. In this present study,
we numerically analyzed the effects of viscous dissipation, thermal radiation, chemical reaction and
uniform magnetic field on the unsteady boundary layer flow of an electrically conducting Williamson
fluid over a stretching sheet. We conclude the most important findings of the study as follows:

1. The SQLM is a very efficient and accurate method.
2. The fluid velocity and the momentum boundary layer decrease with respective, increases in the

Williamson parameter, unsteadiness parameter, magnetic parameter, Eckert number as well as
the Prandtl and Schmidt numbers.

3. The fluid velocity and the momentum boundary layer increase with increasing values of the
electric parameter, buoyancy parameters, thermal radiation and chemical reaction parameter.

4. The fluid temperature increases as the values of the magnetic parameter, thermal radiation
parameter, electrical parameter and Eckert number increase.

5. The fluid temperature is a decreasing function of the buoyancy parameter, Prandtl number,
unsteadiness parameter as well as the Williamson number.

6. The stretching parameter, chemical reaction parameter, suction, Schmidt number, buoyancy
parameters and the Williamson number were found to reduce the concentration profiles.

7. The concentration was observed to be increasing as the values of the magnetic parameter, injection
and Eckert number increase.

8. The skin friction increases with the increase of the unsteadiness parameter, magnetic parameter,
Prandtl number, Schmidt number, chemical reaction parameter, and thermal radiation parameter.

9. However, the skin friction decreases with increasing values of the Eckert number, buoyancy
parameters, thermal radiation and the Williamson number.

10. The wall temperature gradient decreases with the increasing values of the Williamson number,
suction, magnetic parameter, chemical reaction parameter, Schmidt number and Eckert number.

11. The study observed that the Nusselt number increases with the increase of the unsteadiness
parameter, electric parameter, buoyancy parameters, Prandtl number, thermal radiation
parameter, and the Williamson number.

12. The unsteadiness parameter, magnetic parameter, the Prandtl number and the Williamson number
cause the wall concentration gradient to decrease.

13. Lastly, the Sherwood number increases as the values of the electric parameter, buoyancy
parameters, chemical reaction, Schmidt number, thermal radiation and Eckert number increase.

The joy of the current paper lies in the accuracy and fast convergence of the used numerical
technique. Therefore, the method may also be valid for other complex nonlinear boundary value
problems even with chaotic behaviour. We recommend that these results can be used as a standard
example for other applications in engineering and applied sciences.
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