
computation

Article

A Language for Modeling and Optimizing Experimental
Biological Protocols

Luca Cardelli *, Marta Kwiatkowska and Luca Laurenti †

����������
�������

Citation: Cardelli, L.; Kwiatkowska,

M.; Laurenti, L. A Language for

Modeling and Optimizing

Experimental Biological Protocols.

Computation 2021, 9, 107. https://

doi.org/10.3390/computation9100107

Academic Editor: Jérôme Feret and

Cédric Lhoussaine

Received: 26 August 2021

Accepted: 12 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK;
Marta.Kwiatkowska@cs.ox.ac.uk (M.K.); L.Laurenti@tudelft.nl (L.L.)
* Correspondence: luca.a.cardelli@gmail.com
† Current address: Delft Center for Systems and Control (DCSC), TU Delft, 2628 CN Delft, Netherlands.

Abstract: Automation is becoming ubiquitous in all laboratory activities, moving towards precisely
defined and codified laboratory protocols. However, the integration between laboratory protocols
and mathematical models is still lacking. Models describe physical processes, while protocols define
the steps carried out during an experiment: neither cover the domain of the other, although they both
attempt to characterize the same phenomena. We should ideally start from an integrated description
of both the model and the steps carried out to test it, to concurrently analyze uncertainties in model
parameters, equipment tolerances, and data collection. To this end, we present a language to model
and optimize experimental biochemical protocols that facilitates such an integrated description,
and that can be combined with experimental data. We provide probabilistic semantics for our
language in terms of Gaussian processes (GPs) based on the linear noise approximation (LNA) that
formally characterizes the uncertainties in the data collection, the underlying model, and the protocol
operations. In a set of case studies, we illustrate how the resulting framework allows for automated
analysis and optimization of experimental protocols, including Gibson assembly protocols.

Keywords: chemical reaction networks; Gaussian processes; biological protocols

1. Introduction

Automation is becoming ubiquitous in all laboratory activities: protocols are run under
reproducible and auditable software control, data are collected by high-throughput ma-
chinery, experiments are automatically analyzed, and further experiments are selected
to maximize knowledge acquisition. However, while progress is being made towards
the routine integration of sophisticated end-to-end laboratory workflows and towards
the remote access to laboratory facilities and procedures [1–5], the integration between
laboratory protocols and mathematical models is still lacking. Models describe physical
processes, either mechanistically or by inference from data, while protocols define the steps
carried out during an experiment in order to obtain experimental data. Neither models
nor protocols cover the domain of the other, although they both attempt to characterize the
same phenomena. As a consequence, it is often hard to attribute causes of experimental
failures: whether an experiment failed because of a misconception in the model, or be-
cause of a misstep in the protocol. To confront this problem, we need an approach that
integrates and accounts for all the components, theoretical and practical, of a laboratory
experiment. We should ideally start from an integrated description from which we can
extract both the model of a phenomenon, for possibly automated mathematical analysis,
and the steps carried out to test it, for automated execution by lab equipment. This is
essential to enable automated model synthesis and falsification by concurrently taking into
account uncertainties in model parameters, equipment tolerances, and data collection.

We present a language to model and optimize experimental biochemical protocols that
provides such an integrated description of the protocol and of the underlying molecular

Computation 2021, 9, 107. https://doi.org/10.3390/computation9100107 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://doi.org/10.3390/computation9100107
https://doi.org/10.3390/computation9100107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9100107
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation9100107?type=check_update&version=1

Computation 2021, 9, 107 2 of 20

process, and that can be combined with experimental data. From this integrated representa-
tion, both the model of a phenomenon and the steps carried out to test it can be separately
extracted. Our approach is illustrated in Figure 1.

Figure 1. Processing a unified description for an experimental protocol. A program integrates a
biophysical model of the underlying molecular system with the steps of the protocol. In this case,
the protocol comprises a single instruction, which lets a sample equilibrate for t seconds, where
t is a parameter. The initial concentration of the sample is 1 for the first species and 0 for all the
others. The value of t is selected as the one the maximizes a cost function, in this case the difference
between y5 and y1 after the execution of the protocol. The optimization is performed on a Gaussian
process given by the semantics of the program (biophysical model and protocol) integrated with
experimental data.

We provide probabilistic semantics for our language in terms of a Gaussian process
(GP) [6], which can be used to characterize uncertainties. Such a semantics arises from
a linear noise approximation (LNA) [7,8] of the dynamics of the underlying biochemical
system and of the protocol operations, and it corresponds to a Gaussian noise assumption.
We show that in a Bayesian framework, the resulting semantics can be combined in a
principled way with experimental data to build a posterior process that integrates our prior
knowledge with new data. We demonstrate that the Gaussian nature of the resulting pro-
cess allows one to efficiently and automatically optimize the parameters of an experimental
protocol in order to maximize the performances of the experiment. On a series of case stud-
ies, including a Gibson Assembly protocol [9] and a Split and MIx protocol, we highlight
the usefulness of our approach and how it can have an impact on scientific discovery.

Related work and novelty.

Several factors contribute to the growing need for a formalization of experimental protocols
in biology. First, better record keeping of experimental operations is recognized as a step
towards tackling the ‘reproducibility crisis’ in biology [10]. Second, the emergence of ‘cloud
labs’ creates a need for precise, machine-readable descriptions of the experimental steps
to be executed. To address these needs, frameworks allowing protocols to be recorded,
shared, and reproduced locally or in a remote lab have been proposed. These frameworks
introduce different programming languages for experimental protocols, including Bio-
Script [11,12], BioCoder [2], Autoprotocol [13], and Antha [14]. These languages provide

Computation 2021, 9, 107 3 of 20

expressive, high-level protocol descriptions but consider each experimental sample as a
labeled ‘black-box’. This makes challenging the study a protocol together with the bio-
chemical systems it manipulates in a common framework. In contrast, we consider a
simpler set of protocol operations, but we capture the details of experimental samples,
enabling us to track properties of chemical solutions (concentrations and temperatures) as
the chemicals that react during the execution of a protocol. This allows us to formalize and
verify requirements for the correct execution of a protocol and to optimize various protocol
or system parameters to satisfy these specifications.

Our language derives from our previous conference paper [5] by introducing stochas-
ticity in chemical evolution, and by providing a Gaussian semantics, particularly for
protocol operations, for the effective analysis of the combined evolution of stochastic chemi-
cal kinetics and protocols and experimental data. The language semantics has been already
implemented (but not previously formally presented) in a chemical/protocol simulator [15].
We expect that this style of semantics could be adapted to other protocol languages, along
the principles we illustrate, to provide a foundation for the analysis of complex stochastic
protocols in other settings.

Paper outline.

In what follows, we first introduce the syntax and semantics of our language. We then show
how we can perform optimization of the resulting Gaussian process integrated with data.
Finally, we illustrate the usefulness of our approach on several case studies, highlighting
the potential impact of our work on scientific discovery.

2. Materials and Methods

In this section, we introduce the syntax of the language we propose for modeling
experimental protocols. A formal semantics of the language, based on denotational se-
mantics [16], is then discussed. The physical process underlying a biological experimental
protocol is modeled as a chemical reaction system (CRS). As a consequence, before in-
troducing the language for experimental protocols, we first formally introduce chemical
reaction networks (CRNs) and chemical reaction systems (CRSs).

2.1. Chemical Reaction Network (CRN)

Chemical reaction networks (CRNs) is a standard language for modeling biomolecular
interactions [17].

Definition 1. (CRN) A chemical reaction network C = (A,R) ∈ CRN = Λ× T is a pair of
a finite setA ⊆ Λ of chemical species, of size |A|, and a finite setR ⊆ T of chemical reactions.
A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ), where rτ ∈ N|Λ| is the source complex, pτ ∈ N|Λ|
is the product complex and kτ ∈ R>0 is the coefficient associated with the rate of the reaction. The
quantities rτ and pτ are the stoichiometry of reactants and products. The stoichiometric vector
associated to τ is defined by υτ = pτ − rτ . Given a reaction τi = ([1, 0, 1], [0, 2, 0], ki) we refer to
it visually as τi : λ1 + λ3 →ki 2λ2.

Definition 2. (CRN State) Let C = (A,R) ∈ CRN. A state of C, of the form (µ, Σ, V, T)
∈ S = (R|A|≥0 ×R|A|×|A| ×R≥0 ×R≥0), consists of a concentration vector µ (moles per liter),
a covariance matrix Σ, a volume (liters), and a temperature (degrees Celsius). A CRN together
with a (possibly initial) state is called a Chemical Reaction System (CRS) having the form
(A,R), (µ, Σ, V, T).

A Gaussian process is a collection of random variables, such that every finite linear
combination of them is normally distributed. Given a state of a CRN, its time evolution
from that state can be described by a Gaussian process indexed by time whose mean and
variance are given by a linear noise approximation (LNA) of the Chemical Master Equation

Computation 2021, 9, 107 4 of 20

(CME) [7,18] and is formally defined in the following definitions of CRN Flux and CRN
Time Evolution.

Definition 3. (CRN Flux) Let (A,R) be a CRN. Let F(V, T) ∈ R|A|≥0 → R|A| be the flux of

the CRN at volume V ∈ R≥0 and temperature T ∈ R≥0. For a concentration vector µ ∈ R|A|≥0
we assume F(V, T)(µ) = ∑τ∈R υτατ(V, T, µ), with stoichiometric vector υτ and rate function
ατ . We call JF the Jacobian of F(V, T), and J>F its transpose. Further, define W(V, T)(µ) =

∑τ∈R υτυ>τ ατ(V, T, µ) to be the diffusion term.

We should remark that, if one assumes mass action kinetics, then for a reaction τ it
holds that ατ(V, T, µ) = k′τ(kτ , V, T)µrτ where µs = ∏

|Λ|
i=1 µ

si
i is the product of the reagent

concentrations, and k′τ encodes any dependency of the reaction rate kτ on volume and

temperature. Then, the Jacobian evaluated at µ is given by JFik (µ) = ∂F(V,T)(x)i
∂xk

∣∣∣∣
x=µ

=

∑τ∈R υτi rτk
ατ(V,T,µ)

µk
for i, k ∈ |A| [8].

In the following, we use µ, Σ for concentration mean vectors and covariance matrices,
respectively, and µ, Σ (boldface) for the corresponding functions of time providing the
evolution of means and covariances.

Definition 4. (CRN Time Evolution) Given a CRS (A,R), (µ, Σ, V, T), its evolution at time
t < H (where H ∈ R≥0 ∪ {∞} is a time horizon) is the state (µµ(t), Σµ,Σ(t), V, T) obtained by
integrating its flux up to time t, where:

µµ(t) = µ +
∫ t

0
F(V, T)(µµ(s))ds (1)

Σµ,Σ(t) = Σ +
∫ t

0
JF(µµ(s))Σµ,Σ(s) + Σµ,Σ(s)J>F (µµ(s)) + W(V, T)(µµ(s))ds, (2)

with µµ(0) = µ and Σµ,Σ(0) = Σ. If, for such an H, µ or Σ are not unique, then we say that the
evolution is ill-posed. Otherwise, µµ(t) and Σµ,Σ(t) define a Gaussian process with that mean and
covariance matrix for t < H.

An ill-posed problem may result from technically expressible but anomalous CRS
kinetics that does not reflect physical phenomena, such as deterministic trajectories that
are not uniquely determined by initial conditions, or trajectories that reach infinite concen-
trations in finite time.

Example 1. Consider the CRN C = ({a, b, c},R), whereR = {([1, 1, 0], [0, 2, 0], 0.2), ([0, 1, 1],
[0, 0, 2], 0.2)}. Equivalently,R can be expressed as

a + b→0.2 b + b b + c→0.2 c + c.

Then, we have

F(a, b, c) = 0.2

 −a · b
a · b− b · c

b · c

W(a, b, c) = 0.2

 a · b −a · b 0
−a · b a · b + b · c −b · c

0 −b · c b · c

JF(a, b, c) = 0.2

−b −a 0
b a− c −b
0 c b

Computation 2021, 9, 107 5 of 20

Consider an initial condition of µa = 0.1, µb = µc = 0.001, then the time evolution of mean
and variance for the GP defined in Definition 4 are reported in Figure 2.

Figure 2. Evolution of µa (red), µb (green), µc (blue) for the CRN reported in Example 1. Inset: the
respective variances.

2.2. A Language for Experimental Biological Protocols

In what follows, we introduce the syntax of our language for experimental biological
protocols.

Definition 5. (Syntax of a Protocol) Given a set of sample variables x ∈ Var and a set of parameter
variables z ∈ Par, the syntax of a protocol P ∈ Prot for a given fixed CRN C = (A,R) is

P = x (a sample variable)

(p1. . .p|A|, rV , rT) (a sample with initial concentrations, volume, temperature)

let x = P1 in P2 (introduce a local sample variable x)

Mix(P1, P2) (mix samples)

let x1, x2 = Split(P1, p) in P2 (split a sample P1 by a proportion p in (0..1))

Equilibrate(P, p) (equilibrate a sample for p seconds)

Dispose(P) (discard sample)

p = z (a parameter variable)

r (a literal non-negative real number)

Moreover, let-bound variables x, x1, x2 must occur (as free variables) exactly once in P2.

A protocol P manipulates samples (which are CRN states as in Definition 2) through a
set of operations, and finally yields a sample as the result. This syntax allows one to create
and manipulate new samples using Mix (put together different samples), Split (separate
samples) and Dispose (discard samples) operations. Note that the CRN is common to all
samples, but different samples may have different initial conditions and hence different
active reactions. The single-occurrence (linearity) restriction of sample variables implies
that a sample cannot be duplicated or forgotten.

2.3. Gaussian Semantics for Protocols

There are two possible approaches to a Gaussian semantics of protocols, that is, to a
semantics characterized by keeping track of mean and variance of sample concentrations.
They differ in the interpretation of the source of noise that produces the variances. We
discuss the two options, and then choose one of the two based on both semantic simplicity
and relevance to the well-mixed-solution assumption of chemical kinetics.

The first approach we call extrinsic noise. The protocol operations are deterministic,
and the the evolution of each sample is also deterministic according to the rate equation
(that is, Definition 4(1)). Here, we imagine running the protocol multiple times over
a distribution of initial conditions (i.e., the noise is given extrinsically to the evolution).

Computation 2021, 9, 107 6 of 20

The outcome is a final distribution that is determined uniquely by the initial distribution
and by the deterministic evolution of each run. For example, the sample-split operation
here is interpreted as follows. In each run, we have a sample whose concentration in general
differs from its mean concentration over all runs. The two parts of a split are assigned
identical concentration, which again may differ from the mean concentration. Hence,
over all runs, the two parts of the split have identical variance, and their distributions
are perfectly correlated, having the same concentration in each run. The subsequent time
evolution of the two parts of the split is deterministic and hence identical (for, say, a 50%
split). In summary, in the extrinsic noise approach, the variance on the trajectories is due to
the distribution of deterministic trajectories for the different initial conditions.

The second approach we call intrinsic noise. The protocol operations are again de-
terministic, but the evolution in each separate sample is driven by the Chemical Master
Equation (i.e., the noise is intrinsic to the evolution). Here, we imagine running the protocol
many times on the same initial conditions, and the variance of each sample is due ulti-
mately to random thermal noise in each run. This model assumes a Markovian evolution
of the underlying stochastic system, implying that no two events may happen at the same
time (even in separate samples). Furthermore, as usual, we assume that chemical solutions
are well-mixed: the probability of a reaction (a molecular collision) is independent of the
initial position of the molecules in the solution. Moreover, the well-mixture of solutions is
driven by uncorrelated thermal noise in separate samples. Given two initially identical but
separate samples, the first chemical reaction in each sample (the first “fruitful” collision
that follows a usually large number of mixing collisions) is determined by uncorrelated
random processes, and their first reaction cannot happen at exactly the same time. There-
fore, in contrast to the extrinsic noise approach, a sample-split operation results in two
samples that are completely uncorrelated, at least on the time scale of the first chemical
reaction in each sample. In summary, in the intrinsic noise approach, the variance on the
trajectories is due to the distribution of stochastic trajectories for identical initial conditions.

In both approaches, the variance computations for mix and for split are the same: mix
uses the squared-coefficient law to determine the variance of two mixed samples, while
split does not change the variance of the sample being split. The only practical difference
is that in the intrinsic noise interpretation we do not need to keep track of the correlation
between different samples: we take it to be always zero in view of the well-mixed-solution
assumption. As a consequence, each sample needs to keep track of its internal corre-
lations represented as a local Σ matrix of size |A| × |A|, but not of its correlations with
other samples, which would require a larger global matrix of potentially unbounded size.
Therefore, the intrinsic noise interpretation results in a vast simplification of the semantics
(Definition 6) that does not require keeping track of correlations of concentrations across
separate samples. In the rest of the paper, we consider only the intrinsic noise semantics.

Definition 6. (Gaussian Semantics of a Protocol—Intrinsic Noise)
The intrinsic-noise Gaussian semantics [[P]]ρ ∈ Prot× Env→ S of a protocol P ∈ Prot for

a CRN C = (A,R), under environment ρ ∈ Env = (Var ∪ Par) → S, for a fixed horizon H
with no ill-posed time evolutions, denotes the final CRN state (µ, Σ, V, T) ∈ S (Definition 2) of the
protocol and is defined inductively as follows:

Computation 2021, 9, 107 7 of 20

[[x]]ρ = ρ(x)

[[(p1. . .p|A|, rV , rT)]]
ρ = ([[p1]]

ρ. . .[[p|A|]]
ρ, 0|A|×|A|, rV , rT)

[[let x = P1 in P2]]
ρ = [[P2]]

ρ1

where ρ1 = ρ{x ← [[P1]]
ρ}

[[Mix(P1, P2)]]
ρ = (

V1µ1 + V2µ2

V1 + V2
,

V2
1 Σ1 + V2

2 Σ2

(V1 + V2)2 , V1 + V2,
V1T1 + V2T2

V1 + V2
)

where (µ1, Σ1, V1, T1) = [[P1]]
ρ and (µ2, Σ2, V2, T2) = [[P2]]

ρ

[[let x, y = Split(P1, p) in P2]]
ρ = [[P2]]

ρ1

where r = [[p]]ρ, 0 < r < 1 and (µ, Σ, V, T) = [[P1]]
ρ

and ρ1 = ρ{x ← (µ, Σ, rV, T), y← (µ, Σ, (1− r)V, T)}
[[Equilibrate(P, p)]]ρ = (µµ(t), Σµ,Σ(t), V, T)

where t = [[p]]ρ and (µ, Σ, V, T) = [[P]]ρ

[[Dispose(P)]]ρ = (0|A|, 0|A|×|A|, 0, 0)

together with [[p]]ρ defined as:

[[z]]ρ = ρ(z)

[[r]]ρ = r

The semantics of Equilibrate derives from Definition 4. The substitution notation ρ{x ← v}
represents a function that is identical to ρ except that at x it yields v; this may be extended to the
case where x is a vector of distinct variables and v is a vector of equal size. The variables introduced
by let are used linearly (i.e., must occur exactly once in their scope), implying that each sample is
consumed whenever used.

We say that the components (µ, Σ) ∈ R|A|≥0 ×R|A|×|A| of a CRN state (µ, Σ, V, T) ∈ S form
a Gaussian state, and sometimes we say that the protocol semantics produces a Gaussian state (as
part of a CRN state).

The semantics of Definition 6 combines the end states of sub-protocols by linear oper-
ators, as we show in the examples below. We stress that it does not, however, provide a
time-domain GP: just the protocol end state as a Gaussian state (random variable). In par-
ticular, a protocol like let x = Equilibrate(P, p) in Dispose(x) introduces a discontinuity at
the end time p, where all the concentrations go to zero; other discontinuities can be intro-
duced by Mix. A protocol may have a finite number of such discontinuities corresponding
to liquid handling operations, and otherwise proceeds by LNA-derived GPs and by linear
combinations of Gaussian states at the discontinuity points.

It is instructive to interpret our protocol operators as linear operators on Gaussian
states: this justifies how covariance matrices are handled in Definition 6, and it easily leads
to a generalized class of possible protocol operators. We discuss linear protocol operators
in the examples below.

Example 2. The Mix operator combines the concentrations, covariances, and temperatures of
the two input samples proportionally to their volumes. The resulting covariance matrix, in par-
ticular, can be justified as follows. Consider two (input) states A = (µA, ΣA, VA, TA), B =
(µB, ΣB, VB, TB) with |µA| = |µB| = k and |ΣA| = |ΣB| = k× k. Let 0 and 1 denote null and
identity vectors and matrices of size k and k× k. Consider a third null state C = (0, 0, VC, TC),
with VC = VA + VB and TC = VATA+VBTB

VC
. The joint Gaussian distribution of A, B, C is given

by µ =

µA
µB
0

, Σ =

ΣA 0 0
0 ΣB 0
0 0 0

. Define the symmetric hollow linear operator Mix =

Computation 2021, 9, 107 8 of 20

 0 0 VA
VC

1
0 0 VB

VC
1

VA
VC

1 VB
VC

1 0

. The zeros on the diagonal (hollowness) imply that the inputs states are zeroed

after the operation, and hence discarded. Applying this operator to the joint distribution, by the
linear combination of normal random variables we obtain a new Gaussian distribution with:

µ′ = Mix · µ =

 0
0

VAµA+VBµB
VC

Σ′ = Mix · Σ ·Mix> =

0 0 0
0 0 0

0 0 V2
AΣA+V2

B ΣB
V2

C

Hence, all is left of µ′, Σ′ is the output state C = (µC, ΣC, VC, TC) where µC = VAµA+VBµB

VC

and ΣC =
V2

AΣA+V2
B ΣB

V2
C

as in Definition 6.

Example 3. The Split operator splits a sample in two parts, preserving the concentration and
consequently the covariance of the input sample. The resulting covariance matrix, in particular,
can be justified as follows. Consider one (input) state A = (µA, ΣA, VA, TA) and two null states
B = (0, 0, pVA, TA), C = (0, 0, (1− p)VA, TA) with 0 < p < 1. As above, consider the joint

distribution of these three states, µ =

µA
0
0

, Σ =

ΣA 0 0
0 0 0
0 0 0

 and define the symmetric hollow

linear operator Split =

0 1 1
1 0 0
1 0 0

. The 1s imply that concentrations are not affected. The whole

submatrix of output states being zero implies that any initial values of output states are ignored.
Applying this operator to the joint distribution, we obtain:

µ′ = Split · µ =

 0
µA
µA

Σ′ = Split · Σ · Split> =

0 0 0
0 ΣA ΣA
0 ΣA ΣA

By projecting µ′, Σ′ on B and C, we are left with the two output states B = (µA, ΣA, pVA, TA),

C = (µA, ΣA, (1− p)VA, TA), as in Definition 6. The correlation between B and C that is present
in Σ′ is not reflected in these outcomes: it is discarded on the basis of the well-mixed-solution
assumption.

Example 4. In general, any symmetric hollow linear operator, where the submatrix of the intended
output states is also zero, describes a possible protocol operation over samples. As a further
example, consider a different splitting operator, let x, y = Osmo(P1, p) in P2, that intuitively
works as follows. A membrane permeable only to water is placed in the middle of an input sample
A = (µA, ΣA, VA, TA), initially producing two samples of volume VA/2, but with unchanged
concentrations. Then, an osmotic pressure is introduced (by some mechanism) that causes a
proportion 0 < p < 1 of the water (and volume) to move from one side to the other, but without
transferring any other molecules. As the volumes change, the concentrations increase in one part and
decrease in the other. Consider, as in Split, two initial null states B and C and the joint distributions

Computation 2021, 9, 107 9 of 20

of those three states µ, Σ. Define a symmetric linear operator Osmo =

 0 1− p p
1− p 0 0

p 0 0

.

Applying this operator to the joint distribution we obtain:

µ′ = Osmo · µ =

 0
(1− p)µA

pµA

Σ′ = Osmo · Σ ·Osmo> =

0 0 0
0 (1− p)2ΣA p(1− p)ΣA
0 p(1− p)ΣA p2ΣA

producing the two output states B = ((1 − p)µA, (1 − p)2ΣA, pVA, TA) and C = (pµA,
p2ΣA, (1− p)VA, TA) describing the situation after the osmotic pressure is applied. Again, we
discard the correlation between B and C that is present in Σ′ on the basis of the well-mixed-solution
assumption.

Example 5. We compute the validity of some simple equivalences between protocols by applying the
Gaussian Semantics to both sides of the equivalence. Consider the CRN state Poisson(k, V, T) =
([k], [[k]], V, T) over a single species having mean [k] (a singleton vector) and variance [[k]] (a
1× 1 matrix). This CRN state can be produced by a specific CRN [19], but here we add it as a new
primitive protocol and extend our semantics to include [[Poisson(k, V, T)]]ρ = ([k], [[k]], V, T).
Note first that mixing two uncorrelated Poisson states does not yield a Poisson state (the variance
changes to [[k/2]]). Then, the following equation holds:

[[Mix(Poisson(k, V, T), Poisson(k, V, T))]]ρ

= [[let x, y = Split(Poisson(k, V, T), 0.5) in Mix(x, y)]]ρ

= ([k], [[k/2]], V, T)

That is, in the intrinsic-noise semantics, mixing two correlated (by Split) Poisson states is the
same as mixing two uncorrelated Poisson states, because of the implicit decorrelation that happens at
each Split. An alternative semantics that would take into account a correlation due to Split could
instead possibly satisfy the appealing equation [[let x, y = Split(P, 0.5) in Mix(x, y)]]ρ = [[P]]ρ

for any P (i.e., splitting and remixing makes no change), but this does not hold in our seman-
tics for P = Poisson(k, V, T), where the left hand side yields ([k], [[k/2]], V, T) (i.e., splitting,
decorrelating, and remixing makes a change).

The Mix operator can be understood as diluting the two input samples into the resulting
larger output volume. We can similarly consider a Dilute operator that operates on a single
sample, and we can even generalize it to concentrate a sample into a smaller volume. In either
case, let W be a new forced volume, and U be a new forced temperature for the sample. Let us
define [[Dilute(P, W, U)]]ρ = (V

W µ, V2

W2 Σ, W, U) where (µ, Σ, V, T) = [[P]]ρ. Then, the following
equation holds:

[[Mix(Dilute(P1, W1, U1), Dilute(P2, W2, U2))]]
ρ

= [[Dilute(Mix(P1, P2), W1 + W2,
W1U1 + W2U2

W1 + W2
)]]ρ

= (
V1µ1 + V2µ2

W1 + W2
,

V2
1 Σ1 + V2

2 Σ2

(W1 + W2)2 , W1 + W2,
W1U1 + W2U2

W1 + W2
)

Note that, by diluting to a fixed new volume W, we obtain a protocol equivalence that does
not mention, in the equivalence itself, the volumes Vi resulting from the sub-protocols Pi (which of
course occur in the semantics). If instead we diluted by a factor (e.g., factor = 2 to multiply volume
by 2), then it would seem necessary to refer to the Vi in the equivalence.

Computation 2021, 9, 107 10 of 20

To end this section, we provide an extension of syntax and semantics for the optimiza-
tion of protocols. An optimize protocol directive identifies a vector of variables within a
protocol to be varied in order to minimize an arbitrary cost function that is a function of
those variables and of a collection of initial values. The semantics can be given concisely
but implicitly in terms of an argmin function: a specific realization of this construct is then
the subject of the next section.

Definition 7. (Gaussian Semantics of a Protocol—Optimization)
Let z ∈ ParN be a vector of (optimization) variables, and k ∈ ParM be a vector of (initial-

ization) variables with (initial values) r ∈ RM, where all the variables are distinct and Par is
disjoint from Var. Let P ∈ Prot be a protocol for a CRN C = (A,R), with free variables z and
k and with any other free variables covered by an environment ρ ∈ Env = (Var ∪ Par) → S.
Given a cost function C : R|A| × RN → R, and a dataset D ⊆ f in RM × RN × R|A|, the in-
struction “optimize k=r, z in P with C given D" provides a vector in RN of optimized values
for the z variables (For simplicity, we omit extending the syntax with new representations for C
and D, and we let them represent themselves). The optimization is based on a stochastic process
X ∈ RM+N → R|A|≥0 ×R|A|×|A| derived from P via Definition 6.

[[optimize k = r, z in P with C givenD]]ρ =

argminu∈RN Ey∼X(r,u|D)[C(y, u)]

where X(r, u) = [[P]]ρ{k←r,z←u} f or all r ∈ RM and u ∈ RN ,

where Ey∼X(r,u|D)[·] stands for the expectation with respect the conditional distribution of X(r, u)
given D.

From Definition 6, it follows that, for any (r, u) ∈ RM+N , X(r, u) is a Gaussian random
variable. In what follows, for the purpose of optimization, we further assume that X is a
Gaussian process defined on the sample space RM+N , i.e., that for any possible (r1, u1) and
(r2, u2), X(r1, u1) and X(r2, u2) are jointly Gaussian. Such an assumption is standard [6]
and natural for our setting (e.g., it is guaranteed to hold for different equilibration times)
and guarantees that we can optimize protocols by employing results from Gaussian process
optimization as described in detail in Section 2.4.

2.4. Optimization of Protocols through Gaussian Process Regression

In Definition 7 we introduced the syntax and semantics for the optimization of a
protocol from data. In this section, we show how the optimization variables can be selected
in practice. In particular, we leverage existing results for Gaussian processes (GPs) [6]. We
start by considering the dataset D = {(ri, ui, yi), i ∈ {1, . . ., nD}} ⊆ f in RM ×RN ×R|A|
comprising nD executions of the protocol for possibly different initial conditions, i.e., each
entry gives the concentration of the species after the execution of the protocol (yi), where
the protocol has been run with k = ri, z = ui. Then, we can predict the output of the
protocol starting from x̄ = (r, u) by computing the conditional distribution of X (Gaussian
process introduced in Definition 7) given the data in D. In particular, under the assumption
that X is Gaussian, it is well known that the resulting posterior model, X(x̄|D), is still
Gaussian with mean and covariance functions given by

µp(x̄) = µ(x̄) + Σx̄,D(ΣD,D + σ2 I)−1(yD − µD) (3)

Σp(x̄, x̄) = Σx̄,x̄ − Σx̄,D(ΣD,D + σ2 I)−1ΣT
x̄,D , (4)

where σ2 I is a diagonal covariance modeling i.i.d. Gaussian observation noise with variance
σ2, µ(x̄) and Σx̄,x̄ are the prior mean and covariance functions, ΣD,x̄ is the covariance
between x̄ and all the points in D, and yD , µD are vectors of dimensions R|Λ|·nD containing
for all (xi, ui, yi) ∈ D, respectively, yi and µ((xi, ui)) [6]. Note that, in order to encode

Computation 2021, 9, 107 11 of 20

our prior information of the protocol, we take µ(x̄) to be the mean of the GP as defined
in Definition 6, while for the variance we can have Σx̄,x̄ to be any standard kernel [6]; in
the experiments, as is standard in the literature, we consider the widely used squared
exponential kernel, which is expressive enough to approximate any continuous function
arbitrarily well [20]. However, we remark that, for any parametric kernel, such as the
squared exponential, we can still select the hyper-parameters that best fit the variance given
by Definition 6 as well as the data [6]. We should also stress that the resulting X(x̄|D) is a
Gaussian process that merges in a principled way (i.e., via Bayes’ rule) our prior knowledge
of the model (given by Definition 6) with the new information given in D. Furthermore,
it is worth stressing again that X(x̄|D) is a GP with input space given by RM+N , which is
substantially different from the GP defined by the LNA (Definition 5), where the GP was
defined over time.

For a given set of initialization parameters r our goal is to synthesize the optimization
variables that optimize the protocol with respect to a given cost specification C : R|A| ×
RN → R, i.e., we want to find u∗ such that

u∗ = argminu∈RNEy∼N (µp(x̄),Σp(x̄,x̄))[C(y, u)], (5)

where Ey∼N (µp(x̄),Σp(x̄,x̄))[·] is the expectation with respect to the GP given by Equations (3)
and (4)). Note that r is a known vector of reals (see Definition 7), hence we only need
to optimize for the free parameters u. In general, the computation of u∗ in Equation (5)
requires solving a non-convex optimization problem that cannot be solved exactly [21]. In
this paper, we approximate Equation (5) via gradient-based methods. These methods, such
as gradient descent, require the computation of the gradient of the expectation of C with
respect to u:

∂Ey∼N (µp(x̄),Σp(x̄,x̄))[C(y, u)]

∂u
. (6)

Unfortunately, direct computation of the gradient in (6) is infeasible in general, as the
probability distribution where the expectation is taken depends on u itself (note that
x̄ = (r, u)). However, for the GP case, as shown in Lemma 1, the gradient of interest can be
computed directly by reparametrizing the Gaussian distribution induced by Equations (3)
and (4).

Lemma 1. For x̄ = (r, u), let D(x̄) be the matrix such that D(x̄)DT(x̄) = Σp(x̄, x̄). Then, it
holds that

∂Ey∼N (µp(x̄),Σp(x̄,x̄))[C(y, u)]

∂u
= Ez∼N (0,I)[

∂C(µp(x̄) + D(x̄)z, u)
∂u

]. (7)

In particular, D(x̄) as defined above is guaranteed to exist under the assumption that
Σp is positive definite and can be computed via Cholesky decomposition. Furthermore,
note that if the output is uni-dimensional, then D(x̄) is simply the standard deviation of
the posterior GP in x̄.

Example 6. Given the CRN C introduced in Example 1, consider the protocol

P = Equilibrate((0.1 mM, 0.001 mM, 0.001 mM, 1 µL, 20C), T),

which seeks to evolve the various species from an initial starting concentration of 0.1 mM for
species a and 0.001 mM for both species b and c for T seconds. Hence, for this example, we have
r = [0.1, 0.001, 0.001, 1, 20] including initial conditions, volume, and temperature and u = [T],
that is, the only optimization variable is the equilibration time. We consider a dataset D composed
of the following six data points (for simplicity we report the output values of only species b and

Computation 2021, 9, 107 12 of 20

omit unit of measurement, which are mM for concentration, µL for volume, Celsius degrees for
temperature, and seconds for equilibration time):

d1 = ((0.1001, 0.0015, 0.001, 1, 20), 0, 0.001) d2 = ((0.099, 0.001, 0.001, 1, 20), 40, 0.001)

d3 = ((0.1, 0.001, 0.001, 1, 20), 150, 0.09) d4 = ((0.1, 0.001, 0.002, 1, 20), 250, 0.08)

d5 = ((0.09, 0.001, 0.0015, 1, 20), 400, 0.003) d6 = ((0.1, 0.001, 0.002, 1, 20), 500, 0.001),

where, for example, in d1 we have that the initial concentration for a, b, c are, respectively, 0.1001,
0.0015, 0.001, volume and temperature at which the experiment is performed are 1 and 20 and the
observed value for b at the end of the protocol for T = 0 is 0.001. We assume an additive Gaussian
observation noise (noise in the collection of the data) with standard deviation σ = 0.01. Note that
the initial conditions of the protocol in the various data points in general differ from those of P,
which motivates having Equations (3) and (4) dependent on both r and u.

We consider the prior mean given by Equation (1) and independent squared exponential
kernels for each species with hyper-parameters optimized through maximum likelihood estimation
(MLE) [6]. The resulting posterior GP is reported in Figure 3, where is compared with the prior
mean and the true underlying dynamics for species b (assumed for this example to be deterministic).
We note that with just 6 data points in D, the posterior GP is able to correctly recover the true
behavior of b with relatively low uncertainty.

Figure 3. Mean and variance of species b for the CRN reported in Example 1 for r =

[0.1, rb, 0.001, 1, 20] and u = [T]. (Left:) Evolution of µ (prior mean of species b given by Equa-
tion (1)), µp (posterior mean of species b given by Equation (3)), and the true dynamics of species b,
assumed to be a deterministic function for this example, for rb = 0.001 (initialization variable relative
to species b). It is possible to observe how, with just a few data points, the posterior mean reflects
correctly the true dynamics. (Right:) Standard deviation of b after training (square root of solution of
Equation (4)) as a function of rb and T. The variance is higher for combinations of T and rb where no
training data are available.

We would like to maximize the concentration of b after the execution of the protocol. This can
be easily encoded with the following cost function:

C(a, b, c, u) = −b2.

For r = [0.1, 0.001, 0.001, 1, 20], the value obtained is T ∼ 230, which is simply the one that
maximizes the posterior mean. In Section 3.1, we will show how, for more complex specifications,
the optimization process will become more challenging because of the need to also account for the
variance in order to balance between exploration and exploitation.

Computation 2021, 9, 107 13 of 20

3. Results

We consider two case studies where we illustrate the usefulness of our framework.
The first example illustrates how our framework can be employed to optimize a Gibson
assembly protocol [9] from experimental data. In the second example, we illustrate the
flexibility of our language and semantics on a combination of protocol operations. Further-
more, we also use this example to show how our framework can be employed to perform
analysis of the protocol parameters while also accounting for the uncertainty in both the
model dynamics, the protocol parameters, and the data collection.

3.1. Gibson Assembly Protocol

We start by considering a simplified version of the Gibson assembly, a protocol widely
used for joining multiple DNA fragments [9]. We consider the following model of Gibson
assembly described by Michaelis–Menten kinetics, where two DNA double strands, AB
and BA (with shared endings A and B, but different middle parts), are enzymatically joined
in two symmetric ways according to their common endings, and the resulting strands ABA
and BAB are circularized into the same final structure O. The resulting dynamical model is
given by the following ODEs (assuming AB is over abundant with respect to BA):

dAB(t)
dt

= 0 (8)

dBA(t)
dt

= − kcat1 · AB(t) · BA(t)
BA(t) + Km1

− kcat2 · AB(t) · BA(t)
BA(t) + Km2

(9)

dABA(t)
dt

=
kcat1 · AB(t) · BA(t)

BA(t) + Km1

− kcat1 · ABA(t)
ABA(t) + Km1

(10)

dBAB(t)
dt

=
kcat2 · AB(t) · BA(t)

BA(t) + Km2

− kcat2 · BAB(t)
BAB(t) + Km2

(11)

dO(t)
dt

=
kcat1 · ABA(t)
ABA(t) + Km1

+
kcat2 · BAB(t)
BAB(t) + Km2

, (12)

where kcat1 , kcat2 , Km1 , Km2 are given parameters. Gibson assembly is a single-step isother-
mal protocol: once all the ingredients are combined, it can be written as:

P = Equilibrate(([1 mM, xBA mM, 0 mM, 0 mM, 0 mM], 1 µL, 50 C), T),

where [1, xBA, 0, 0, 0] is a vector of the initial concentration of the various species with
AB initialized at 1 mM, BA at xBA mM, and all the other species to 0 mM for a sample
of volume of 1 µL and at a temperature 50 Celsius degrees, equilibrated for T seconds.
For this example, we have that the set of optimization variables is u = [xBA, T] and the
goal is to find initial condition of BA (xBA) and equilibration time (T) such that, at the end
of the protocol, species O has a concentration as close as possible to a desired value Odes,
while also keeping the equilibration time and the initial concentration of BA close to some
reference values. This can be formalized with the following cost function:

C(xBA, T) =
(

β(O(T)−Odes)
)2

+ λ(
T − Tre f

Tnorm
)2 + (1− λ)(xBA − Ire f)

2,

where O(T) is the concentration of strand O after the execution of the protocol. Tre f ,
Tnorm, Ire f , and β, are parameters describing, respectively, the reference equilibration time,
a normalization term for the equilibration time, the reference initial concentration of BA,
and a weight term such that if β > 1 we give more importance to O(T) being close to Odes
compared to equilibration time and initial conditions being closer to their reference values.
Similarly, λ ∈ [0, 1] is a weight term that balances the importance that equilibration time
and the initial concentration of BA are close to their reference values. In our experiments,
we fix Odes = 0.6, Tre f = 700, Tnorm = 1000, Ire f = 1, and β = 20.

Computation 2021, 9, 107 14 of 20

The dynamical model considered in Equations (8)–(12) is obtained by combining mul-
tiple enzymatic reactions into single Michaelis–Menten steps and the value of the reaction
rates may not be accurate. Hence, to obtain a more accurate model, we combine Equa-
tions (8)–(12) with the experimental data from [9] under the assumption that observations
are corrupted by a Gaussian noise of relatively high standard deviation of 0.1.

In Figure 4, we plot the synthesized (approximately) optimal values of T and xBA for
various values of λ by using gradient descent, with the gradient computed as shown in
Lemma 1. Note that even for λ = 0 or λ = 1 the cost cannot be made identically zero. This
is due to the uncertainty in the model that leads to a non-zero variance everywhere. Note
also that for λ = 1 the synthesized time T is smaller than 700 (the reference equilibration
time). This can be explained by looking at Figure 4 (Right), where we plot the variance of
O(T) as a function of T and xBA. In fact, as we have available only data (reported in the
Appendix B) for xBA ∼ 1 the variance increases when xBA is far from 1. As a consequence,
the algorithm automatically balances this tradeoff by picking an equilibration time that is
close to the target value, but also allows for an xBA close to 1 in order the keep the variance
under control.

Figure 4. Optimal values for xBA and T and variance of the predictive Gaussian process. (Left:)
Optimal values of xBA and T

1000 for different values of λ. (Right:) Variance of O(T) after training
(Equation (2)) as a function of xBA and T. The variance is minimized for xBA ∼ 1. This is due to the
fact that all training data have xBA = 1.

3.2. Split and Mix Protocol

Consider the CRN C = ({a, b, c},R), whereR is given by the reactions:

a + b→1 b + c a + c→1 a + a b + c→1 c + c.

Consider also the associated protocol Psplit&mix shown below in the syntax of Definition 5
(with underscore standing for an unused variable, with initial concentration vectors ordered
as (a0, b0, c0), and initial states matching the pattern ((a0, b0, c0), volume, temperature):

let A = ((10 mM, 0 mM, 1 mM), 1 µL, 20C) in

let A1 = Equilibrate(A, 100 s) in

let C, D = Split(A1, 0.5) in

let _ = Dispose(C) in

let B = ((0 mM, 10 mM, 1 mM), 1 µL, 20 C) in

let B1 = Equilibrate(B, 100 s) in

let E = Mix(D, B1) in

Equilibrate(E, 1000 s)

Computation 2021, 9, 107 15 of 20

Figure 5. (Left, Center:) Evolution of a (red), b (green), c (blue) for protocol Psplit&mix, showing
mean (thick lines) and standard deviation (thin lines), separately for Sample E, with some trajectory
overlaps in Sample A and B. Horizontal axis is time (s), vertical axis is concentration (mM). Sample A
is simulated first, then Sample B, and finally Sample E, where the standard deviations start above
zero due to propagating the final states of the earlier simulations. (Right:) Density plots for global
sensitivity analysis over 3000 runs, displaying the sensitivity at the end of the protocol of mean
(top) and standard deviation (bottom) of a, b, c. Sensitivity is with respect to the three Equilibrate
duration parameters and the Split proportion parameter: those parameters are simultaneously drawn
from uniform distributions, each varying by up to ±5%. Horizontal axis is concentration (mM),
vertical axis is the kernel density estimate (m = ×10−3) with a standard normal distribution kernel,
and bandwidth of 1/100 of the data range. Thick vertical lines locate the mean, thin vertical lines
locate the ±standard deviation.

This protocol interleaves equilibration steps with mixing and splitting. During the
first Equilibrate, only the second reaction is active in sample A, due to its initial conditions,
yielding monotonic changes in concentrations. During the second Equilibrate, similarly,
only the third reaction is active in sample B. During the third Equilibrate, after samples
A and B have been manipulated and mixed, all three reactions are active in sample E,
yielding an oscillation.

The semantics of Definition 6 can be used to unravel the behavior of Psplit&mix. In par-
ticular, integration of the CRN C in samples A and B yields states SA, SB that, after some
split and mix manipulations, determine the initial conditions for both mean and covariance
for the integration of C in sample E.

We can numerically evaluate the protocol following the semantics: this is shown
in Figure 5 (Left and Center), where the protocol evaluation results in three simulations
that implement the three integration steps, where each simulation is fed the results of the
previous simulations and protocol operations.

To show the usefulness of the integrated semantics, in Figure 5 (Right) we perform a
global sensitivity analysis of the whole protocol with respect to the protocol parameters
t1 = 100, t2 = 100, t3 = 1000, the duration of the three Equilibrate, and s1 = 0.5, the pro-
portion of Split. We produce density plots of the means and variances of a,b,c at the end of
the protocol when t1,t2,t3,s1 vary jointly randomly by up to 10%. This is thus a sensitivity
analysis of the joint effects of three simulations connected by liquid handling steps. It is
obtained by providing the whole parameterized protocol, not its separate parts, to the
harness that varies the parameters and plots the results. We could similarly vary the initial
concentrations and reaction rates, and those together with the protocol parameters.

Computation 2021, 9, 107 16 of 20

4. Discussion

Automation already helps scaling up the production of chemical and biochemical
substances, but it is also hoped it will solve general reproduceability problems. In the
extreme, even one-off experiments that have no expectation of reproduction or scaling-up
should be automated, so that the provenance of the data they produce can be properly
recorded. Most pieces of lab equipment are already computer controlled, but automating
their interconnection and integration is still a challenge that results in poor record keeping.
A large amount of bottom-up development will be necessary to combine all these pieces of
equipment into “fabrication lines”. However, it is also important to start thinking top-down
at what the resulting connecting “glue” should look like, as we have attempted to do in this
paper. This is because, if automation is the ultimate goal, then some pieces of equipment
that are hard to automate should be discarded entirely.

Consider, for example, the Split operation from Definition 6, which separates a sample
into two samples. That represents a vast array of laboratory procedures, from simple
pipetting to microfluidic separation, each having its own tolerances and error distributions
(which are well characterized and could be included into the language and the analysis).
Despite all those variations, it is conceivable that a protocol compiler could take an abstract
Split instruction, and a known piece of equipment, and automatically tailor the instruction
for that equipment. Digital microfluidics is particularly appealing in this respect because
of the relative ease and uniformity of such tailoring [22]. Therefore, one could decide to
work entirely within digital microfluidics, perhaps helping to make that area more robust,
and avoid other kinds of equipment.

Are there drawbacks to this approach? First, as we mentioned, equipment should be
selected based on ease of automation: whole new lab procedures may need to be devel-
oped in replacement, along with standards for equipment automation. Second, protocol
languages are more opaque than either sets of mathematical equations or sequences of
laboratory steps. This needs to be compensated for with appropriate user interfaces for
common use in laboratories.

About the second point, as a first step, we have separately produced an easily deployed
app (Kaemika [15]) that supports the integrated language described here, although prag-
matic details of the syntax diverge slightly. We have used it to run simulations and to
produce Figures 2 and 5 (see Appendix B). It uses a standard ODE solver for simulating
the “Equilibrate” steps of the protocols, i.e., the chemical reaction kinetics. It uses the
linear noise approximation (LNA) for stochastic simulations; that is, means and variances
of concentrations are computed by an extended set of ODEs and solved with the same
ODE solver along with the deterministic rate equations. The liquid handling steps of the
protocols are handled following the semantics of Definition 6, noting that in the stochastic
case means and variances are propagated into and out of successive equilibrate and liquid
handling steps. The result is an interleaved simulation of equilibrate and liquid handing
steps, which is presented as an interleaved graphical rendering of concentration trajectories
and of droplet movements on a simulated microfluidic device. The sequence of protocol
steps can be extracted as a graph, omitting the detailed kinetics. The kinetic equations
operating at each step of the protocol can be extracted as well.

In this context, we should also stress that our proposed Gaussian semantics makes
various assumptions: (1) we assume that molecular processes described by CRNs and
liquid handling operations can be modeled by a Gaussian process, and (2) we assume that
the collected data are corrupted by additive Gaussian noise. The former assumption is
justified by the precision of lab equipment to perform liquid handling operations, whose
uncertainty is generally very small, and by the Central Limit Theorem (CLT). The CLT
guarantees that the solution of the Chemical Master Equation will converge to a Gaussian
process in the limit of high number of molecules [23], as is common in wet lab experiments.
In particular, as illustrated in Experiment 5.1 in [8], already a number of molecules of
the order of hundreds for each species generally guarantees that a Gaussian approxima-
tion is accurate. It is obvious that, in case of experiments with single molecules, such

Computation 2021, 9, 107 17 of 20

an approximation may be inaccurate and a full treatment of the CME would be more
appropriate [24]. The assumption that observations are corrupted by Gaussian additive
noise is standard [25]. However, we acknowledge that in certain scenarios, non-Gaussian or
multiplicative observation noise may be required. In this case, we would like to stress that
Gaussian process regression can still be performed with success, at the price of introducing
approximations on the computation of the posterior mean and variance [6].

As automation standards are developed for laboratory equipment, we will be able to
target our language to such standards, and extend it or adapt it as needed. In this context,
our future works include extension to both the syntax and semantics of our language to
include common laboratory procedures that we have not investigated here, for example,
changing the temperature of a sample (as in a thermal cycler) or its volume (as in evapora-
tion or dilution). These are easy to add to our abstract framework, but each corresponds
to a whole family of lab equipment that may need to be modeled and integrated in de-
tail. Furthermore, we plan to extend the semantics to allow for more general stochastic
processes that may be needed when modeling single molecules.

5. Conclusions

We have introduced a probabilistic framework that rigorously describes the joint han-
dling of liquid manipulation steps and chemical kinetics, throughout the execution of an
experimental protocol, with particular attention to the propagation of uncertainty and the
optimization of the protocol parameters. A central contribution of this paper is the distinc-
tion between the intrinsic and extrinsic approach to noise, which leads to a much simplified
semantics under a chemically justified assumption of well-mixed-solutions. The semantics
are reduced to operations on Gaussian states, where any modeled or hypothetical protocol
operation is a symmetric linear operator on Gaussian states.

The Gaussian process semantics approach is novel to this work, and is novel with
respect to the Piecewise Deterministic Markov Process semantics in [5], which treats
chemical evolution as deterministic. The semantics in this work are about a collection
of deterministic protocol operations, but note that (1) stochasticity in chemical kinetics
is propagated across protocol operations, making the whole protocol stochastic, and (2)
we have shown examples of how to easily incorporate new protocol operators as linear
operators on Gaussian states, which may include ones that introduce their own additional
stochasticity. The Gaussian approach in this paper enables principled integration of a
protocol model with experimental data, which in turn enables automated optimization
and analysis of experimental biological protocols. The syntax of protocols is chosen for
mathematical simplicity, reflecting the one in [5]; a closely related but more pragmatic
syntax is now implemented in [15].

Author Contributions: Conceptualization, L.C., M.K. and L.L.; methodology, L.C., M.K. and L.L.;
software, L.C. and L.L.; validation, L.C., M.K. and L.L.; formal analysis, L.C., M.K. and L.L.; investi-
gation, L.C., M.K. and L.L.; writing—original draft preparation, L.C., M.K. and L.L.; writing—review
and editing, L.C., M.K. and L.L.; visualization, L.C. and L.L.; supervision, L.C. and M.K.; project
administration, L.C.; funding acquisition, L.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in part by the ERC under the European Union’s Horizon 2020
research and innovation programme (FUN2MODEL, grant agreement No. 834115). Luca Cardelli
was funded by a Royal Society Research Professorhip RP/R/180001 & RP/EA/180013.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Simulation Script

This is the script for the case study of Section 3.2 for the protocol Psplit&mix, in
Kaemika [15]. The protocol begins at ‘species {c}’ and ends at ‘equilibrate E’. For the
sensitivity analysis of Figure 5, a function f abstracts the equilibrate time parameters
e1,e2,e3 and the split proportion parameter s1 and yields the concentrations of a,b,c

Computation 2021, 9, 107 18 of 20

at the end of the protocol. A multivariate random variable X, over a uniform multidimen-
sional sample space w, is constructed from f to vary the parameters. Then X is sampled
and plotted.

function f(number e1 e2 e3 s1) {
define

species {c}

sample A 1μL, 20C
species a @ 10mM in A
amount c @ 1mM in A
a + c -> a + a {1}
equilibrate A1 = A for~e1

sample B {1μL, 20C}
species b @ 10mM in B
amount c @ 1mM in B
b + c -> c + c {1}
equilibrate B1 = B for~e2

split C,D = A1 by s1
dispose~C

mix E = D, B1
a + b -> b + b {1}

equilibrate E for~e3

yield [observe(a,E), observe(b,E), observe(c,E)]
}

random X(omega w) {
f(100*(1+(w(0)-0.5)/10), 100*(1+(w(1)-0.5)/10), 1000*(1+(w(2)-0.5)/10),

0.5*(1+(w(3)-0.5)/10))
}

draw 3000 from X

This script produces a density plot of the sensitivity of the concentrations (when
shift-clicking the Play button to run uninterrupted). For the sensitivity of the standard
deviation of the concentrations, replace the result of f with

yield [observe(sqrt(var(a)),E), observe(sqrt(var(b)),E),
observe(sqrt(var(c)),E)]

and run the script with LNA enabled.

Computation 2021, 9, 107 19 of 20

Appendix B. Data for Gibson Assembly

We report the experimental data employed for the Gibson assembly protocol in
Section 3.1 (from [9] Figure 2a). For simplicity we report the output values of only species
O and omit unit of measurement, which are mM for concentration, µL for volume, Celsius
degrees for temperature, and seconds for equilibration time:

d1 = ((1, 0, 0, 0, 1, 20), (1, 0), 0) d2 = ((1, 1, 0, 0, 0, 1, 20), (1, 120), 0)

d3 = ((1, 0, 0, 0, 1, 20), (1, 240), 0.05) d4 = ((1, 0, 0, 0, 1, 20), (1, 360), 0.56)

d5 = ((1, 0, 0, 0, 1, 20), (1, 480), 0.8) d6 = ((1, 0, 0, 0, 1, 20), (1, 660), 0.86)

d5 = ((1, 0, 0, 0, 1, 20), (1, 840), 0.9) d6 = ((1, 0, 0, 0, 1, 20), (1, 960), 0.88),

where, for example, in d1 we have that the initial concentration for AB and BA is 1 (note
that in this case the optimization variables are xBA and T, hence in d1 the vector (1, 0)
represents the value assigned to those variables during the particular experiment) and all
other species are not present at time 0, volume and temperature at which the experiment is
performed are 1 and 20 and the observed value for O at the end of the protocol for T = 0 is
0. We assume an additive Gaussian observation noise (noise in the collection of the data)
with standard deviation σ = 0.1.

References
1. Murphy, N.; Petersen, R.; Phillips, A.; Yordanov, B.; Dalchau, N. Synthesizing and tuning stochastic chemical reaction networks

with specified behaviours. J. R. Soc. Interface 2018, 15, 20180283.
2. Ananthanarayanan, V.; Thies, W. Biocoder: A programming language for standardizing and automating biology protocols. J.

Biol. Eng. 2010, 4, 1–13.
3. Cardelli, L.; Češka, M.; Fränzle, M.; Kwiatkowska, M.; Laurenti, L.; Paoletti, N.; Whitby, M. Syntax-guided optimal synthesis for

chemical reaction networks. In International Conference on Computer Aided Verification; Springer: Berlin/Heidelberg, Germany,
2017; pp. 375–395.

4. Ang, J.; Harris, E.; Hussey, B.J.; Kil, R.; McMillen, D.R. Tuning response curves for synthetic biology. ACS Synth. Biol. 2013,
2, 547–567.

5. Abate, A.; Cardelli, L.; Kwiatkowska, M.; Laurenti, L.; Yordanov, B. Experimental biological protocols with formal semantics. In
International Conference on Computational Methods in Systems Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 165–182.

6. Rasmussen, C.E.; Williams, C.K.; Bach, F. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
7. Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1.
8. Cardelli, L.; Kwiatkowska, M.; Laurenti, L. Stochastic analysis of chemical reaction networks using linear noise approximation.

Biosystems 2016, 149, 26–33.
9. Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to

several hundred kilobases. Nat. Methods 2009, 6, 343–345.
10. Begley, C.G.; Ellis, L.M. Raise standards for preclinical cancer research. Nature 2012, 483, 531–533.
11. Ott, J.; Loveless, T.; Curtis, C.; Lesani, M.; Brisk, P. Bioscript: Programming safe chemistry on laboratories-on-a-chip. Proc. ACM

Program. Lang. 2018, 2, 1–31.
12. Baker, M. 1500 scientists lift the lid on reproducibility. Nat. News 2016, 533, 452.
13. Bates, M.; Berliner, A.; Lachoff, J.; Jaschke, P.; Groban, E. Wet lab accelerator: a web-based application democratizing laboratory

automation for synthetic biology. ACS synthetic biology 2017, 6, 167–171.
14. Synthace. Antha. Available online: https://www.synthace.com/platform/first-steps-with-antha/ (Accessed on 16 October

2021).
15. Cardelli, L. Kaemika app: Integrating protocols and chemical simulation. In International Conference on Computational Methods in

Systems Biology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 373–379.
16. Scott, D.; Strachey, C. Toward a Mathematical Semantics for Computer Languages; Oxford University Computing Laboratory,

Programming Research Group Oxford: Oxford, UK, 1971; Volume 1.
17. Cardelli, L. Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 2013, 23, 247–271.
18. Bortolussi, L.; Cardelli, L.; Kwiatkowska, M.; Laurenti, L. Central limit model checking. ACM Trans. Comput. Log. (TOCL) 2019,

20, 1–35.
19. Laurenti, L.; Csikasz-Nagy, A.; Kwiatkowska, M.; Cardelli, L. Molecular Filters for Noise Reduction. Biophys. J. 2018, 114, 3000–

3011.
20. Micchelli, C.A.; Xu, Y.; Zhang, H. Universal Kernels. J. Mach. Learn. Res. 2006, 7, 2651–2667.
21. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.

https://www.synthace.com/platform/first-steps-with-antha/

Computation 2021, 9, 107 20 of 20

22. Newman, S.; Stephenson, A.P.; Willsey, M.; Nguyen, B.H.; Takahashi, C.N.; Strauss, K.; Ceze, L. High density DNA data storage
library via dehydration with digital microfluidic retrieval. Nat. Commun. 2019, 10, 1–6.

23. Ethier, S.N.; Kurtz, T.G. Markov Processes: Characterization and Convergence; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume
282.

24. Schwabe, A.; Rybakova, K.N.; Bruggeman, F.J. Transcription stochasticity of complex gene regulation models. Biophys. J. 2012,
103, 1152–1161.

25. Leake, M. Analytical tools for single-molecule fluorescence imaging in cellulo. Phys. Chem. Chem. Phys. 2014, 16, 12635–12647.

	Introduction
	Materials and Methods
	Chemical Reaction Network (CRN)
	A Language for Experimental Biological Protocols
	Gaussian Semantics for Protocols
	Optimization of Protocols through Gaussian Process Regression

	Results
	Gibson Assembly Protocol
	Split and Mix Protocol

	Discussion
	Conclusions
	Simulation Script
	Data for Gibson Assembly
	References

