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Abstract: Distributed medical, financial, or social databases are analyzed daily for the discovery
of patterns and useful information. Privacy concerns have emerged as some database segments
contain sensitive data. Data mining techniques are used to parse, process, and manage enormous
amounts of data while ensuring the preservation of private information. Cryptography, as shown by
previous research, is the most accurate approach to acquiring knowledge while maintaining privacy.
In this paper, we present an extension of a privacy-preserving data mining algorithm, thoroughly
designed and developed for both horizontally and vertically partitioned databases, which contain
either nominal or numeric attribute values. The proposed algorithm exploits the multi-candidate
election schema to construct a privacy-preserving tree-augmented naive Bayesian classifier, a more
robust variation of the classical naive Bayes classifier. The exploitation of the Paillier cryptosystem
and the distinctive homomorphic primitive shows in the security analysis that privacy is ensured and
the proposed algorithm provides strong defences against common attacks. Experiments deriving the
benefits of real world databases demonstrate the preservation of private data while mining processes
occur and the efficient handling of both database partition types.

Keywords: privacy preserving; data mining; tree augmented naive Bayes; Paillier cryptosystem;
homomorphic encryption; distributed databases

1. Introduction

In recent years, advances in information and communication technologies have raised
deep concerns about how data, and specifically private data, are processed. The develop-
ment of data mining techniques has attracted considerable attention as the principal goal is
to extract knowledge from data and, in the process, discover useful patterns. Useful infor-
mation can be obtained from data following these steps: (1) data preprocessing, (2) data
transformation, (3) data mining, and (4) pattern presentation and evaluation [1]. The
information discovered can have incredible value, though serious threats to the security of
the individual’s private information must be eliminated. Personal data may be accessed
by unauthorized parties and used for different purposes other than the original one for
which data were initially collected. The privacy-preserving data mining (PPDM) field has
emerged, focusing on solving the privacy issues facing data mining processes. Simultane-
ously ensuring data accuracy and protecting privacy is the main objective of PPDM.

Public awareness has forced many governments to enforce new privacy protection
laws. Regulations are essential to ensure the protection of sensitive information and
individual identities. Many countries have established laws on privacy protection. For
example, the European Commission released the General Data Protection Regulation
(GDPR) [2], which recognizes the need to facilitate the free flow of data, and unifies and
promotes the protection of personal data within the European Union. The GDPR requires
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the implementation of appropriately designed technical measures, and systems should
consider data protection to meet the Regulation’s requirements.

Database owners require their data to not be misused by data mining processes and
protect their privacy while their data are further analyzed [3,4]. PPDM methods have
numerous applications in medical and financial fields. Some companies, for example, aim
to extract knowledge on market trends in collaboration with other companies without
disclosing their sensitive data due to competition reasons. Consider, for example, several
distributed medical institutes desiring to perform medical research while ensuring the
privacy of their patients. They wish to run a data mining algorithm on their database
union to extract accurate outcomes without revealing private information. The involved
parties acknowledge the importance of combining their data, mutually benefiting from
their data union but none want to reveal the private data of their patients. Applying PPDM
methods, important knowledge is discovered but sensitive information is unable to be
extracted by unauthorized parties [5]. Sensitive data are not only limited to financial or
medical data, but may also apply to phone calls, buying patterns, and more. Individuals
are not interested in sharing personal data without their consent or its sale for various
purposes [6].

Databases distributed across several parties may be partitioned either
horizontally [7–10] or vertically [11,12]. In the horizontally partitioned case, each party’s
database contains different records with the same set of attributes. The main objective is
to mine global information from the data. In the vertically partitioned case, each party’s
database contains different sets of attributes for the same record set [13,14] concerning the
same identity. The union of vertically partitioned datasets allows the discovery of knowl-
edge that cannot be obtained from each individual database. A horizontally partitioned
dataset example is the medical records of a patient, where the attributes associated with the
patient are common for all clinics, such as the number of the insurance card, the disease,
and so forth. A vertically partitioned dataset example is buying the records of a client,
where each store has specific and unique user habits and different patterns are created by
each store’s database [15].

Cryptography, randomization, perturbation, and k-anonymity are a few of the various
privacy-preserving techniques proposed in the literature. All these methods aim to prevent
the possible disclosure of sensitive information to possible adversaries when data mining
processes are applied for the extraction of useful information. Numerous data encryption
approaches proposed in the PPDM field are based on the idea proposed by Yao [16]
and extended by Goldreich [17]. Secure multiparty computation (SMC), a subfield of
cryptography [17], aims to mine global information in the form of aggregate statistics. A
set of parties wishes to jointly compute a function over the combination of all partitioned
private data (input) of each participant. The main aim of this process is to protect local
data without revealing the input to other parties. The data collector (miner), a trusted
third party, performs all necessary calculations with the input of all the acquired private
data of all participants. The miner, who acts as the data collector in the proposed protocol,
forwards the final results to each party, with their main concern being the preservation of
privacy. This process is secure if, at the end of it, neither of the parties nor the miner can
obtain information other than the final outputs [18]. The basic idea is described as follows:
“the computation of a function that accepts as input some data is secure if at the end of
the calculation process neither party knows anything but their own personal data, which
constitute one of the inputs, and the final results” [16,17].

In this paper, we present an extended version of the work originally presented at the
SEEDA-CECNSM 2020 conference [19]. The privacy-preserving data mining approach
was first introduced in Reference [20] only for horizontally partitioned databases. Here,
we exploited the multi-candidate election schema [21] to extract global information from
both horizontally and vertically partitioned statistical databases. The traditional naive
Bayes classifier has been widely used in privacy preservation techniques, but based on the
unrealistic assumption that attributes are independent. Conversely, the tree augmented
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naive Bayesian (TAN) classifier does not require this assumption and behaves more robustly.
In this study, the privacy-preserving version of this classifier was properly designed and
developed for the purposes of the proposed implementation. The Paillier cryptosystem [22]
was implemented to perform all necessary cryptographic processes to preserve privacy by
exploiting the homomorphic primitive, as first proposed by Yang et al. [23]. Based on this,
the data collector (miner) and each participant are unable to identify the original data of
the shared distributed databases, except for the data owner. In addition, the identity of the
database owner is private and unidentifiable by any aggressor. Communication among
participants is unfeasible, and the miner is able to continue with the performance of all
necessary operations if at least three participants are connected with the data collector.

Most techniques proposed in the literature are empirical or theoretical: they lack
implementation of their hypothesis presented in their work. The privacy-preserving
algorithms in the literature handle either horizontal or vertical partitioned databases, but
not both. In addition, these approaches mainly focus on nominal attribute values. To the
best of our knowledge, in the privacy-preserving research field, algorithms that support
both horizontally and vertically partitioned databases have never been proposed. In this
paper, we present a well-designed and improved privacy-preserving data mining technique,
which was originally proposed in References [19,20], which focuses on preserving privacy
and aims to obtain useful information from horizontally and vertically partitioned statistical
databases, handling both nominal and numeric attributes values (including binary values).

The following section summarizes the PPDM evaluation methods proposed in the
literature and briefly reviews some of the proposed privacy-preserving techniques in
the field (Section 2). The background of the current approach is presented in Section 3.
Section 4 describes the proposed protocol and its security and design requirements. The
current protocol in terms of performance and data accuracy is evaluated in Section 5.
Section 6 provides an analysis of some possible threats to the proposed method and how
they are confronted. Recommendations for future work (Section 7) and our conclusions
(Section 8) are presented in the last two sections.

2. Related Work

Privacy-preserving data mining has received extensive attention and has been widely
researched in recent years, becoming an important topic in data mining research since the
work presented in References [24,25]. Privacy-preserving data mining techniques have
several applications in different domains. Some of the domains have raised concerns
about the disclosure of sensitive information. The majority of PPDM techniques have
been developed to prevent leakage of sensitive information without affecting the extracted
knowledge produced by the application of mining processes on the data [26]. The applied
methods either modify or remove some original data to achieve privacy preservation. This
action creates a trade-off between the data quality and the privacy level, which is known
as utility. PPDM techniques should be designed to guarantee the maximum utility of the
produced outcomes while ensuring an appropriate level of privacy.

Existing privacy-preserving data mining methodologies, based on Reference [26],
can be divided into methodologies that protect the input data in the mining process and
methodologies that protect the final results of the mining process. Privacy-preservation
techniques (perturbation, generalization, transformation, etc.) in the first type, are applied
to the input data to hide any private information and safely distribute the data to other
parties. The main goal is the generation of accurate data mining results. SMC methods
enable data owners to apply mining methodologies to their data, keeping the datasets
private. In the second type of approach, the applied privacy preservation techniques
prohibit the disclosure of private information derived through the application of data
mining algorithms.

Verykios et al. [12] categorized privacy-preserving data mining algorithms into five
segments. The first segment is data distribution, which refers to the division of data, either
centralized or distributed. A centralized data set is owned by a single party. Conversely,
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distributed data sets are divided between two or more parties, who most probably do not
trust each other but are interested in performing data mining techniques on their unified
data. Distributed data can be classified as horizontally or vertically partitioned. In the
former, different database records reside with different parties; in the latter, all values for
different attributes reside with different parties. Data modification, the second segment,
is used to modify the original database values. The databases may need to be released
to the public, so modification ensures the protection of privacy. Modification methods
include: perturbation, blocking, aggregation, swapping, and sampling. Perturbation is
accomplished by altering an attribute value or adding noise. In blocking methods, an
attribute value is replaced by a character; in aggregation, several values are combined.
In swapping, the values of individual records are interchanged, and in the sampling
method, only a sample of data is released. The data mining algorithm, the third segment,
is the algorithm for which the data are modified and the privacy preservation technique
is designed. The most important algorithms have been developed for classification, like
decision trees, association rule mining algorithms, clustering algorithms, and Bayesian
networks. Data or rule hiding, the fourth segment, refers to whether sensitive values should
be protected by hiding raw or aggregated data. The complexity of hiding aggregated data
is higher; for this reason, mostly heuristics have been developed. In some cases, individual
data values are private, but in other cases, individual association or classification rules are
considered private. Depending on how privacy is defined, different privacy-preserving
techniques are applied. The most important aspect is the privacy preservation technique.
These techniques can be categorized as heuristic-, reconstruction-, and cryptography-based
techniques. Heuristic techniques modify selected values rather than all available values to
minimize information loss. In reconstruction techniques, the original distribution of the
data is reconstructed from the randomized data. Data modification results in degradation
of the database performance. In cryptographic techniques, that is, SMC, a computation is
secure if at the end of it, no one knows the contents except their own input and the final
results. These methods are used for preserving privacy in distributed environments using
encryption techniques.

Sharma et al. [6] proposed the following classifications of PPDM: (1) data mining
scenarios, (2) data mining tasks, (3) data distribution, (4) data types, (5) privacy definitions,
and (6) protection methods. Their approach is similar to that of Reference [12], but they
added one more extra dimension: the data types. There are two basic data types: numerical
and categorical (nominal). Boolean data are a special case of nominal data. The basic
difference between the two data types is that categorical data are categorized without a
natural rank, whereas numerical data are instantly measured by a number. This difference
creates the need to apply different privacy preservation approaches.

An important characteristic in the development of PPDM algorithms is the recognition
of appropriate evaluation criteria. The already-developed privacy-preserving algorithms
do not outperform all other algorithms on all evaluation criteria. An algorithm may perform
better than another one for specific criteria [12]. As such, different sets of metrics for
evaluating these algorithms have been proposed over the past years. Quantifying privacy
is challenging. Many metrics have been proposed in the literature; however,multiple
parameters need to be evaluated. Most of the proposed metrics can be classified into three
main categories depending on the aspect being measured:

1. Privacy level metrics: the security of the data from a disclosure point of view;
2. Data quality metrics: quantify the loss of information/utility;
3. Complexity metrics: measure the efficiency and scalability of the different techniques.

Both data quality and privacy level can be further categorized as data metrics and
result metrics. Data metrics evaluate the privacy level and data quality by estimating
the transformed data resulting from applying a privacy-preserving methodology. Result
metrics evaluate the privacy level and data quality by estimating the outcomes of the data
mining process having the transformed data as the input [15]. Verykios et al. [12] provided
a different list of evaluation criteria to be used for assessing the quality of PPDM algorithms:
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the performance of the algorithm in terms of time needs to hide sensitive information; the
data utility after the PPDM technique is applied, which is equivalent to the minimization of
information loss; the level of uncertainty with which the sensitive information hidden can
still be discovered; and the resistance accomplished by the privacy algorithm to different
data mining techniques. Sharma et al. [6] proposed a different set of evaluation criteria:

◦ Versatility: the ability of a technique to serve various data mining tasks, privacy
requirements, and data set types. The technique is more useful if it is more versatile.

◦ Disclosure risks: the possibility that a malicious party obtains sensitive data. Preserva-
tion techniques aim to minimize the risks.

◦ Information loss: the decrease in data quality resulting from the noise added to the
data and the level of security applied. A privacy-preserving technique is required to
maintain the quality of data in the released data sets. If data quality is not maintained,
the use of security is purposeless.

◦ Cost: the computation and communication costs. The computational cost depends on
the processes applied on the data, for example, randomizing the database values, and
the cost to run all processes. The higher the cost, the more inefficient the technique.

Qi and Zong [27] described evaluation criteria and reviewed privacy protection algo-
rithms in data mining such as distortion, encryption, privacy, and anonymity.
Malik et al. [28] also presented evaluation parameters and discussed the trade-off be-
tween privacy and utility. They suggested that practical algorithms need to be developed
that balance disclosure, utility, and costs to be accepted by industry. They stated that novel
solutions have been developed but product-oriented solutions need to be developed so
that real-world problems are efficiently handled.

Different parameters were also defined [29,30] to quantify the trade-off between
privacy and utility. The authors created a framework for evaluating privacy-preserving
data mining algorithms, indicating the importance of designing adequate metrics that can
reflect the properties of a PPDM algorithm, and of developing benchmark databases to
test and evaluate all types of PPDM algorithms. They identified a framework based on
the following dimensions to evaluate the effectiveness of privacy preserving data mining
algorithms: efficiency, scalability, data quality, hiding failure, privacy level, and complexity.
Efficiency is the ability of a privacy-preserving algorithm to execute with good performance.
Scalability evaluates the efficiency of a PPDM algorithm with increasing data set sizes. Data
quality is the quality of both the input data and the final data mining results. Hiding failure
is the portion of sensitive data that is not hidden after the PPDM technique is applied. The
privacy level, which results from the use of a privacy-preserving technique, indicates how
closely the sensitive information can still be estimated. Complexity refers to the execution
of an algorithm in terms of performance.

As defined previously [31], every privacy preserving methodology should answer
one major question: Do the results violate privacy. In other words, do the results of a data
mining process violate privacy by exposing sensitive data and patterns that can be used by
attackers? A privacy preservation classification model was proposed by the authors, and
they studied the possible ways an attacker can use the classifier and compromise privacy,
but they did not provide a solution to prevent an attacker from accessing the mining results
and thus violate privacy.

Sweeney [11] proposed a heuristic approach using generalization and suppression
techniques to protect raw data and achieve k-anonymity. A database is k-anonymous
with respect to some attributes if at least k transactions exist in the database for each
combination of the attribute values. The new generated database guarantees k-anonymity
by performing generalizations on the values of the target attributes.

Scardapane et al. [32] analyzed medical data distributed amongst multiple parties.
Medical environments may forbid, due to privacy restrictions, the disclosure of their locally
produced data to a central location.

The most widely studied privacy preservation techniques are cryptography and ran-
domization. A naive Bayes learning technique was applied [33] to construct differentially
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private protocols to extract knowledge from distributed data. A multiplicative perturba-
tions approach was applied to the data for introducing noise by Liu et al. [34]. However,
perturbation techniques decrease the quality of the final results. The authors, in their
privacy analysis, did not consider any prior knowledge. Vaidya et al. [35] applied differen-
tial privacy to develop a naive Bayes classifier provided as a cloud service, and focused
on generating privacy preserving results instead of sharing secure data sets. These tech-
niques mainly focus on publishing useful results and not sanitized data that can be shared.
Randomization techniques have been used to build association rules [36] and decision
trees [24] for vertically and horizontally partitioned databases, respectively.

The randomization method, even though efficient, can result in inaccurate outcomes.
As revealed [37], randomization techniques may compromise privacy. The authors stated
that additive noise can be easily filtered out, and special attacks can result in the reconstruc-
tion of the original data. A randomization technique that combines data transformation
and data hiding was proposed by Zhang et al. [38]. They exploited a modified naive Bayes
classifier to predict the class values on the distorted data. Agrawal et al. [24] built a decision
tree classifier by applying perturbation techniques on the training data and estimated the
distribution probability of numeric values. They proposed a measure and evaluated the pri-
vacy offered by their method. The privacy was measured by how closely the original values
can be determined through the modified data. The approach presented in Reference [14] is
another reconstruction technique based on an expectation maximization algorithm for dis-
tribution reconstruction. The authors provided metrics for quantification and privacy and
information loss measurement. Unlike the approach in Reference [24], the metric proposed
in Reference [14] assumes that the perturbing distribution as well as both the perturbed
record and the reconstructed distribution are available to the user.

Cryptographic-based techniques are more secure; they provide accurate results but
they lack efficiency. Most cryptographic methods proposed in the literature are based
on Yao’s idea [16], and an extension proposed by Goldreich [17], who studied the secure
multi-party computation problem. A few proposed privacy preservation techniques ap-
ply encryption mechanisms on horizontally partitioned databases for building decision
trees [25,39]. A variety of cryptography-based techniques have been applied using naive
Bayesian classifiers [8,23,40,41]. Others [7] applied cryptography to build association dis-
covery rules, whereas others [9,42] and References [40,43] benefited from the cryptographic
methods and applied them on vertically partitioned databases to create association rules
and naive Bayesian classifiers, respectively. Tassa [44] focused on horizontally partitioned
databases and proposed a protocol for secure mining of association rules, presenting the
protocol’s advantages over existing protocols [7]. Goethals et al. [45] proposed a simple
and secure method, applying secure multiplications. Similarly, Keshavamurthy et al. [46]
proposed a multi-party approach to calculate the aggregate class for vertically partitioned
data applying a naive Bayes classifier. Because of its simplicity and straightforward nature,
naive Bayes classification has been used by many researchers [8,23,41,47]. Other data
mining methods have been proposed in the PPDM field, such as tree augmented naive
Bayes [48] and the K2 algorithm [9].

The authors of Reference [48] proposed a similar approach to ours. However, they
applied an algebraic technique to perturb the original data. Instead, our protocol exploits
cryptographic-based techniques, assuring privacy and resulting in more accurate outcomes.
A comparison of some privacy preserving data mining techniques proposed in the literature
are presented in Table 1.
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Table 1. Comparison of privacy-preserving data mining (PPDM) techniques.

Article Mining Model Partition ? Environment Privacy Method • Attribute Type � Execution †

Proposed Work TAN H and V C2S, one miner, parties > 2 C Nom and Num I
Agrawal and Srikant [24] Decision Trees H C2C, parties > 2 R Num E

Clifton et al. [42] EM clustering H and V C2C, parties > 2 C Nd T
Kantarcioglu and Clifton [7] Association Rules H C2C, parties > 2 C Nd I

Kantarcioglu et al. [8] Naive Bayes H C2C, parties > 2 C Nom and Num T
Lindell and Pinkas [25] Decision trees H C2C, two parties C Nom T

Pinkas [39] Decision trees H C2C, parties > 2 C Nom T
Vaidya and Clifton [36] Association Rules V C2C, two parties R Bin T

Wright and Yang [9] K2 V C2C, two parties C Bin T
Yang et al. [23] Naive Bayes H C2S, one miner C Bin I

Yi and Zhang [41] Naive Bayes H C2S, two miners C Nd T
Zhan et al. [10] Bayesian Nets H C2C C Nd T

Zhang et al. [48] TAN H C2S, one miner P Num I
? Database (DB) partition: H = horizontally, V = vertically. • C = cryptography, R = randomization, P=Perturbation. � Nom = nominal, Num = numerical,
Bin = binary, Nd = not defined. † E = empirical, T = theoretical, I = implemented.

3. Background

In machine learning and statistics, classification refers to a supervised predictive
learning approach where a class value is predicted from data provided as the input. Clas-
sification can be performed on both structured or unstructured data. The main goal of
the approach is to identify the class of the new data. Classification algorithms require
training data as the input to predict the likelihood that future data will fall into one of the
predetermined classes. The learning model is trained using the training data and the perfor-
mance is measured using test data. Common classification problems are speech recognition,
face detection, handwriting recognition, document classification, credit approval, medical
diagnosis, target marketing, and so forth.

3.1. Classification of Nominal Attributes

The main objective of classification is the prediction of an attribute value given a
training set by estimating the probabilities. Given an attribute X with nominal values
x1, . . . , xr, the calculation of the probability of each value is given by applying Equation (1),
where n is the total number of training instances for which V = uj and nj is the number of
instances that have X = xk.

P(X = xk|uj) = nj/n. (1)

The conditional probability that an instance belongs to a certain class c is calculated
by Equation (2), where nac is the number of instances with class value c and attribute value
a, and na is the number of instances with attribute value a.

P(C = c|A = a) =
P(C = c ∩ A = a)

P(A = a)
=

nac

na
. (2)

3.2. Classification of Numeric Attributes

The calculations of the classification probabilities differ for numeric and nominal
attributes. The mean µ and variance σ2 parameters, for numeric attributes, are calculated
for each class and each attribute. The probability P(X = x′|uj) that an instance is class uj
can be estimated by substituting x = x′ in the probability density equation. The conditional
probability of a class is calculated for all classes, and the class with the highest relative
probability is chosen as the class of the instance. These local sums are added together and
divided by the total number of instances having that same class to compute the mean µ for
a class value. Each party, since it is aware of the class of the training instances, can subtract
the appropriate mean µ from an instance having class value y, square the value, and sum
all such values together. The required variance is obtained by dividing the global sum by
the global number of instances having the same class y.
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Equation (3) computes the normal probability distribution, where x is a random
variable, µ is the mean of the distribution, and σ is the standard deviation (σ2 is the
variance); π is approximately 3.14159 and e is approximately 2.71828.

P(x) =
1

σ ∗ sqrt(2π)
∗ e

−(x−µ)2

2σ2 . (3)

3.3. Tree Augmented Naive Bayesian Classifier

The traditional naive Bayes classification (Figure 1) is a method based on Bayes
theorem. Naive Bayes classifiers are simple, easy to build, and useful for very large data
sets as they are highly scalable. Naive Bayes classifiers support both nominal and numeric
attribute values. These classifiers compute the conditional probability of each attribute
value Ai given the class value C. The Bayes theorem is applied to compute the probability
of class C given a specific instance vector < A1.....An >, given the total number of n
attributes.

These classifiers assume that all attributes are conditionally independent given the
value of C, which is a restrictive and oversimplified assumption, reducing the computa-
tional cost by only counting the class distribution. However, in most cases, this assumption
is unrealistic, as some attributes can be dependent. Since prior knowledge of the class
variable C is not considered, a bias in the estimated probabilities is introduced, which leads
to poor prediction outcomes in some domains [49]. The performance of such classifiers can
be improved by removing this assumption.

One method to reduce the naive Bayes’ bias is to relax the independence assumption
using a more complex graph. An interesting variation of Bayesian networks is the tree
augmented naive Bayesian (TAN) classifier (Figure 2) [50]. TAN can be viewed as a
Bayesian network, a probabilistic graphical model, where each attribute has the class as
the parent, and possibly an attribute as a second parent. The existence of additional edges
between attributes, which represent the correlation among these attributes, is allowed by
the TAN classifier. More specifically, in a TAN network, the class C has no parents and
each attribute Ai has the class and at most one other attribute Aj as parents, implying that
the assessment of the class of attribute Ai also depends on the value of Aj. For example, in
a dataset, the age of an individual and their financial income are two dependent attributes.

The procedure of learning these edges, which is based on a method proposed by Chow
and Liu [51], reduces the problem of constructing a maximum likelihood tree to find a
maximal weighted spanning tree in a graph. The problem of finding such a tree involves
selecting a subset of edges such that the sum of weights attached to the selected edges is
maximized. The TAN algorithm consists of four main steps:

1. The mutual information for each attribute pair is computed using Equation (4), mea-
suring how much information the attribute y provides about x.

2. An undirected graph is built in which the vertices are the variables in x (the weight of
an edge connecting two attributes).

3. A maximum weighted spanning tree is created.
4. The undirected tree is transformed to a directed tree by choosing a root variable and

setting the direction of all edges to be outward from it.

Ip(X; Y) = ∑
x,y

P(x, y)log
P(x, y)

P(x)P(y)
. (4)

The TAN classifier, by removing any independence assumptions, behaves more ro-
bustly with regards to classification compared to the classical naive Bayes classifier, since
it combines the initial structure of the naive Bayes algorithm with prior knowledge (if
available) or obtained knowledge about the correlation of input attributes via a training ap-
proach. TAN substantially reduces the zero-one loss of naive Bayes on many data sets and
a range of experiments have shown that it outperforms the naive Bayes classifier [50,52].
TAN results are significantly improved compared to those produced by the classical naive
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Bayes classifier and Bayesian networks. The robustness and computational complexity are
also maintained, showing better accuracy.

Figure 1. Bayesian network structure.

Figure 2. Tree augmented naive Bayesian (TAN) structure.

3.4. The Homomorphic Primitive

Homomorphic encryption is widely used in the literature [45,47,53,54] for approaches
implementing cryptography-based techniques. The homomorphic primitive was first
used to build a privacy-preserving data mining model in a distributed environment by
Yang et al. [23].

This primitive allows the performance of calculations on encrypted data without
the need to decrypt these data. Equation (5) describes the operation where the result of
encrypting two messages is equal to the sum of the two messages separately encrypted.

E(M1⊗M2) = E(M1)⊗ E(M2). (5)

3.5. Paillier Cryptosystem

The additive homomorphic primitive is exploited by the Paillier algorithm [22].
Through this primitive, anonymity and unlinkability between parties and personal data
are achieved [40].

During the key generation phase of the Paillier cryptosystem, each participant (the
miner and all parties involved) generates a key pair 1024 bits in size on their own side.
The public key of each party is the product N of two random prime numbers (N = p ∗ q),
which are independent and have the same size, and a random number g, which belongs
to Z∗n2 . The private key is the result of variables lambda shown in Equation (6) and mu,
defined in Equation (7).

Lambda = lcm(p− 1, q− 1) = (p− 1) ∗ (q− 1)/gcd(p− 1, q− 1) (6)

mu = (L(glambda mod N2)−1 mod N), where L(u) = (u− 1)/N. (7)
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Paillier encryption is performed as shown in Equation (8). In the proposed protocol,
more specifically, if a participant j is interested in participating in forwarding the frequency
i to the miner, then the party needs to encrypt every message sent with the miner’s public
key. The cryptosystem is vulnerable to chosen-plaintext attacks. For confronting these
types of attacks, a random variable M is computed by the miner, and delivered to each
party encrypted with their own public key. The M variable is used for encrypting every
transmitted message.

The current approach requires the participation of at least three parties. When all three
parties have forwarded their data to the miner, the homomorphic primitive is applied. The
miner calculates the total frequencies of each possible attribute value in relation to each
class value by decrypting all the received messages simultaneously. The miner is not in a
position to associate the received frequencies with the original records and cannot link the
data to their owners due to the execution of the decryption process after the participation
of at minimum three parties. A decrypted message is presented in Equation (9).

E[mi,j] = gMi
xN( mod N2) (8)

T = a0M0 + a1M1 + ...... + al−1Ml−1( mod N). (9)

4. Protocol Description

Challenges arise during the execution of data mining processes when preserving
privacy, since the collected data being mined often contain sensitive information. Data
mining techniques used to derive statistics from distributed databases should ensure
that personal data will not be disclosed to unauthorized individuals. Our objective was
to develop a privacy-preserving protocol that satisfies the essential security and design
requirements, exploiting efficient encryption mechanisms. We use the tree augmented
naive Bayesian classification algorithm [51] to extract accurate and global information
while preserving privacy.

Encryption processes are applied to a client–server (party–miner) environment en-
suring that any message exchanged in a fully distributed environment is not accessible
by internal or external attackers, either by the parties involved or the miner. The miner
generates the classification model by collecting the frequencies of each attribute value
in relation to each class value from at least three horizontally or vertically partitioned
databases, which are owned by different parties. In vertically partitioned databases, we
assume that every participant is aware of the class value of each record. The proposed
protocol was developed for supporting both nominal attribute values (Algorithm 1) and
numeric attribute values, including binary data (Algorithm 2). Through the Paillier cryp-
tosystem, all frequencies forwarded are encrypted. The exploitation of the homomorphic
primitive ensures that sensitive data remain protected. Communication among parties
is prohibited and the only data flow occurs between each party and the miner, making
communication among parties infeasible.

As mentioned, the current work is an extension of previous research [19,20]. No-
tably, some of the features and requirements used arise from the quotations presented by
Mangos et al. [53].

4.1. Design and Security Requirements

Each developed protocol must implement appropriate measures and follow data pro-
tection principles to safeguard individual rights, as defined by the General Data Protection
Regulation (GDPR) [2]. Privacy and data protection must be considered at the design
phase and throughout the entire life cycle of any protocol and system, as defined by the
Privacy by Design approach. The development and implementation of the current protocol
is highly impacted by this approach, and all necessary measures were followed to preserve
privacy and the individuals’ identities.
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Algorithm 1 : Protocol for nominal attribute values.

1: for c1 . . . cm class value do
2: for a1 . . . ai attribute value do
3: for 1 . . . n party do
4: 1. Compute # instances fim with attribute value i and class value m
5: 2. Compute # instances f n

m with class value m
6: end for
7: Miner applies the homomorphic primitive:
8:

E( f 1
mi ⊗ f 2

mi ⊗ · · · ⊗ f n
mi) = E( f 1

mi)⊗ E( f 2
mi)⊗ · · · ⊗ E( f n

mi)

9:
E(c1

m ⊗ c2
m ⊗ · · · ⊗ cn

m) = E(c1
m)⊗ E(c2

m)⊗ · · · ⊗ E(cn
m)

10: end for
11: Miner computes:

Pim =
E( f 1

mi ⊗ f 2
mi ⊗ · · · ⊗ f n

mi)

E(c1
m ⊗ c2

m ⊗ · · · ⊗ cn
m)

12: end for

Algorithm 2 : Protocol for numeric attribute values.

1: for c1 . . . cm class value do
2: for 1 . . . n party do
3: 1. Compute # instances fm with class value cm
4: 2. Compute sum of instances sn

m with cm

5: end for
6: Miner computes using the homomorphic primitive:
7: Total sum sm :

E(s1
m ⊗ s2

m ⊗ · · · ⊗ sn
m) = E(s1

m)⊗ E(s2
m)⊗ · · · ⊗ E(sn

m)

8: Total # of instances Nm :

E( f 1
m ⊗ f 2

m ⊗ · · · ⊗ f n
m) = E( f 1

m)⊗ E( f 2
m)⊗ · · · ⊗ E( f n

m)

9: Mean:
µm =

sm

Nm

10: end for
11: for c1 . . . cm class value do
12: for 1 . . . n party do
13: for instance y do
14:

ui
mn = xi

mn − µm

15:
ui

mn = ∑
y
(u2

mn)

16: end for
17: end for
18: Miner compute variance:
19:

um = E(u1
m ⊗ u2

m ⊗ · · · ⊗ un
m) = E(u1

m)⊗ E(u2
m)⊗ · · · ⊗ E(un

m)

20:

σ2
m = um ∗

1
Nm − 1

.

21: end for
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The proposed protocol satisfies the following main requirements to ensure better
performance in scalable and distributed databases:

• Data mining processes extract statistical information.
• Database records are horizontally or vertically partitioned.
• Data can be either nominal or numeric.
• A large number of parties can be handled.
• Only authorized parties can send inputs to the miner.
• The communication among parties is infeasible.
• The miner must be connected with at least three parties before proceeding to the

mining process.
• The miner collects all the messages encrypted and performs the mining process.
• Individual records remain secret and only overall results are revealed.
• Any data given as input include the encrypted frequency of each attribute value in

relation to any class value and cannot be modified, reduced, or copied.
• A summary is concatenated to each transmitted message as a result of applying the

one-way hash function SHA-1.
• It is essential that computation and communication costs are low for each party and

the miner.

In a distributed environment, each party is considered either semi-honest or malicious.
Semi-honest participants follow the protocol specifications, but are curious to learn more
information. However, they do not deviate from the execution of the protocol. Conversely,
malicious participants are categorized into internal and external. Internal adversaries
deviate from the protocol, for example, by sending specific inputs, with the main purpose
of discovering other parties’ private data. External adversaries will try to impersonate a
legal participant and then behave as an internal adversary. In the current protocol, both
adversary types are considered.

All participants, the miner and each party, undertake the process of authentication, so
they can mutually recognize if they are connected to a secure and literal participant. Each
participant sends their digital signatures, assuming they were signed by a certification
authority (CA), to confront such behaviors. This operation ensures that only authorized
parties participate in the protocol and they are assured that a connection with the actual
miner was accomplished.

Privacy is preserved only if confidentiality, anonymity, and unlinkability are fulfilled.
All transmitted messages between each party and the miner are encrypted, and a message is
only decrypted by the party that was supposed to receive the message. The homomorphic
primitive ensures that the miner is unable to identify the inputs each party forwards,
accomplishing anonymity and unlinkability. Both the identity and the private data of
each party remain secret. In the proposed protocol, integrity mechanisms are exploited to
identify any modification carried out by active attackers, with the prime goal of diminishing
the accuracy of the final outcomes or discovering sensitive data. An SHA-1 digest is
concatenated to every transmitted message, prohibiting these behaviors and assuring any
altered message will be detected. Section 6 describes in depth the security and threat model
of the proposed protocol.

4.2. Protocol Analysis

The protocol presented in the current work follows the classical homomorphic election
model, in particular, an extension for supporting the multi-candidate election scheme,
where each party has k-out-of-1 selections [21]. The Paillier cryptosystem follows the
homomorphic model and preserves privacy while mining operations are applied in a fully
distributed environment. A data collector—in the current proposal, the miner—collects
and organizes all data forwarded by the participants of the protocol. The miner exploits
the homomorphic primitive when all encrypted data are collected, and applies the tree
augmented naive Bayesian classification model. Through the classifier, correlations among
the attributes are generated, resulting in the creation of a network structure that represents
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them. Each transmitted message during the execution of the protocol includes an SHA-
1 digest to confirm that any modification has not been performed. The miner delivers
the final results to each party who contributed to the creation of the mining model. The
frequency of each attribute value in relation to each class value, for both horizontally and
vertically partitioned databases, constitutes the final results, and we assume that every
party is aware of the class value for vertically partitioned database records.

The protocol is divided into six main phases and applied for both horizontally and
vertically partitioned databases. The protocol notations are given in Table 2.

Table 2. Protocol notations.

Spu Miner’s public key for encryption/decryption
Spr Miner’s private key for encryption/decryption
Cpu Party’s public key for encryption/decryption
Cpr Party’s private key for encryption/decryption

SDpr Miner’s private key for digital signature
SDpu Miner’s public key for digital signature
CDpr Party’s private key for digital signature
CDpu Party’s public key for digital signature
H(m) SHA-1 hash of message m

Enc(m)k Encryption of message m with key k
Decr(m)k Decryption of message m with key k

Ai Database attribute
M Random variable

Phase 1: Key generation.

The miner generates the encryption key pair (Spu and Spr) through the Paillier’s
cryptosystem key generation phase. The miner produces a 1024 bit digital signature key
pair (SDpu and SDpr) with the Rivest–Shamir–Adleman (RSA) cryptosystem using the MD5
hash function. We assume that each party is able to obtain the public keys. The same
procedures are followed by each party who also create the encryption key pair Cpu/Cpr
and an RSA key pair CDpu/CDpr) (Figure 3). We again assume that the miner is as well
able to obtain the public keys of all parties. In the key establishment phase, the miner also
generates and forwards a random value M.

Phase 2: Mutual authentication.

The miner and each party that participates in the protocol are mutually authenticated
by exploiting the digital signature scheme (RSA), as each participant possesses a private
and public key pair. This key pair is generated and used only in this phase of the protocol
assuming it was signed by a CA. We assume that all parties are able to obtain the public
keys of the other participants.

If a party requests to connect with the miner, during the authentication phase, they
forward the public key Cpu and the digital signature, encrypting the Cpu key with the
miner’s CDpr private key. The miner proceeds to the decryption of the digital signature
with the public key CDpu of the party and generates a digest of the Cpu message. If the
miner is able to verify that the party is able to participate in the protocol, responds by
sending his public key Spu and digital signature encrypted with the SDpr private key. The
party continues with the same procedure by decrypting the miner’s digital signature with
public key SDpu and creates a digest of the Spu message (Figure 3). After these steps are
completed, the party is assured that a verified connection with the actual miner is achieved,
and both the miner and each party have access to and participate in the protocol, excluding
any unauthorized participants. After exchanging all keys, every transmitted message is
encrypted. The next step is to send the random variable M, which is used by the Paillier
cryptosystem, to confront any chosen-plaintext attacks. This variable is sent encrypted
with each party’s public key Cpu.
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Figure 3. Key generation and mutual authentication phases.

Phase 3: Data collection.

After all the above procedures are performed, the miner is ready to accept the partic-
ipant’s personal data. A party can participate in the exportation of statistics, providing
their own sensitive data. However, the data contained in the database cannot be disclosed
in the notion of verbatim records, neither to the miner nor to other participants nor to
any attacker not involved in the protocol. Every record is examined for the presence of
missing values.

The collection of data begins from the miner. If a party consents to the creation of
the classification model, they initially send every possible value of the class and every
possible attribute value. All messages sent are encrypted with the miner’s public key Spu.
For horizontally partitioned databases, each party sends all possible attribute values. For
vertically partitioned databases, each party sends only the values of the attributes that
possess the required attribute; if the party does not possess the requested attribute, Ai
returns zero. The miner is not aware of the possession of individual values at the end of
this step.

The miner requests the frequencies for attribute Ai for each connected party
(Figure 4). Using the miner’s public key Spu, each party forwards the frequency of each
value for Ai attribute in relation to every class value, encrypted. The only sensitive data
sent by all parties are these frequencies, and they are encrypted. Because the homomor-
phic primitive is applied, the miner remains unaware of the specific frequencies. These
procedures are necessary for the miner to initialize the classifier.

Figure 4. Data collection phase.

Phase 4: Classifier initialization.

If the Miner has collected the encrypted frequencies related to attribute Ai from all
three parties, applies the homomorphic primitive. All encrypted frequencies are decrypted
simultaneously, and the miner obtains the overall distributions of each Ai attribute value
in relation to each class C value. The process continues with the miner requesting the
frequencies for the next Ai+1 attribute. The process is completed after the collection of all
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frequencies for all attributes An. For horizontally partitioned databases, n represents the
total number of attributes. For vertically partitioned databases, n refers to the sum of each
party’s number of attributes. The classifier initialization is successful when at least three
parties cooperate in the implementation of the protocol (Figure 5).

Figure 5. Classifier initialization phase.

Phase 5: TAN classifier creation.

The miner can proceed to the creation of the TAN classifier after the classifier initial-
ization phase is complete, meaning all frequencies are collected and decrypted for each
attribute, from at least three participants. As described in Section 3.3, the miner now is in
the position to create the tree augmented naive Bayes model (Figure 6).

Phase 6: Final results.

When all the above-mentioned phases are complete, the final results of the mining
process are delivered by the miner. The miner sends the results to each party involved in
the creation of the data mining model, encrypted with their own public key Cpu (Figure 6).

After the creation of the mining model and the shipment of the final results, every
participant can request that the miner respond with the class value and the corresponding
possibility that accrues from a set of possible attribute values, classifying new instances.
This process was used to evaluate the performance of the classifier, and the results are
presented in the next section.

Figure 6. TAN classifier creation and final results phases.

5. Evaluation

In this section, we evaluate the proposed protocol in terms of security and computa-
tional cost. Primarily, the mean Paillier key pair generation time was estimated for both the
miner and the party, and compared with El-Gamal key generation. We compared the mean
time needed to create the digital signatures in two different systems. The main procedures
of the protocol were examined to demonstrate that they have a fast computation time
while preserving privacy. Three different scenarios were established for this purpose. The
cryptosystem performance was evaluated on encryption and decryption run times. The
TAN classifier was evaluated using recall and precision variables as metrics. Expanding
upon previous research, we evaluated the classifier using the F1 score.
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All experimental results were calculated and are presented in milliseconds (ms). Most
experiments were conducted on a modest PC with Intel i5 2.4 GHz with 4 GB of RAM.
To extend some experiments, we performed them using a more advanced computer. The
purpose of the second system was to evaluate if a more advanced system can decrease
the computational cost of specific phases of the proposed protocol, like the key generation
phase. The new PC was equipped with Intel Core i7, 2.9 GHz, and 16 GB of RAM, and each
phase in which this computer was used is denoted as i7 in contrast to the computer with
the i5 processor. For this study, only the key establishment experiments were conducted in
both systems. The proposed protocol was implemented in Java programming language,
and both the miner and all three participant interfaces were running on the same system.

The experiments showed that the performance of the protocol is mainly shaped by
the data collection phase, which is proportional to the number of attributes included in the
databases. We conclude that the partition of databases affects the collection of data phase
mainly when the amount of instances increases.

5.1. Key Establishment

The key establishment was evaluated on both systems described above. Measurements
were collected from 50 runs performed for one participant and the miner to calculate the
performance of the key generation, authentication, and login operations. The encryption
key pair generation and the RSA digital signature creation were included in the key
generation phase. We assumed that each participant knew the miner’s SDpu key and the
miner was aware of all public keys CDpu of the parties involved in the mining process.

From the experiments conducted on the i5 computer system, we found that a party
requires 479 ms to create the encryption key pair and 122 ms to generate the digital signa-
ture. The miner performs the encryption key pair generation in 433 ms and requires 108 ms
to create the digital signature. The random variable M used by the Paillier cryptosystem
was produced in 43 ms. When the experiments were conducted on the i7 computer system,
the mean times significantly improved, as shown in Figure 7. The Paillier encryption
key generation mean time was almost four times faster when the measurements were
performed in the i7 system. The El-Gamal key generation was implemented to compare
this phase using the two cryptosystems. The Paillier and El-Gamal key generation ex-
periments were performed on the i7 system and we found that the key generation of the
El-Gamal cryptosystem was remarkably slower compared to the Paillier cryptosystem.
The generation of RSA digital signatures was also compared between the two computer
systems, as presented in Figure 7. The digital signatures generation was significantly faster
when the computer system was more advanced (i7). As shown by the results, the Paillier
asymmetric encryption algorithm is efficient in terms of key establishment.

0 50 100 150 200 250 300 350 400 450 500
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Figure 7. Comparison of key establishment procedures.
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The time needed by the miner and each party to be mutually authenticated is repre-
sented by the authentication time. In this phase, each participant sends the public keys
and digital signatures created in the key establishment phase. The measurements from
the conducted experiments showed that the mutual authentication is achieved in 24 ms.
In the login phase, the party sends the miner’s password encrypted with the Spu key and
the miner, in return, responds with the correctness of the password received by sending
the encrypted random variable M. The mean login time (262 ms) is longer than the mean
authentication time as all the messages transmitted are encrypted, meaning decryption
and encryption operations are required.

5.2. Experiments

The performance of the proposed protocol was measured by separately examining
its main procedures: (1) the collection of data from the miner (DC), (2) the initialization
of the classifier (CI), (3) the creation of the TAN classifier (TAN CC), and (4) the delivery
of the final results (FR) to each party. Table 3 presents the three customized scenarios
used for conducting the experiments based on the database partition. For each scenario,
three parties were connected to the miner and participated in the protocol with either
horizontally or vertically partitioned databases. These scenarios were evaluated and
compared to determine the performance of the protocol when different amounts of records
and attributes are involved in the creation of the mining model.

Table 3. Experiment scenarios.

(a) Horizontally Partitioned (b) Vertically Partitioned

Records Attributes Records Attributes

Scenario 1 50 5 Scenario 1 50 3
Scenario 1 100 5 Scenario 2 100 3
Scenario 3 100 10 Scenario 3 100 6

The experiments were performed using real datasets provided by the UC Irvine
Machine Learning Repository [55]. The data were tailored for each scenario, and the
training set size was set to 1000, 2000, and 5000 records. A simplified structure of this
dataset is displayed in Figure 8. Table 4 provides the mean time to complete each phase of
the proposed protocol.

The customized scenarios were selected to compare the performance of the protocol
depending on the number of attributes and records. From the results, we found that the
overall time to complete the main procedures of the protocol is mainly determined by the
data collection phase, which mostly increases with increasing number of attributes. Com-
paring both database cases, we found that the partition affects mainly the data collection
phase by doubling the mean time, mostly as the number of instances is increased.

The distributed environment with three parties connected to the miner was selected
because we wanted the first evaluation of the protocol to be less ambiguous. If more than
three parties are connected with the miner and send their data, the data collection phase is
expected to be affected as well. In the future, conducting experiments with more parties
involved can prove the scalability and efficiency of the proposed protocol.
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Figure 8. Simplified TAN structure of the Adult dataset.

Table 4. Main procedures comparison for each scenario.

Procedure 1st horz. 1st vert. 2nd horz. 2nd vert. 3rd horz. 3rd vert.

DC • 31,777 58,939 35,502 59,764 94,793 89,073
CI ? 13 57 16 56 30 64

TAN CC � 39 52 117 118 68 110
FR † 2407 3411 3744 3592 4455 6076

• Data collection. ? Classifier initialization. � TAN classifier creation. † Final results.

5.2.1. Experiments: Horizontally Partitioned Databases

The scenarios used to evaluate the protocol for horizontally partitioned databases are
presented in Table 3a. For the first scenario, each database consisted of 50 records and
5 attributes; in the second scenario, it consisted of 100 records and 5 attributes; and in the
third scenario, 100 records and 10 attributes. The results showed that the initialization
of the classifier has a low mean time, but it is affected when the number of attributes is
increased. Conversely, the initialization time is slightly longer as the amount of database
instances increases. Similar conclusions were drawn during the data collection phase.
However, the data collection process has a long execution time, as each party has to send
all their data/frequencies to the miner. The data collection time increases reasonably when
the number of instances is higher, but when the database consists of a larger number of
attributes, the miner requires more time to collect all the frequencies. The mean time to
create the TAN model increases when the quantity of instances increases, unlike the increase
in the mean time when the attributes are doubled. Increases in the number of attributes do
not influence the mean time. When both the quantity of instances and attributes increase,
the mean time to forward the final results to each party also increases.

5.2.2. Experiments: Vertically Partitioned Databases

The scenarios used to evaluate the protocol for vertically partitioned databases are
presented in Table 3b. In each customized scenario, we assumed that all parties involved
know the class C value. For the first scenario, each database included 50 records and
3 different attributes (plus the class attribute); in the second scenario, the number of records
was doubled and the number of attributes remained the same; while in the third scenario,
100 records and 5 different attributes were included in each database. The results showed
that all the procedures of the protocol require slightly more time to be completed compared
to the corresponding scenario for horizontally partitioned databases. The collection of data
requires almost twice the time due to the data partition. Like with horizontally partitioned
databases, the creation of the TAN classifier and the data collection phases require more
time when the amount of instances increases. When the attributes increase, the data collec-
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tion time lengthens, but less time is required in comparison to the horizontally partitioned
databases. The results showed that the classifier requires more time to be initialized in
relation to horizontally partitioned databases. If the number of attributes increases, the
TAN classifier behaves similarly for both horizontally and vertically partitioned databases.
The delivery of the final results is slower for double the number of attributes for vertically
partitioned databases.

5.3. Cryptosystem Performance

The mean encryption and decryption time were calculated to measure the performance
of the Paillier cryptosystem. During the execution of the protocol, different messages were
transmitted, each one with a different number of characters. From all the above executed
scenarios, we measured all the encryption and decryption mean times. The results showed
that a message can be encrypted in 51.5 ms on average. The average time needed to decrypt
a message was similar, and the measurements revealed that a message can be decrypted in
67 ms. The decryption time slightly increased most probably because of the application of
the homomorphic primitive. We conclude that the Paillier cryptosystem is efficient as the
mean times are low. In the future, a comparison of the Paillier and El-Gamal cryptosystem
would determine the most appropriate algorithm in terms of computational cost.

5.4. Classifier Evaluation

To examine the mining model created by the miner, we calculated the recall, precision,
and F1 scores. The percentage of records categorized with the correct class in relation to the
number of all records with this class is the recall. The percentage of records that truly have
a certain class over all the records that were categorized with this class is the precision. The
F1 score is computed using Equation (10). If the F1 score is equal to 1, the precision and
recall results are perfect. The lowest possible F1 score is 0 if either the precision or recall
is 0.

F1 = 2× precision× recall
precision + recall

. (10)

Three customized datasets with different amounts of instances were used as training
sets (1000, 2000, and 5000 records). The databases were obtained from a real dataset [55]
and contained 14 attributes. A test set of 100 records (10% of the training records) was
used, which was not used in the training phase. The aim of the classifier evaluation is to
determine which mining model correctly classified the test set. The evaluation results of
the TAN classifier are presented in Table 5. The naive Bayes classifier evaluation results are
presented in Table 6.

Comparing the two classifiers, we found that TAN correctly classified more instances
compared to the naive Bayes classifier. Analyzing all three measurements mentioned above,
we found that the TAN classifier is a more accurate and appropriate method compared to
traditional naive Bayes.

Table 5. TAN classifier evaluation results.

Records 1000 2000 5000
Correct 54 55 56

Incorrect 46 45 44

Class value ≤50 >50 ≤50 >50 ≤50 >50

Recall 0.42 0.63 0.52 0.6 0.54 0.6
Precision 0.48 0.57 0.73 0.38 0.73 0.39

F1 0.448 0.5985 0.6074 0.4653 0.6208 0.4727
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Table 6. Naive Bayes classifier evaluation results.

Records 1000 2000 5000
Correct 49 49 50

Incorrect 51 51 50

Class value ≤50 >50 ≤50 >50 ≤50 >50

Recall 0.42 0.54 0.48 0.52 0.50 0.8
Precision 0.43 0.53 0.77 0.23 0.47 0.2

F1 0.42495 0.5350 0.59136 0.3189 0.4845 0.32

6. Threat and Security Analysis

Many serious attacks need to be considered when a protocol is being developed.
Distributed environments have to prevent every possible threat on systems designed
with privacy preservation as their main concern. A threat is a potential violation of
security that exists when an action could breach security and cause harm. A threat can be
either intentional (an individual attacker) or accidental (a computer malfunction). Some
types of security threats are related to unauthorized access. Services or data becoming
unavailable can be considered another security threat. The modification of transmitted
data is considered a major threat to the security of a system, as well as the generation of
fabricated data [56]. This section presents and discusses the possible threats that can be
confronted by the proposed protocol. Table 7 summarizes these attacks and how they are
approached and solved using appropriate mechanisms by the presented system.

Table 7. Possible security threats and their management.

Attacks Security Mechanism

Eavesdropping Asymmetric cryptography (Paillier)
Collusion Lack of communication among parties
Probing Three parties, cannot send blank input

Man-in-the-middle Digital signatures
Message modification SHA-1
Denial of service (DoS) Data send once

Chosen-plaintext Random variable M

Security in distributed environments is an important concern that needs to be analyzed
to discover possible vulnerabilities or threats and avoid information loss. A distributed
system must follow some requirements for security enforcement: (1) The sender of a
message should be able to know that the message was received by the intended receiver;
(2) The receiver of a message should be able to know that the message was sent by the
original sender; (3) Both sides should be guaranteed that the contents of the message
were not modified while transferring data [56]. There are some broad areas of security
in distributed systems: authentication, access control, data confidentiality, data integrity,
encryption, digital signature, and nonrepudiation. Authentication is a fundamental concern
when developing distributed systems. All entities in a secure system should follow an
authentication process assuring the communication is authentic. The authentication service
assures the participants that the message received is actually from the stated source. This
process occurs the first time a connection is initialized, and assures that all entities involved
are authentic. It must also ensure that there is no interference by unauthorized third parties.
Access control is the ability to control the access to systems and prevent the unauthorized
use of a service. This is achieved by identifying or authenticating each participant that tries
to gain access, so that specific access rights are provided to each party. Confidentiality is
the protection of data being transmitted from attackers and unauthorized disclosure. There
are several levels of protection, both regarding the data content being sent and the data
flow. This requires the attacker to not be able to observe the source and destination or other
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characteristics of the traffic flow. As with confidentiality, data integrity mechanisms can
be applied to part of a message or the whole message. The most useful approach is full-
message protection, ensuring messages received are not modified. Encryption mechanisms
transform data into a form that is not readable without the use of intelligent systems.
The transformation and recovery of data depend on the combination of algorithms and
encryption keys. Digital signatures allow the recipient of a message to prove the source
and integrity of the message and protect against forgery. The digital signature can be
signed to produce digital certificates that establish trust among users and organizations.
Nonrepudiation prevents users from denying they received or send a transmitted message.
In these cases, the messages are registered by a notary so that none of the participants can
back out of a transaction and disputes can be resolved by presenting relevant signatures
or encrypted text [57]. In the present work, we did not consider nonrepudiation, as these
cases fall beyond the scope of the presented protocol.

All parties involved in a distributed environment are considered to be mutually
mistrustful and, in some cases, curious to learn information about other participants’ data.
Every participant is considered either semi-honest or malicious. Semi-honest adversaries
follow the protocol specifications; they do not collude but are curious to discover other
party’s data during the execution of the protocol. Malicious adversaries can be internal
or external. Internals deviate from the protocol and send specific inputs to infer other
participants’ private data. An external adversary tries to impersonate a legal participant
and behave as an internal. The miner could be considered an internal adversary. To
address such behaviors in our proposal, external adversaries were excluded as they cannot
participate, since all parties have to send their digital signatures. We assumed the digital
signatures are signed by a certification authority. The mutual authentication provided by
the proposed protocol excludes any unauthorized users. Participants with no permission to
connect with the miner are not able to participate in the protocol. This means that the Miner
cannot be an internal adversary, as all participants are aware if a connection is established
with the actual miner. Participants who also behave as internal adversaries are restricted to
sending blank inputs or missing values to the system. The only information revealed are
the final outcomes; further information is impossible to obtain. By exploiting the digital
signatures, man-in-the-middle attacks are not possible.

Several studies have examined the re-identification attack on privacy-preserving data
mining algorithms. Many hospitals, for example, are willing to publish their data for
research on the condition that any identifier that allows information pertaining to specific
patients is removed, either for administrative or commercial reasons. This action, however,
may not be enough, as re-identification attacks can lead to different public databases, thus
revealing the real names of the referring patients [11]. To reduce re-identification risk, in
the proposed method, we consider the privacy of the individuals: the data are anonymized
and the final results are published to each participant to prevent any possibility of private
and identification data being revealed.

Some security attacks depend on the presence of one or more miners in a distributed
environment or personal data being transmitted among two or many parties. In distributed
environments with only one miner, the final results can be discovered by the data collector,
but if more miners are involved, the protocol is vulnerable to collusion attacks. If parties
directly exchange data with each other, in the two-party model, each party can easily
determine the other party’s private data. In a model where multiple parties are connected
without a miner as the data collector, malicious parties can modify the input data, which can
be disastrous if n− 1 users collaborate. In the proposed protocol, to prevent these behaviors,
data are exchanged only between the miner and each party, ensuring there is no collusion
among the participants. At least three parties must be involved, preventing any probing
attack. This approach establishes a secure protocol and semi-honest adversaries are faced
as the only information revealed and sent by the miner is the final outcomes. We did not
consider the collaboration of the parties outside of the protocol. Participants in a protocol
have a mutual interest to follow the protocol’s principles in real-world applications.
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If the requirements of confidentiality, anonymity, and unlinkability are fulfilled, pri-
vacy can be preserved. The Paillier cryptosystem ensures that sensitive data remain secret.
The asymmetric encryption establishes an environment in which all parties receive the
messages that were intended only for them, and they are the only ones that can decrypt
these messages. Eavesdropping attacks or data leaking are successfully managed by the
proposed protocol. In addition, the Paillier cryptosystem exploits the homomorphic prim-
itive for both nominal and numeric attribute values, which guarantees that the original
data will not be revealed to any attacker, the participants, or the miner. This primitive
achieves anonymity and unlinkability, two aspects that the proposed system is committed
to providing. The Paillier cryptosystem is vulnerable to chosen-plaintext attacks. This type
of attack is overcome by the current protocol using a random variable (M).

If active attackers try to modify any message exchanged during the execution of the
protocol and alter the final results or disclose sensitive data, they are stopped using integrity
mechanisms (SHA-1). The participants in the proposed protocol are unable to resend their
data and the protocol can be executed only once per computer system, preventing denial of
service attacks. Blank or missing inputs are also excluded. Table 8 summarizes the security
requirements and the technique is used in the current protocol.

Table 8. Security requirements.

Requirement Technique

Mutual authentication Digital signatures, password
Confidentiality Paillier cryptosystem

Anonymity Homomorphic primitive
Unlinkability Homomorphic primitive

Integrity SHA-1 hash function

7. Future Work

The current work could be expanded in the future by comparing the proposed method
with ensemble methods such as random forest or gradient boosting machines. This compar-
ison could lead to the discovery of the most efficient and accurate algorithm. An extended
comparison with El-Gamal’s elliptic curve cryptosystem could be conducted in future
research to achieve a balance between security and efficiency. The comparison of the
computation cost of the main phases of the proposed protocol when either the Paillier
or El-Gamal cryptosystem is applied could be examined in the future. The evaluation
could be broadened by comparing the proposed method with previous schemes in the
literature. Another interesting avenue for future research is the evaluation of the main
procedures of the proposed protocol when more than three parties are connected to the
miner. Conducting such experiments could prove the scalability and efficiency of the
proposed protocol and how the number of participants affects the performance of the
protocol. Finally, in the future, larger datasets and training sets from different real data
sources could be exploited to evaluate the overall performance of the presented protocol.

8. Conclusions

Voluminous data stored in distributed databases are exchanged daily. Global infor-
mation can be acquired and important patterns can be detected by applying data mining
techniques on statistical databases. Such databases often contain private data, and their
disclosure when mining operations are applied could compromise the privacy and the
fundamental rights of individuals. In this study, we focused on solving this problem.
We presented a properly designed privacy-preserving data mining technique developed
for a distributed environment. Participating databases can be horizontally or vertically
partitioned, supporting both nominal and numeric attribute values. A data collector, the
miner, groups the data received by at least three parties and performs all the operations
to generate the mining model. Communication among parties is infeasible and the only
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workflow is between the trusted data collector (miner) and each participant in the protocol.
All messages exchanged during the execution of the proposed protocol are encrypted using
the Paillier cryptosystem. The homomorphic primitive ensures that the miner decrypts
the messages received all at once, preserving the privacy of data. Cryptography-based
techniques, as shown by previous research , are the most appropriate approaches in terms
of accuracy, as the original data are not modified or transformed; therefore, the quality
of the final results remains high. All transmitted messages are examined for any type of
modification, as each message is concatenated with its summary produced by the one-way
hash function SHA-1.

The experimental results showed that the proposed protocol is effective and efficient
for both database partitions. The performance of the protocol is mainly affected by the
increase in database attributes. Yet, given the size of the real dataset, this is considered
acceptable.

The contribution of the proposed protocol is significant as, to the best of our knowl-
edge, none of the previously proposed techniques was designed and implemented for both
horizontally and vertically partitioned databases while simultaneously providing accurate
results and preserving privacy.
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