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Abstract: In this work, we consider a mathematical model and finite element implementation
of heat transfer and mechanics of soils with phase change. We present the construction of the
simplified mathematical model based on the definition of water and ice fraction volumes as functions
of temperature. In the presented mathematical model, the soil deformations occur due to the
porosity growth followed by the difference between ice and water density. We consider a finite
element discretization of the presented thermoelastic model with implicit time approximation.
Implementation of the presented basic mathematical model is performed using FEniCS finite element
library and openly available to download. The results of the numerical investigation are presented
for the two-dimensional and three-dimensional model problems for two test cases in three different
geometries. We consider algorithms with linearization from the previous time layer (one Picard
iteration) and the Picard iterative method. Computational time is presented with the total number
of nonlinear iterations. A numerical investigation with results of the convergence of the nonlinear
iteration is presented for different time step sizes, where we calculate relative errors for temperature
and displacements between current solution and reference solution with the largest number of the
time layers. Numerical results illustrate the influence of the porosity change due to the phase-change
of pore water into ice on the deformation of the soils. We observed a good numerical convergence of
the presented implementation with the small number of nonlinear iterations, that depends on time
step size.

Keywords: heat transfer; thermomechanics; phase change; finite element method; FEniCS

1. Introduction

Permafrost covers almost a quarter of the land area in the Northern Hemisphere.
Many people around the world live in permafrost and seasonal frozen areas in Alaska,
Canada, and Russia (Na and Sun [1], Yu et al. [2], Tounsi et al. [3], Marchenko et al. [4],
Knoblauch et al. [5]). The ground freezing and thawing process can change the shape
of the land surface and damage constructions and buildings in the permafrost area
(Zhou and Meschke [6], Sweidan et al. [7], Xu et al. [8]). Moreover, buildings constructed
in the permafrost area can create heat that thaws the underlying grounds. Thawed soil
becomes soft and uneven and can destroy houses and buildings. In order to prevent ground
warming, buildings are constructed on pile foundations (Shang et al. [9], Nixon [10], Foriero
and Ladanyi [11]). Construction of roads, bridges, railways, and other types of transport
infrastructure is also a major problem in the permafrost zone as soil thawing damages
them and requires constant repairs to keep them safe. Moreover, the overall rise in annual
temperatures and releasing greenhouse gases into the atmosphere lead to further climate
change on a global level. The global climate is getting warmer and making the frozen
ground thaw (Nixon [10], Buteau et al. [12], Delisle [13]). Permafrost contains deposits
of carbon matter, and global climate warming can release carbon dioxide and methane
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into the atmosphere (Knoblauch et al. [5], Stepanenko et al. [14], Khvorostyanov et al. [15]).
Permafrost thawing can also release ancient bacteria and viruses that were frozen and inac-
tive before (Jansson and Taş [16]). Unfrozen bacteria can cause severe diseases dangerous
for humans and animals. Thawing permafrost may have a dramatic impact on our planet
and its residents. Therefore, it is necessary to build appropriate mathematical models for
numerical simulation of the ongoing processes in order to understand them and fight the
problem (Li et al. [17], Neaupane and Yamabe [18], Nishimura et al. [19]).

Frost heaves and soil thawing are complex processes involving heat transfer and de-
formations, as well as pore water flow processes. Multiphysical mathematical models are
usually used to describe complex interactions between thermal, hydraulic, and mechanical
fields (THM). Li et al. [17] presented a thermal-hydraulic-mechanical model with water-ice
phase change. The model was developed by combining a heat transfer model with ice-
water phase change and the THM model via a simplified algorithm. Implementation was
based on the FLAC3D software package, where the water-ice phase transition was imple-
mented as an extension. Coupling to the displacements field was done without consid-
eration of the porosity change due to water-ice phase transition and only contained part
related to the linear thermal expansion coefficient of the solid matrix. The coupled thermo-
hydro-mechanical process in rock mass under freezing/thawing condition was studied
by Kang et al. [20], where the relation between the freezing point and pore pressure was
derived from taking into account volume expansion of water during the freezing process.
The simulation of the THM model was performed using finite difference approximation and
implemented based on FLAC3D software. Na and Sun [1] presented the stabilized thermo-
hydro-mechanical model with the elasto-plastic responses and influence of phase transi-
tions, where the influence of the phase-change processes was done by a pressure change
with complicated relationships for elasto-plastic effects. In order to solve the highly nonlin-
ear thermo-hydro-mechanical model, the finite element approximation with stabilization
was used to handle the lack of inf–sup condition. The highly nonlinear coupled discrete sys-
tem was solved using the block-preconditioned Newton–Krylov solvers, where implemen-
tation was based on the deal.II library (Bangerth et al. [21]). A fully coupled thermo-hydro-
mechanical finite element model was formulated by Nishimura et al. [19]. The elasto-
plastic mechanical model was used to adopt total stress, liquid pressure, and ice pressure.
The performance of the model was tested for the important cold region infrastructure topic
of frost heaving. Neaupane et al. [22] described a nonlinear elasto-plastic simulation of
freezing and thawing of rock. Numerical modeling was performed using the finite element
method and the Newton–Raphson method to solve the nonlinear equations. A theoretical
formulation of the non-isothermal flow and deformation model in unsaturated porous me-
dia was presented by Khalili and Loret [23]. The model describes thermo-hydro-mechanical
coupling processes and takes into account phase exchange (vaporization, condensation),
and considers an elasto-plastic behavior. Exadaktylos [24] presented the formulation of
the freezing/thawing model for saturated porous media and considered numerical imple-
mentation for one-dimensional formulation using the finite element method. However,
most real-life applications are two or three-dimensional. Formulation of the model and
finite difference scheme of heat and water flow during soil freezing was presented by
Taylor and Luthin [25]. Zhou and Li [26] established a coupled mathematical model of wa-
ter, heat, and stress with the relationship between effective stress and void ratio, Clapeyron
equation, and the relationship between the content of unfrozen water and temperature.
The presented mathematical model was implemented using COMSOL software for a one-
dimensional example. Implementation of the three-phase thermo-hydro-mechanical finite
element model for freezing soils was presented by Zhou and Meschke [6]. The implementa-
tion was based on the finite-element code KRATOS (Dadvand et al. [27]). Numerical results
were given for one-dimensional Terzaghi’s consolidation problem and soil freezing prob-
lem during tunneling. The different formulation of the frost heave model was presented
by Michalowski and Zhu [28], where the concept of porosity rate function was given.
Zhang and Michalowski [29,30] developed an elastic-plastic constitutive model to simulate
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the freezing and thawing of soils. The mathematical model describes a frost heaving using
the porosity rate function, which simulates the growth of ice lenses as average growth in
porosity. The model was implemented in the commercial finite-element system ABAQUS.

Simulations of the applied problems require the construction of complex domains.
In order to numerically solve a mathematical model, unstructured computational meshes
should be constructed to the accurate approximation of the problem in geometrically com-
plex domains. The common approach used for approximation of multiphysical problem
on an unstructured grid is the finite element method (Brenner and Scott [31], Hughes [32]).
In our previous works (Pavlova et al. [33], Vabishchevich et al. [34]), we considered the
heat transfer problem with phase change and presented finite element approximation on
unstructured grids for complex geometries (Pavlova et al. [33], Vabishchevich et al. [34]).
The results of simulations for several applied problems in three-dimensional formulations
illustrated the applicability of the method. For numerical implementation, we used an
open-source finite-element library FEniCS (Logg et al. [35]). In FEniCS, we used a PETSc
based solver to solve a large system of equations on high-performance computing systems
(Balay et al. [36]). The PETSc library is a leading software framework for parallel scientific
computing. In (Kolesov et al. [37]), we presented an implementation of the poroelasticity
model using the PETSc library, where splitting schemes were constructed and investigated
for multidimensional test problems on high-performance systems with distributed memory.
Recently, we considered the construction of the mixed dimensional mathematical model for
artificial freezing problems in permafrost area in (Vasilyeva et al. [38]), where we presented
a multiscale method with additional multiscale basis functions for the solution of the Stefan
problem in heterogeneous media for two and three-dimensional formulations. In this work,
we continue the development of mathematical models with finite element approximation
for problems in permafrost.

In this work, we consider a basic thermoelastic model that takes into account the
deformations of porous media due to the phase change of pore water to ice. We start with
the description of a thermo-mechanical model of soils with phase-change. The mathemati-
cal model is based on a definition of water fraction volume as a function of temperature
using the relationship for unfrozen water content. In (Tice et al. [39], Michalowski [40]),
the estimation of unfrozen water content function based on experimental tests is given,
where parameters of the model depend on soil type and, in general, are different for
freezing and thawing processes. Using mass conservation of frozen and thawed water,
we describe ice volume fraction. As the sum of ice and unfrozen water fraction equals
porosity, we can define a relationship for porosity as a function of temperature. Soil defor-
mations occur due to porosity growth caused by the difference in ice and water density.
The presented mathematical model is described by a nonlinear system of equations for
temperature and displacements. The novelty of the paper is related to (1) derivation of the
simplified mathematical model that takes into account porous water/ice phase-change and
its influence on the mechanical deformations of soils; (2) construction and implementation
of finite element approximation in order to numerically investigate model with an implicit
scheme for approximation by time and Picard iterations for nonlinear coefficients for two
and three-dimensional formulations. Implementation of the presented basic mathematical
model is performed using FEniCS finite element software (Logg et al. [35]). The code is writ-
ten using C++ Programming Language to perform fast calculations of multidimensional
problems. We present numerical results for model problems in two- and three-dimensional
formulations for two test cases in three different geometries. A numerical investigation
is presented for different time step sizes, where we calculate relative errors for temper-
ature and displacements. We consider algorithms with linearization from the previous
time layer (one Picard iteration) and the Picard iterative method. Numerical results are
presented with the number of nonlinear iterations. Finally, we discuss the computational
time of the presented implementation with linearization from the previous time layer
and the Picard iterative method. For the numerical solution of the arisen linear system of
equations, we use a direct solver for both temperature and displacements fields. In future
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works, we will consider the numerical solution of the complex thermoelasticity model with
phase-change on high-performance computing systems. The more complex models will
be considered in future works by adding elastoplastic effects, the effect of the fluid flow,
and ice lens formations.

The paper is organized as follows. In Section 2, we describe the basic concepts used
in the construction of the mathematical model. In Section 3, we describe heat transfer
processes in porous media and consider the mechanics of soils due to phase-change of the
pore water into ice. For the numerical solution of the thermo-mechanical model, we present
a finite element approximation in Section 4. Numerical results for model problems are
presented in Section 5 for two- and three-dimensional formulations. The paper ends
with conclusions.

2. Preliminaries

Let Vw, Vi, and Vs be water, ice, and solid volumes of porous media, and

Vw + Vi = Vv, Vv + Vs = V,

where V is a total volume, and Vv is a volume of void space that is filled with water or/and
ice. The volume representation is shown in Figure 1 (Zhang [30]).

Figure 1. Scheme of porous media volumes, Vw + Vi = Vv and Vw + Vi + Vv = V.

Let Θw, Θi, and Θs be water, ice, and solid fraction volumes

Θw =
Vw

V
, Θi =

Vi
V

, Θs =
Vs

V

and
Θw + Θi + Θs = 1,

where superscripts s, w, and i denote solid, unfrozen water and ice, respectively.
The porosity is defined as follows

φ =
Vv

V

and therefore
Θi + Θw = φ Θs = (1− φ).
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We define unfrozen water content as follows

w =
ρwVw

ρsVs
,

where ρw and ρs are density of water and solid, respectively. Note that the unfrozen water
content function parameters depend on soil type and, in general, are different for freezing
and thawing processes. The following model is used in (Tice et al. [39], Michalowski [40])

w(T) =

{
w, T ≥ Tf ,
w∗ + (w− w∗) exp(a[T − Tf ]), T < Tf ,

(1)

where T is a given temperature, Tf is a freezing temperature and a is a model parameter
[◦C−1], w and w∗ are maximum and minimum water contents.

Therefore, using w, we have

Θw =
Vw

V
=

(
ρwVw

ρsVs

)
ρs

ρw

Vs

V
= w

ρs

ρw
(1− φ).

In order to find a relationship that determines porosity changes due to water freezing
or thawing processes, mass conservation of water in frozen and thawed phases is used

ρwVw = ρwVw + ρiVi,

where ρi is an ice density and Vw is a water volume for T ≥ Tf .
Therefore

w = w +
ρiVi
ρsVs

,

and

Θi =
Vi
V

=

(
ρiVi
ρsVs

)
ρs

ρi

Vs

V
= (w− w)

ρs

ρi
(1− φ).

Next, we can find a relationship for porosity

φ = Θw + Θi = (1− φ)

[
w

ρs

ρw
+ (w− w)

ρs

ρi

]
and

φ =
w ρs

ρw
+ (w− w) ρs

ρi

1 + w ρs
ρw

+ (w− w) ρs
ρi

.

An obtained relationship for porosity, water, and ice fraction volumes will be used in
the thermo-mechanical model.

3. Mathematical Model

In this section, we present a thermo-mechanical mathematical model for the simulation
of heat transfer and mechanics in soils. We start with the equation for heat transfer in
porous media. Then, we describe the mechanical model. Finally, we present the thermo-
mechanical problem formulation.

3.1. Heat Transfer in Porous Media

The heat transfer in porous media is based on the energy conservation principle that
can be written as follows (Michalowski and Zhu [28], Michalowski [40])

cρ
∂T
∂t
− Lρi

∂Θi
∂t
−∇ · (k∇T) = 0, (2)
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where T is a temperature, L is the latent heat of fusion of water per unit mass, k is a heat
conductivity, and c is a specific heat capacity, and ρ is a density.

By mixture theory for saturated soils, we have

cρ = Θscsρs + Θiciρi + Θwcwρw, (3)

where cj and ρj are heat capacities (per unit mass) and densities for water, ice, and solid
(j = w, i, s).

Heat conductivity can be calculated using the following model (Michalowski and Zhu [28])

k = kΘs
s kΘi

i kΘw
w , (4)

where kw, ki and ks are water, ice and solid heat conductivities.
For water, ice, and solid fraction volumes and porosity, we have the following rela-

tionships

φ(T) =
w + (w− w) ρw

ρi
ρw
ρs

+ w + (w− w) ρw
ρi

, (5)

Θw(T) = w
ρs

ρw
(1− φ), (6)

Θi(T) = (w− w)
ρs

ρi
(1− φ), (7)

Θs(T) = 1− φ, (8)

for the given relationship for water content with w∗ = 0

w(T) =

{
w, T ≥ Tf ,
w exp(a[T − Tf ]), T < Tf .

(9)

We rewrite the heat transfer Equation (2) in the following form

(
cρ + Dw′

)∂T
∂t
−∇ · (k∇T) = 0, (10)

where

−Lρi
∂Θi
∂T

= −Lρs
∂[(w− w)(1− φ)]

∂T
= Lρs

[
(1− φ) + (w− w)

∂φ

∂w

]
∂w
∂T

= D
∂w
∂T

= Dw′

and

w′ =
∂w
∂T

=

{
0, T ≥ Tf ,
a w exp(a[T − Tf ]), T < Tf ,

for the water content relationship given in Equation (9).
We note that more complex models can be used to simulate phase change processes,

for example, taking into account the ice lenses formation process
(Michalowski and Zhu [28], Zhang [30]). In this work, we focus on basic ingredients for
porosity change that relate to the ratio of water density and ice density (ρw/ρi ≈ 1.09).

3.2. Mechanics of Soils Due to Phase Change

Let Tt = T(t) and Tt+dt = T(t + dt) be the temperature at times t and t + dt, where dt
is the time step. We define porosity at time t and t + dt as follows (see Figure 2)

φt =
Vn

V
, φt+dt =

Vn + dV
V + dV

,

where dV is a change of volume.
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Figure 2. Representation of porous media volume changing. V is the volume at the time t and
(V + dV) is a volume at time t + dt.

The volumetric strain due to porosity change is given as follows (Zhang [30])

dε∗v =
dV
V

.

Because

φt+dt =
Vn + dV
V + dV

=
Vn
V + dV

V

1 + dV
V

=
φt + dε∗v
1 + dε∗v

,

φt+dt(1 + dε∗v) = φt + dε∗v,

we have
dε∗v =

φt+dt − φt

1− φt+dt
=

dφ

1− φ
,

where φt+dt = φ is a current porosity and dφ = (φt+dt − φt) is porosity change.
For the linear elasticity model, we have

div(dσ) = 0, dσ = C : dε,

where C is a stiffness tensor, σ and ε are total stress and strain tensors, respectively.
The total strain is induced by loading and by a thermal process

dε = dεe + dε f , dε f =
1
3
Idε

f
v =

1
3
I dφ

1− φ
, εe =

1
2
(∇u +∇uT),

where dεe is an elastic mechanical increment, dε f is a thermal porosity growth increment, I
is the identity matrix and u is displacements.

For the two-dimensional isotropic media case, we have

dσ11 = (λ + 2µ) dεe
11 + λ dεe

22 + β dφ, εe
11 =

∂u1

∂x1
,

dσ22 = λ dεe
11 + (λ + 2µ) dεe

22 + β dφ, εe
22 =

∂u2

∂x2
,

dσ12 = 2µ dεe
12, εe

12 =
1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
,
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and

β(T) =
(3λ + 2µ)

3(1− φ)
,

where u = (u1, u2), λ and µ are Lame parameters, and β is a thermal expansion due to
porosity change.

In general, the following model for soils mechanics with phase change of porous water
can be used

div(dσ) = 0, dσ = 2 µ dεe + λ tr (dεe)I + β dφI ,

where εe = (∇u +∇uT)/2.

3.3. Thermo-Mechanical Model

Finally, we obtain the following thermo-mechanical model in the computational
domain Ω (

cρ + Dw′
)∂T

∂t
−∇ · (k∇T) = 0, x ∈ Ω, t > 0, (11a)

∇(µ∇du) +∇[(λ + µ)∇ · du] +∇(β dφ) = 0, x ∈ Ω, t > 0. (11b)

The system of Equations (11a) and (11b) is an uncoupled system of equations because
the presented model neglects the influence of the displacement field on the temperature
distribution. In general, the mathematical model can be constructed in a coupled way
with an additional part that takes into account the influence of the deformation on the
temperature field. In this work, we investigate and implement a simplified model, where
the temperature does not depend on displacements and can be calculated first. After using
the calculated temperature field, we can find the value of porosity change dφ to calculate a
correspondent displacement field of soils.

We consider the thermo-mechanical model with the following initial conditions

T = T0, u = u0, x ∈ Ω, t = 0 (12)

and boundary conditions

− k∇T · n = 0, x ∈ Γ1, −k∇T · n = γ(T − T1), x ∈ Γ2, (13a)

σ · n = 0, x ∈ Γ3, u = 0, x ∈ Γ4. (13b)

where n is the outward unit normal vector to ∂Ω and Γ1 ∪ Γ2 = Γ3 ∪ Γ4 = ∂Ω. Note that
in (12), (13a) and (13b) the general formulation of the initial and boundary conditions is
presented. In Figure 3, we present one possible variant of the domain Ω and the boundaries
for which we can set such conditions. In this variant, we set Γ2 ⊂ Γtop (green color),
and Γ1 = ∂Ω \ Γ2 (purple color), and Γ3 = Γtop (blue color), and Γ4 = ∂Ω \ Γ3 (red color).

The presented basic mathematical model (11a) and (11b), is the simplification of the
model presented in (Zhang [30]). We use the presented model to illustrate the influence of
the water/ice phase-change in porous media on deformations of the soils. Next, we will
present a finite element approximation of the thermoelastic model with porous water/ice
phase-change. In the numerical implementation, we don’t use a proprietary “black box”
software and present an openly available implementation based on the FEniCS library
using a C++ programming language for fast simulations of multidimensional problems.
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Figure 3. Schematic representation of a possible variant of the domain Ω and the boundaries. On the left is a two-dimensional
case, on the right is a three-dimensional case.

4. Finite Element Approximation

For the numerical solution of the mathematical model, we use a finite element method with
implicit time approximation (Brenner and Scott [31], Kolesov et al. [37], Vasilyeva et al. [38]). We
start with variational formulation of the problem (11a), (11b), (13a) and (13b) with initial
conditions (12). Then, the formulation of the discrete problem is presented in matrix form.

4.1. Variational Formulation

Let
V ∈ {v ∈ [H1(Ω)]d : v(x) = 0, x ∈ Γ4},

and Q = H1(Ω) be the functional spaces for displacements and temperature, T ∈ Q and
u ∈ V, where H1(Ω) is a Hilbert space, H1(Ω) = {v ∈ L2(Ω)| ∂v

∂xi
∈ L2(Ω), i = 1, ..., d}

(d = 2, 3 is the dimension of the problem).
Multiplying (11a) and (11b) by test functions r ∈ Q and v ∈ V, respectively, and inte-

grating by parts with boundary conditions given by (13a) and (13b), we obtain the follow-
ing variational formulation of the thermo - mechanical problem (Brenner and Scott [31]):
find T ∈ Q and u ∈ V such that∫

Ω
(cρ + Dw′)

∂T
∂t

r dx +
∫

Ω
k∇T · ∇r dx +

∫
Γ2

γ (T − T1) r dx = 0, ∀r ∈ Q, (14a)∫
Ω

dσ(u) : ε(v)dx +
∫

Ω
∇(β dφ) v dx = 0, ∀v ∈ V, (14b)

where operator: is the inner product between tensors. For approximation by time, the Back-
ward Euler scheme is used

∂T
∂t
≈ Tm+1 − Tm

τ
,

where τ is the size of the time step, and m is a time step number, m = 0, 1, ..., Nt.
Therefore, the variational formulation is the following: find Tm+1 ∈ Q and um+1 ∈ V

such that
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∫
Ω

[
(cρ)m+1 + (Dw′)m+1

] Tm+1 − Tm

τ
r dx +

∫
Ω

km+1∇Tm+1 · ∇r dx

+
∫

Γ2

γ (Tm+1 − T1) r dx = 0, ∀r ∈ Q,∫
Ω
[σ(um+1)− σ(um)] : ε(v)dx +

∫
Ω
∇[β(Tm+1) (φm+1 − φm)] v dx = 0, ∀v ∈ V,

where (cρ)m+1 = cρ(Tm+1), (Dw′)m+1 = D(Tm+1)w′(Tm+1), km+1 = k(Tm+1) and βm+1 =
β(Tm+1).

Because, in our model, the heat equation does not depend on deformations, we can
split the heat equation from the mechanical model.

To solve the nonlinear problem for temperature, the Picard iterative process is used
(Logg et al. [35]). At each time layer, we solve the following linear system of equations:

∫
Ω

[
(cρ)m+1,l + (Dw′)m+1,l

] Tm+1,l+1 − Tm

τ
r dx +

∫
Ω

km+1,l ∇Tm+1,l+1 · ∇r dx

+
∫

Γ2

γ (Tm+1,l+1 − T1) r dx = 0,

where l is the number of nonlinear iteration (l = 0, Nnl) and initial guess Tm+1,0 = Tm.
In order to stop iterations, we calculate the relative difference in L2 norm and use the
following criteria

||Tm+1,l − Tm+1,l ||L2

||Tm+1,l ||L2

× 100% < ε, (15)

where relative tolerance ε is given in % and ||v||L2 =
√∫

Ω v2dx.
We get the following algorithm:

• Find Tm+1,l+1 ∈ Q such that:

sm+1,l(Tm+1,l+1, r) + am+1,l
T (Tm+1,l+1, r) = sm+1,l(Tm, r) + l(r), ∀r ∈ Q, (16)

where
sm+1,l(T, r) =

1
τ

∫
Ω

[
(cρ)m+1,l + (Dw′)m+1,l

]
T r dx,

am+1,l
T (T, r) =

∫
Ω

km+1,l ∇T · ∇r dx +
∫

Γ2

γ T r dx, l(r) =
∫

Γ2

γ T1 r dx.

with convergence criteria (15) and Tm+1 = Tm+1,l+1.
• Find um+1 ∈ V such that:

au(um+1, v) = au(um, v) + b(Tm+1, v)− b(Tm, v), ∀v ∈ V, (17)

where

au(u, v) =
∫

Ω
σ(u) : ε(v) dx, b(T, v) =

∫
Ω
[β(T) φ(T) I ] : ε(v) dx,

and porosity is the function of temperature

φ(T) =
w ρs

ρw
+ (w− w(T)) ρs

ρi

1 + w(T) ρs
ρw

+ (w− w(T)) ρs
ρi

.

where

w(T) =

{
w, T ≥ Tf ,
w∗ + (w− w∗) exp(a[T − Tf ]), T < Tf .
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Here σ(u) = 2 µ ε + λ tr (ε)I and ε = (∇u +∇uT)/2.

4.2. Finite Element Discretization

Let T h be a grid partition of the computational domain Ω into finite elements Ki

T h = ∪iKi, i = 1, . . . Nc,

where Nc is a number of grid cells. Relative to T h, we define finite-dimensional spaces
Vh ⊂ V and Qh ⊂ Q. We suppose that Qh and Vh are composed of piecewise linear basis
functions on grid cells (Brenner and Scott [31], Logg et al. [35])

Qh = span{ϕj, j = 1, ..., NT}, Vh = span{ψj, j = 1, ..., Nu},

where ψj and ϕj are linear basis functions defined on T h, Nu = dim(Vh) and NT = dim(Qh).
Note that NT = N and Nu = d · N for linear basis functions, where N is the number of
vertices, and d is the dimension of the problem (d = 2, 3). Functions uh and Th can be
represented using decomposition on the basis of Vh and Qh

Th(x) =
NT

∑
j=1

Tj ϕj(x), uh(x) =
Nu

∑
j=1

ujψj(x).

Thus, we obtain the following discrete systems in matrix form:

• Solve the heat equation for Tm+1 = (Tm+1
1 , ..., Tm+1

NT
)T

(Sm+1,l + Am+1,l
T ) Tm+1,l+1 = Sm+1,lTm + F,

where Sm+1,l = [sm+1,l
ij ], Am+1,l

T = [am+1,l
T,ij ], FT = { f j} and

sm+1,l
ij = sm+1,l(ϕi, ϕj), am+1,l

T,ij = am+1,l
T (ϕi, ϕj), f j = l(ϕj).

• Solve the displacement equation for Um+1 = (um+1
1 , ..., um+1

Nu
)T

AuUm+1 = AuUm + Bm+1 − Bm,

where Au = [au,ij], Bm = {bm
j },

au,ij = au(ψi, ψj), bm
j = b(Tm, ψj).

In the presented algorithm, we first solve a temperature equation using the Picard
iterative method. Then, we find displacements for the given temperature change.

For the implementation of the presented basic mathematical model with finite element
approximation, we use the FEniCS finite element software (Logg et al. [35]) (version 2019.1.0+).
The FEniCS library is a tool for automated scientific computing, with a particular focus on
the solution of differential equations by the finite element method. The code for the pre-
sented thermoelastic model is written using C++ Programming Language to perform fast
calculations of multidimensional problems. We use the GMSH program to construct com-
putational geometries, and unstructured grids (Geuzaine and Remacle [41]). Paraview pro-
gram is used for visualization of the results (Ahrens et al. [42]). The code and geometry
files are openly available on Bitbucket at https://bitbucket.org/vmasha/thermoelastic/.

5. Numerical Results

In this section, we present the results of numerical simulations for two- and three-
dimensional model problems. In particular, we numerically examine the presented ap-

https://bitbucket.org/vmasha/thermoelastic/
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proximation for different time step sizes and their influences on the number of nonlinear
iterations. We present errors for temperature and displacements between the given solu-
tion and reference solution using a smaller number of time steps. Finally, we discuss the
computational time of the presented implementation.

Phase-change parameters

L = 333000 J · kg−1, Tf = 0.0 ◦C.

For the unfrozen water content model (1), we set

w(T) =

{
w, T ≥ Tf ,
w∗ + (w− w∗) exp(a[T − Tf ]), T < Tf

with w∗ = 0, w = 0.0285, and a = (0.3)−1 ◦C−1. Illustration of water fraction volume Θw,
ice fraction volume Θi and porosity φ is presented in Figure 4.

We set the following parameters (Zhang [30])

• solid:

ρs = 2620 kg ·m−3, cs = 900 J · kg−1 · ◦C−1, ks = 0.95 W ·m−1 · ◦C−1,

• water:

ρw = 1000 kg ·m−3, cw = 4180 J · kg−1 · ◦C−1, kw = 0.56 W ·m−1 · ◦C−1,

• ice:

ρi = 917 kg ·m−3, ci = 2000 J · kg−1 · ◦C−1, ki = 2.24 W ·m−1 · ◦C−1.

We set the following elastic parameters

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

,

with E = 50× 106 Pa and ν = 0.3.

Figure 4. Illustration of water fraction volume Θw (red color), ice fraction volume Θi (blue color) and
porosity φ (black color).
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5.1. Two-Dimensional Problem

In this section, we present numerical results for the two-dimensional domain Ω.
Three geometries of the computational domain are considered:

• Geometry 1 (see Figure 5a).

Rectangular domain Ω = [0, Lx] × [0, Ly] with Lx = 6 m and Ly = 3 m. On the
boundary ΓH (green line), we set temperature T1 = TH and T1 = TC on the top boundary
ΓC = Γtop/ΓH .

• Geometry 2 (see Figure 5b).

Rectangular domain with two perforations (pipes) Ω = Ωm/Ωp, where Ωm =
[0, Lx]× [0, Ly] with Lx = 6 m and Ly = 3 m and Ωp is the two circle domains. Two sub-
domains have different properties (Ω = Ω1 ∪ Ω2), where Ω1 is the subdomain of soil
(blue color in Figure 5b) and Ω2 is the subdomain of pipe walls (red color). On the bound-
ary of pipes ΓH = ∂Ω ∩ ∂Ω2 (green line), we set temperature T1 = TH and T1 = TC on the
top boundary ΓC = Γtop.

• Geometry 3 (see Figure 5c).

Computational domain with two subdomains Ω = Ω1 ∪Ω2, where Ω1 is the subdo-
main of soil (blue color in Figure 5c), and Ω2 is the subdomain of the pillar (red color).
On the green boundary ΓH , we set temperature T1 = TH and T1 = TC on other top
boundary ΓC = Γtop/ΓH .

In second subdomain Ω2, we simulate stiff material E2 = 1011 Pa, ν2 = 0.3 with low
heat conductivity k2 = 1 W ·m−1 · ◦C−1 and ρ2 = 2620 kg ·m−3, c2 = 900 J · kg−1 · ◦C−1.

Two-dimensional domains with unstructured grids are represented in Figure 5.
The first geometry (Figure 5a) shows a thawing process caused by positive temperature
on the boundary. This example illustrates the impact of a building/construction on the
soil when poor floor insulation causes thawing during the winter period. The second
geometry in Figure 5b illustrates the impact of underground pipes filled with warm water.
This example shows how warm temperature can change the temperature field around and
lead to thawing if poorly insulated. The third geometry (Figure 5c) illustrates deformation
and heat transfer under the building/construction, where subdomain Ω2 is the construction
pillar. The example represents temperature changes under the construction and affects
the pillar.

Unstructured meshes are constructed with local refinement near boundaries ΓC and
ΓH . Computational mesh sizes and the number of degrees of freedom are the following:

• Geometry 1: mesh contains 8580 vertices and 16,756 cells, DOFT = 8580 and
DOFu = 17,160.

• Geometry 2: mesh contains 13,012 vertices and 25,504 cells, DOFT = 13,012 and
DOFu = 26,024.

• Geometry 3: mesh contains 12,417 vertices and 24,361 cells, DOFT = 12,417 and
DOFu = 24,834.

We simulate for tmax = 106 s with two initial conditions for temperature:

• Test 1. Frozen initial condition with T0 = −2 ◦C.
• Test 2. Unfrozen initial condition with T0 = 2 ◦C.

As boundary conditions, we set Robin boundary conditions on ΓC and ΓH

−k∇T · n = γC(T − TC), x ∈ ΓC, −k∇T · n = γH(T − TH), x ∈ ΓH ,

with TC = −15 ◦C, γC = 14 W ·m−2 · ◦C−1, TH = 10 ◦C and γH = 20 W ·m−2 · ◦C−1.
On other boundaries ∂Ω/(ΓC ∪ ΓH), we set zero Neumann boundary conditions. For dis-
placements, we set σ1 = 0 Pa u2 = 0 m on the bottom boundary, and u1 = 0 m, σ2 = 0 Pa
on the left and right boundary. As initial condition, we set u0 = 0 m.
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(a) Geometry 1 (2D)

(b) Geometry 2 (2D)

(c) Geometry 3 (2D)
Figure 5. Computational domains and grids for two-dimensional problems.

Numerical results for Test 1 are presented in Figure 6 and for Test 2 in Figure 7.
Results have been performed with 300 time steps using Picard iterations with ε = 1%.
On the left figure, we presented a temperature field distribution at the final time. The cor-
responding porosity field is shown in the middle figure. On the right figure, we depict
a magnitude of displacements field on the moved mesh, where displacements are ex-
aggerated by a factor of 25. The temperature field and porosity are depicted with the
phase-change interface (white color line).

In Figure 6, we depicted results for Test 1 with frozen initial condition for temperature,
T0 = −2 ◦C. On the left figures, we observe the thawing process near the boundary ΓH ,
where we set Robin boundary conditions with temperature, T1 = 10 ◦C. On the right fig-
ures, we see nearly vertical displacements caused by soil thawing. The results in Figure 6
illustrates the impact of a building/construction or pipes on the soil when poor floor insu-
lation causes thawing during the winter period. We observe how warm temperature can
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change the temperature field around and lead to thawing if poorly insulated. The thawing
has changed the porosity field as pore water has a larger density, and it occupies a smaller
volume and leads to soil deformations.

The results of the numerical simulations for Test 2 are presented in Figure 7. In this
example, we consider a case with unfrozen initial condition for temperature, T0 = 2 ◦C.
By setting freezing boundary conditions on the top boundary ΓH , we simulate the influence
of the different constructions on the temperature and displacements fields. From this
example, we observe how different boundary conditions on ΓC and ΓH affect the phase-
change interface. From the middle figures of the porosity field related to the temperature
at the final time, we observe porosity change due to freezing of the pore water. The right
figures show displacements that occur for the given porosity change.

Next, we numerically investigate the solution of the problem using Picard iterations
with a different number of time steps Nt = 50, 100, 200. To compare the difference between
solutions with different time steps, we calculate relative L2 errors in %

eT =
||T − Tre f ||L2

||Tre f ||L2

× 100%, eu =
||u− ure f ||L2

||ure f ||L2

× 100%, ||v||L2 =

√∫
Ω

v2dx,

where Tre f and ure f are reference solutions. Because we cannot calculate the analytical
solution for the considered geometries in two and three-dimensional formulations, as the
reference solutions in order to investigate numerical convergence of the presented algo-
rithm with a different number of time steps and calculate errors, we use numerical results
for Nt = 300 with Picard iterations.

In Figures 8 and 9, we present relative errors in % for 10 time layers using Picard
iterations for Test 1 and Test 2, respectively. In the first and second columns, relative errors
for temperature and displacements are depicted. In the third column, the number of Picard
iterations are presented for each time step. We observe the influence of the time step size
on the solutions and have the following conclusions from the presented results:

• From the first and second columns in Figures 8 and 9, we observe larger errors for
Test 2 than for Test 1 for all computational domains at initial time layers. For ex-
ample, in Geometry 1 using Nt = 50 time iterations, we have (6.3%, 3.4%, 2.2%)
of temperature errors in Test 1 and (26.6%, 16.5%, 10.5%) of temperature errors
in Test 2 at times t = (0.1, 0.2, 0.3) [106 s], respectively. For displacements errors,
we have (42.9%, 22.3%, 14.8%) in Test 1 and (50.6%, 29.2%, 16.9%) in Test 2 at times
t = (0.1, 0.2, 0.3) [106 s], respectively. When we use more iterations by time for Ge-
ometry 1 (Nt = 200), we have (0.7%, 0.3%, 0.2%) of temperature errors in Test 1 and
(4.0%, 1.7%, 1.0%) of temperature errors in Test 2 at times t = (0.1, 0.2, 0.3) [106 s],
respectively. For displacements errors, we have (4.8%, 2.5%, 1.5%) in Test 1 and
(6.3%, 2.4%, 1.7%) in Test 2 at times t = (0.1, 0.2, 0.3) [106 s], respectively. At the final
time, we obtain good results with less than one percent of errors for temperature and
displacements using Nt = 100 and 200 for all Geometries.

• The influence of the time step size is larger for displacements than for temperature for
both tests (see Figures 8 and 9). For example, in Test 1 (Geometry 1) at the final time,
we have (0.6%, 0.2%, 0.06%) of temperature errors and (3.5%, 1.3%, 0.3%) of displace-
ments errors for Nt = (50, 100, 200), respectively. In Test 2 for Geometry 1 at the final
time, we have (0.7%, 0.3%, 0.09%) of temperature errors and (1.3%, 0.6%, 0.1%) of
displacements errors for Nt = (50, 100, 200), respectively. Furthermore, the displace-
ments errors are larger than the temperature errors at initial time layers. For example,
in Test 1 using Nt = 100 time iterations (Geometry 1) we have (2.8%, 1.5%, 0.9%)
of temperature errors and (18.6%, 9.6%, 6.3%) of displacements errors at times t =
(0.1, 0.2, 0.3) [106 s], respectively. We observe similar error behavior for the second
and the third geometries.

• Figures 8 and 9 show that errors decrease by time for Test 1 and 2 in all computational
domains. For example, the temperature error decreases from 2.8% at time tm =
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0.1 [106 s] to 0.2% at the final time and displacements error decreases from 18.6% at
time tm = 0.1 [106 s] to 1.3% at the final time for Test 1 using Nt = 100 time iterations
(Geometry 1). In Test 2 using Nt = 100 time iterations (Geometry 1), the temperature
error decreases from 13.9% at time tm = 0.1 [106 s] to 0.3% at the final time and
displacements error decreases from 25.8% at time tm = 0.1 [106 s] to 0.6% at the
final time.

• From the third column in Figures 8 and 9, we observe that nonlinear iterations have
good convergence for Test 1 and 2 for all geometries, where more iterations are
needed at the first time steps. For Geometry 1, we observe that 42 % of all time
iterations perform more than one nonlinear iteration (21 time iterations from total 50,
till t = 0.42 [106 s]) for Nt = 50, 24 % for Nt = 100 (24 from 100, till t = 0.24 [106 s]),
13.5 % for Nt = 200 (27 from 200, till t = 0.135 [106 s]), and 9.6 % for Nt = 300 (29 from
300, till t = 0.096 [106 s]) in Test 1. In Test 2 (Geometry 1), we observe that 76 % of all
time iterations perform more than one nonlinear iteration (38 time iterations from total
50, till t = 0.76 [106 s]) for Nt = 50, 43 % for Nt = 100 (43 from 100, till t = 0.43 [106 s]),
24 % for Nt = 200 (48 from 200, till t = 0.24 [106 s]), and 16.6 % for Nt = 300 (50 from
300, till t = 0.16 [106 s]). We obtain similar behavior for Geometry 2 and 3 and see that
the Picard iterative method needs more iterations to converge for a small number of
time steps Nt.

In Figure 10, we present the difference between solution using linearization from the
previous time layer (one Picard iteration) and solution using Picard iterations using the
same numbers for time steps Nt = 50, 100, 200, and 300. We obtain the following conclusions:

• For Test 1, we have a small difference between solution using linearization from
the previous time layer and solution using Picard iterations. For example, in Test 1
(Geometry 1), we have near or less than one percent of errors for temperature and
displacements for the algorithm with linearization from the previous time layer for
Nt = 50, 100, 200, 300. This happens because, for this test case, phase change interface
movement occurs in a smaller domain and leads to a less nonlinear process for the
temperature distribution with a small number of nonlinear iterations. In Test 2,
we obtain a more nonlinear process with a larger thawing domain. This leads to a
larger number of nonlinear iterations at initial time layers to converge, and therefore
larger errors occur between solution using linear algorithm and algorithm with
Picard iterations.

• Nonlinear iterations have a larger influence on the displacements solution than for
temperature at Test 2. Such error behavior happens because, in the considered test
examples, we considered the cases when deformation occurs due to porosity (tem-
perature) change and accurate calculation of the temperature have a strong impact.
For example, in Geometry 1 with Nt = 50 time iterations, we have (9.7%, 4.6%, 1.7%)
of temperature errors and (12.2%, 5.9%, 3.1%) of displacements errors in Test 2 at times
t = (0.1, 0.5, 1.0) [106 s], respectively. When we use more iterations by time (Nt = 200),
we have (4.7%, 1.0%, 0.4%) of temperature errors in Test 1 and (6.0%, 1.8%, 0.8%) of
displacements errors in Test 2 at times t = (0.1, 0.5, 1.0) [106 s], respectively.

• Differences between linearization from the previous time layer and solution using
Picard iterations are reduced by time. For example, in Test 2, we obtain good results
with less than one percent of errors for temperature and displacements at the final
time using a sufficiently large number of time iterations Nt = 200 and 300.

• For Test 2, the differences are larger for Geometry 1 and 2 than for Geometry 3,
which illustrates the influence of the geometry on the nonlinearity of the process.
For Geometry 3 with Nt = 50 time iterations, we have (4.8%, 1.3%, 0.1%) of tem-
perature errors and (8.3%, 0.8%, 0.4%) of displacements errors in Test 2 at times
t = (0.1, 0.5, 1.0) [106 s], respectively. For Geometry 2 with Nt = 50 time iterations,
we have (9.0%, 4.1%, 1.5%) of temperature errors in Test 2 and (14.3%, 6.1%, 2.8%) of
displacements errors at times t = (0.1, 0.5, 1.0) [106 s], respectively. For Geometry 1
with Nt = 50 time iterations, we have (9.7%, 4.6%, 1.7%) of temperature errors in
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Test 2 and (12.2%, 5.9%, 3.1%) of displacements errors at times t = (0.1, 0.5, 1.0) [106 s],
respectively.

From the presented results, we see how the computational domain and initial condi-
tions affect the solution for a different number of time steps. We also observe the influence
on the solution of the linearization method.

In Table 1, we present the computational time with the sum of Picard iterations over
time (∑ iter). Note that ∑ iter = Nt for linearization from the previous time layer. We have
the following conclusions:

• For the Picard iteration method, we observe that the sum of iterations is larger for
Test 2 than for Test 1 for all geometries. For Geometry 1, we have in total 72 nonlinear
iterations in Test 1 and 105 nonlinear iterations in Test 2 for Nt = 50 time iterations.
We have more nonlinear iterations for Test 2, because, as we see before, the tempera-
ture field for initial and boundary conditions of Test 2 we obtain faster phase change
interface moving and therefore we have more nonlinear iterations to converge.

• Using 50 time steps in Test 1 on Geometry 1, the solution time is 13.09 s and 23.08 s for
linearization from the previous time layer and Picard iterations, respectively. When we
use 50 time steps in Test 2 on Geometry 1, the solution time is 14.48 s for linearization
from the previous time layer and 27.27 s for Picard iterations. Using 300 time steps in
Test 1 on Geometry 1, the solution time is 107.13 s and 113.61 s for linearization from
the previous time layer and Picard iterations, respectively. When we use 300 time
steps in Test 2 on Geometry 1, the solution time is 99.59 s for linearization from the
previous time layer and 106.43 s for Picard iterations.

• Solution time also depends on the size of the system that is solved at each time/nonlinear
iteration. The size of the systems was presented above with the mesh size for all
geometries. Solution time for Geometry 1 is slightly smaller than for Geometry 2
and 3 because we have a smaller number of degrees of freedom for temperature
and displacements.

Solution time is presented in seconds and does not include the time of saving solution,
where we have approximately 15 s for saving solution ten times. Computations were
performed on 2.3 GHz Intel Core i7 with 32 GB of memory. For a solution, we used a direct
solver for both temperature and displacements fields.

Table 1. Calculation time in seconds with the corresponded number of iterations for two-dimensional problems. ∑ iter is the sum
of Picard iterations over time. Nt is the number of time steps. Method 1 and 2 are the linearization from the previous time step and
Picard iterations method, respectively. Left table: Test 1. Right table: Test 2.

Test 1 Test 2

Nt Method 1 (∑ iter) Method 2 (∑ iter) Nt Method 1 (∑ iter) Method 2 (∑ iter)

Geometry 1 (2D). Geometry 1 (2D).

50 13.09 (50) 23.08 (72) 50 14.48 (50) 27.27 (106)
100 35.67 (100) 41.18 (125) 100 31.01 (100) 43.06 (158)
200 71.26 (200) 77.44 (228) 200 68.59 (200) 75.30 (260)
300 107.13(300) 113.61 (330) 300 99.59 (300) 106.43 (357)

Geometry 2 (2D). Geometry 2 (2D).

50 17.40 (50) 33.03 (67) 50 16.47 (50) 39.91 (101)
100 44.72 (100) 63.47 (121) 100 32.26 (100) 66.51 (155)
200 79.88 (200) 121.10 (228) 200 63.68 (200) 114.50 (257)
300 163.16 (300) 173.23 (331) 300 151.13 (300) 162.76 (355)

Geometry 3 (2D). Geometry 3 (2D).

50 23.27 (50) 28.77 (72) 50 20.86 (50) 29.51 (89)
100 45.58 (100) 52.84 (126) 100 40.77 (100) 49.77 (140)
200 89.89 (200) 99.05 (231) 200 81.57 (200) 91.44 (242)
300 135.46 (300) 145.02 (333) 300 128.88 (300) 133.34 (346)
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(a). Geometry 1 (2D)

(b). Geometry 2 (2D)

(c). Geometry 3 (2D)
Figure 6. Test 1 for a two-dimensional problem. Temperature, porosity, and displacement fields at the final time
(from left to right).

(a). Geometry 1 (2D)

(b). Geometry 2 (2D)

(c). Geometry 3 (2D)
Figure 7. Test 2 for a two-dimensional problem. Temperature, porosity, and displacement fields at the final time
(from left to right).
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(a). Geometry 1 (2D)

(b). Geometry 2 (2D)

(c). Geometry 3 (2D)
Figure 8. Test 1 for a two-dimensional problem. Results for a solution using Picard iterations with a different number of
time steps tm, m = 50, 100, 200. Relative errors in % for temperature and displacements for 10 time layers (first and second
columns). Number of Picard iterations by time (third column).
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(a). Geometry 1 (2D)

(b). Geometry 2 (2D)

(c). Geometry 3 (2D)
Figure 9. Test 2 for a two-dimensional problem. Results for a solution using Picard iterations with a different number of
time steps tm, m = 50, 100, 200. Relative errors in % for temperature and displacements for 10 time layers (first and second
columns). Number of Picard iterations by time (third column).
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(a). Geometry 1 (2D)

(b). Geometry 2 (2D)

(c). Geometry 3 (2D)
Figure 10. Results for the different number of time steps. Relative errors in % between a solution with linearization from
the previous time step and solution using Picard iterations. First and second columns: temperature and displacements
errors for Test 1. Third and fourth columns: temperature and displacements errors for Test 2.

5.2. Three-Dimensional Problem

Finally, we present the numerical results for a three-dimensional domain based on the
cuboid Ωm = [0, Lx]× [0, Ly]× [0, Lz] with Lx = Ly = 6 m and Lz = 3 m.

Similarly to previous results, we consider three geometries:

• Geometry 1 (see Figure 11a).

We set Ω = Ωm is the soil domain. On the boundary ΓH (elliptical surface on the top
boundary), we set temperature T1 = TH and T1 = TC on the top boundary ΓC = Γtop/ΓH .

• Geometry 2 (see Figure 11b).

Computational domain with two cylindrical perforations (pipes), Ω = Ωm ∪ Ωp.
We have two subdomains with different properties Ω = Ω1 ∪Ω2, where Ω1 is the subdo-
main of soil (blue color), and Ω2 is the thin subdomain of pipe walls (red color). On the
boundary of pipes ΓH = ∂Ω ∩ ∂Ω2, we set temperature T1 = TH and T1 = TC on the top
boundary ΓC = Γtop.

• Geometry 3 (see Figure 11c).

Computational domain with two subdomains Ω = Ω1 ∪Ω2, where Ω1 is the subdo-
main of soil (blue color), and Ω2 is the subdomain of the pillar (red color). On the boundary
ΓH of the construction, we set temperature T1 = TH and T1 = TC on other top boundary
ΓC = Γtop/ΓH .

In the second subdomain Ω2, we simulate material with similar parameters as in the
previous two-dimensional case.
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Three-dimensional domains with unstructured grids are represented in Figure 11.
The unstructured grids have local refinement near boundaries ΓC and ΓH. Computational mesh
sizes and the number of degrees of freedom are the following:

• Geometry 1: mesh contains 3336 vertices and 13,317 cells, DOFT = 3336 and
DOFu = 10,008.

• Geometry 2: mesh contains 5165 vertices and 22,696 cells, DOFT = 5165 and
DOFu = 15,495.

• Geometry 3: mesh contains 3896 vertices and 16,254 cells, DOFT = 3896 and
DOFu = 11,688.

We simulate for tmax = 106 s with two initial conditions for temperature:T0 = −2 ◦C
(Test 1) and T0 = 2 ◦C (Test 2). Temperature boundary conditions are similar to the
two-dimensional problem with TC = −15 ◦C, γC = 14 W ·m−2 · ◦C−1, TH = 10 ◦C,
γH = 20 W ·m−2 · ◦C−1 and zero Neumann boundary conditions on ∂Ω/(ΓC ∪ ΓH).
For displacements, we set initial condition u0 = 0 m and σ1 = σ2 = 0 Pa, u3 = 0 m on the
bottom boundary x3 = 0 m, u1 = 0 m, σ2 = σ3 = 0 Pa on the boundaries x1 = 0, Lx m,
σ1 = σ3 = 0 Pa, u2 = 0 m on the boundaries x2 = 0, Ly m.

Numerical calculations were performed with 300 time steps using Picard iterations
with ε = 1%. On the Figures 12 and 13, we present results at the final time for Test 1 and 2,
respectively. On the left figures, we presented a temperature field distribution. On the
middle figures, we depicted a phase-change interface with domain clip for x2 = Ly/2 m.
The magnitude of the displacement field on the moved mesh is presented on the right,
where displacements are exaggerated by a factor of 25.

From the presented results for Geometries 1, 2, and 3 in Test 1, we observed similar be-
havior as in the previous two-dimensional examples. Results for Geometry 1 on Figure 12a
illustrate the influence of the construction with temperature TH = 10 ◦C and coefficient
γH = 20 W ·m−2 · ◦C−1 without good insulation of the floor. We saw how the thawed
zone corresponded to the soil deformations under construction. Results in Figure 12b for
Geometry 2 are the present influence of the pipes laying under the ground, and we observe
the corresponding phase-change interface and deformations on the thawed zone around
pipes. The geometry 3 results in Figure 12c illustrate temperature, phase-change interface,
and deformation under construction (warehouse structure) and near the cylindrical pillar.

In Figure 13, the results of the numerical simulations for Test 2 are presented, where an
unfrozen initial condition is given for temperature, T0 = 2 ◦C. In results for Geometries
1, 2, and 3, we observe the freezing from the top of the boundary with TC = −15 ◦C.
In the presented geometries, we have different boundary ΓH with TH = 10 ◦C. We observe
how a temperature field with a different shape of phase-change interface leads to the
different deformations.

We present relative L2 errors between solutions using Picard iterations with Nt = 300
and solutions with different number of time steps Nt = 50, 100, 200. In Figures 14 and 15,
we present relative errors in % for 10 time layers using Picard iterations for Test 1 and
Test 2, respectively. In the first and second columns, relative errors for temperature and
displacements are depicted. We observe larger errors for temperature in Test 2 than
for Test 1 for all computational domains. Similar to the results for the two-dimensional
problem, the influence of the time step size is larger for displacements than for temperature
for both tests. Temperature and displacements errors are decreasing over time. In the third
column, the numbers of Picard iterations are presented for each time step. We observe that
the Picard iterative method needs more iterations to converge for a small number of time
steps Nt.

Finally, we present the computational time with the sum of Picard iterations over time
in Table 2. For linearization from the previous time layer, we have ∑ iter = Nt. We observe
that the sum of nonlinear iterations is slightly larger for Test 2 than for Test 1. Using 50 time
steps in Test 1 on Geometry 1, the solution time is 105.44 s and 130.03 s for linearization
from the previous time layer and Picard iterations, respectively. When we use 50 time steps
in Test 2 on Geometry 1, the solution time is 94.11 s for linearization from the previous
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time layer and 133.10 s for Picard iterations. Using 300 time steps in Test 1 on Geometry
1, the solution time is 624.31 s and 645.43 s for linearization from the previous time layer
and Picard iterations, respectively. When we use 300 time steps in Test 2 on Geometry 1,
the solution time is 571.27 s for linearization from the previous time layer and 608.93 s for
Picard iterations. Solution time is presented in seconds and does not include the time of
saving solution, where we have approximately 20 s for saving solution ten times.

(a). Geometry 1 (3D)

(b). Geometry 2 (3D)

(c). Geometry 3 (3D)
Figure 11. Computational domains and grids for three-dimensional problems.



Computation 2021, 9, 5 24 of 31

(a). Geometry 1 (3D)

(b). Geometry 2 (3D)

(c). Geometry 3 (3D)
Figure 12. Test 1 for a three-dimensional problem. Temperature, temperature clip x2 = Ly/2 m with the phase change
interface, and displacement fields at the final time (from left to right).

Table 2. Calculation time in seconds with the corresponded number of iterations for three-dimensional problems. ∑ iter is
the sum of Picard iterations over time. Nt is the number of time steps. Method 1 and 2 are the linearization from the
previous time step and Picard iterations method, respectively. Left table: Test 1. Right table: Test 2.

Test 1 Test 2

Nt Method 1 (∑ iter) Method 2 (∑ iter) Nt Method 1 (∑ iter) Method 2 (∑ iter)

Geometry 1 (3D). Geometry 1 (3D).

50 105.44 (50) 130.03 (68) 50 94.11 (50) 133.10 (82)
100 215.16 (100) 231.55 (119) 100 187.01 (100) 221.41 (129)
200 421.84 (200) 445.39 (222) 200 375.70 (200) 410.48 (237)
300 624.31 (300) 645.43 (322) 300 571.27 (300) 608.93 (346)

Geometry 2 (3D). Geometry 2 (3D).

50 168.36 (50) 195.34 (65) 50 150.73 (50) 197.49 (77)
100 341.82 (100) 368.72 (119) 100 303.71 (100) 344.53 (127)
200 659.64 (200) 705.02 (223) 200 599.54 (200) 645.56 (234)
300 945.30 (300) 993.22 (323) 300 930.16 (300) 949.33 (339)

Geometry 3 (3D). Geometry 3 (3D).

50 132.26 (50) 158.21(68) 50 118.16 (50) 160.49 (80)
100 264.55 (100) 291.84 (120) 100 233.99 (100) 272.12 (129)
200 522.77 (200) 546.27 (222) 200 472.66 (200) 503.61 (234)
300 797.25 (300) 811.21 (323) 300 706.26 (300) 747.46 (342)
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(a). Geometry 1 (3D)

(b). Geometry 2 (3D)

(c). Geometry 3 (3D)
Figure 13. Test 2 for a three-dimensional problem. Temperature, temperature clip x2 = Ly/2 m with the phase change
interface, and displacement fields at the final time (from left to right).
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(a). Geometry 1 (3D)

(b). Geometry 2 (3D)

(c). Geometry 3 (3D)
Figure 14. Test 1 for a three-dimensional problem. Results for a solution using Picard iterations with different number of
time steps tm, m = 50, 100, 200. Relative errors in % for temperature and displacements for 10 time layers (first and second
columns). Number of Picard iterations by time (third column).
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(a). Geometry 1 (3D)

(b). Geometry 2 (3D)

(c). Geometry 3 (3D)
Figure 15. Test 2 for a three-dimensional problem. Results for a solution using Picard iterations with different number of
time steps tm, m = 50, 100, 200. Relative errors in % for temperature and displacements for 10 time layers (first and second
columns). Number of Picard iterations by time (third column).

6. Conclusions

We have presented the mathematical model and finite element implementation for
heat transfer and the mechanics of soils with phase change. The constructed simplified
mathematical model is based on a definition of water and ice fraction volumes that are
functions of temperature. The soil deformations occur due to porosity growth that happens
due to ice and water density differences. The finite element approximation for the thermo-
mechanical model is presented with implicit approximation by time and Picard iterations.
We present an openly available implementation of the presented basic mathematical model
using the FEniCS finite element library. We present the numerical investigation of the
discrete model for the different time step sizes for algorithms with linearization from the
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previous time layer (one Picard iteration) and the Picard iterative method. We present
computational time with the total number of nonlinear iterations for the two-dimensional
and three-dimensional model problems for two test cases in three different geometries.
Figures of the relative errors in L2 norm for temperature and displacements between
the given solution and the reference solution using a smaller time step size illustrate the
convergence of the presented finite element model for different numbers of different time
step sizes and linearization algorithms. Displacements and temperature fields with phase-
change interface illustrate an influence of the porosity change due to phase-change of pore
water into ice on the deformation of the soils. From the presented numerical results for
the basic thermo-elasticity model with phase-change of porous water to ice, we observe
good convergence with a few numbers of the nonlinear iterations. We saw that influence
of the time step size is larger for the displacements field than for the temperature field.
Furthermore, we observe that more nonlinear iterations are needed for a larger time step
size that converges to the one iteration per time layer. The algorithms with one Picard
iteration provide worse results than the algorithm with nonlinear iterations, where errors
are larger for less number of time layers. We observed a good numerical convergence of
the presented implementation with the small number of nonlinear iterations that depends
on time step size for two- and three-dimensional model problems.
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Nomenclature

Vw water volume of porous media [m3]
Vi ice volume of porous media [m3]
Vs solid volume of porous media [m3]
V total volume of porous media [m3]
Vv void space volume of porous media [m3]
Θw water fraction volume
Θi ice fraction volume
Θs solid fraction volume
φ porosity
w unfrozen water content
ρ density [kg ·m−3]
ρw density of water [kg ·m−3]
ρi density of ice [kg ·m−3]
ρs density of solid [kg ·m−3]
T temperature [◦C]
Tf freezing temperature [◦C]
T0 initial temperature [◦C]

a water content model parameter [◦C−1]
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w maximum water content
w∗ minimum water content
γ heat transfer coefficient [W ·m−2 · ◦C−1]

k heat conductivity [W ·m−1 · ◦C−1]

kw water heat conductivity [W ·m−1 · ◦C−1]

ki ice heat conductivity [W ·m−1 · ◦C−1]

ks solid heat conductivity [W ·m−1 · ◦C−1]
Vw water volume of porous media for T ≥ Tf [m3]

c specific heat capacity [J · kg−1 · ◦C−1]

cw water specific heat capacity [J · kg−1 · ◦C−1]

ci ice specific heat capacity [J · kg−1 · ◦C−1]

cs solid specific heat capacity [J · kg−1 · ◦C−1]
dt time step [s]
dV change of volume [m3]
dε∗v volumetric strain due to porosity change
dφ porosity change
C stiffness tensor [Pa]
σ total stress tensor [Pa]
ε total strain tensor
dεe elastic mechanical increment
dε f thermal porosity growth increment
I the identity matrix
u displacements [m]
u0 initial displacements [m]
λ Lame’s first parameter [Pa]
µ Lame’s second parameters [Pa]
E Young’s modulus [Pa]
ν Poisson’s ratio
β thermal expansion due to porosity change [Pa]
n outward unit normal vector
L water fusion latent heat per unit mass [J · kg−1]
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