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Abstract: A class of bivariate integer-valued time series models was constructed via copula theory.
Each series follows a Markov chain with the serial dependence captured using copula-based transition
probabilities from the Poisson and the zero-inflated Poisson (ZIP) margins. The copula theory was
also used again to capture the dependence between the two series using either the bivariate Gaussian
or “t-copula” functions. Such a method provides a flexible dependence structure that allows for
positive and negative correlation, as well. In addition, the use of a copula permits applying different
margins with a complicated structure such as the ZIP distribution. Likelihood-based inference was
used to estimate the models’ parameters with the bivariate integrals of the Gaussian or t-copula
functions being evaluated using standard randomized Monte Carlo methods. To evaluate the
proposed class of models, a comprehensive simulated study was conducted. Then, two sets of
real-life examples were analyzed assuming the Poisson and the ZIP marginals, respectively. The
results showed the superiority of the proposed class of models.

Keywords: count time series; copula; Markov chains; multivariate time series; zero-inflated Poisson

1. Introduction

Following a similar framework of building bivariate models for ordinal panel data
via [1], we constructed a class of bivariate integer-valued time series models using copula
theory. Applying either the bivariate Gaussian copula or the bivariate t-copula functions,
we jointly modeled two copula-based Markov time series models (see [2,3]). Such a method
allows for flexible dependence structures between the two time series and within each one,
which allow for both positive or negative correlations, which is theoretically not presented
with most existing methods.

The count time series data have multiple applications, many of which have been
covered in the literature; see [4] for a comprehensive review. Sometimes, in finance, climate,
public health, and crime data analysis, time series counts come as bivariate vectors that
observe not only serial dependence within each time series, but also interdependence or
cross-dependence between the two series. To accurately study such data, one needs to
account for the two types of dependence that emerge from the observed data by applying
multivariate time series models. The literature covering normally distributed multivariate
time series is plentiful. However, with count time series data and due to the complexity of
the computational burden of analyzing such data, the literature on bivariate or multivariate
count time series is limited, and so is the zero-inflated cases of time series.

Following the concepts of the integer-valued autoregressive moving average (IN-
ARMA) model, Reference [5] introduced the bivariate integer-valued moving average
(BINMA) model, which allows for both positive and negative correlation between counts.
Further, they presented an extension to the multivariate version starting from the BINMA
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model. Reference [6] proposed a bivariate zero-inflated Poisson model to analyze oc-
cupational injuries. Reference [7] introduced a multivariate autoregressive conditional
double Poisson model, which can accommodate overdispersion, serial dependence, and
cross-correlation. They used a multivariate normal copula to capture the cross-correlation
between time series, and parameter estimation was conducted using a two-stage estimation
procedure. The work of [8] presented a bivariate integer-valued autoregressive process
(BINAR(1)) in which the cross-correlation was modeled using a copula to accommodate
both positive and negative correlation. They presented the use of a Frank and Gaussian
copula to model dependence, and marginal time series were modeled using Poisson and
negative binomial INAR(1) models. Reference [9] applied state space models for mul-
tivariate count time series and used the to analyze marketing datasets. Reference [10]
proposed a new bivariate Poisson INGARCH model, which allows for positive or negative
cross-correlation between time series. Reference [11] proposed a class of flexible bivariate
Poisson INGARCH(1,1) models whose dependence was established by a special multi-
plicative factor. The parameter estimation was conducted using maximization by parts
the algorithm and its modified version to reduce the computation time. Reference [12]
proposed a model for longitudinal data where the univariate margins were selected from
the class of zero-inflated distributions, and the dependence structure was modeled using
a D-vine copula. Reference [13] presented a comprehensive review on a copula and its
applications in different fields. They presented the use of a copula in time series under
both univariate and multivariate setups. Reference [14] also wrote a comprehensive review,
but on multivariate time series for count time series.

The rest of the paper is organized as follows. In Section 2, we first provide a brief back-
ground on the Poisson and ZIP regression model and the copula theory. Then, Section 3
presents the proposed class of copula-based bivariate models to analyze two dependent
time series, each being modeled via copula-based Markov chains and then jointly handled
using either the bivariate Gaussian or t-copula functions. In Section 5, we give some
simulation results. Section 6 provides two real data examples. The conclusion is given in
Section 7.

2. Background
2.1. The Poisson and ZIP Distributions

The probability mass function (pmf) of the well-known Poisson distribution is defined as:

f (yt) =
e−λλyt

yt!
,

where λ > 0 is the intensity (mean) parameter. To account for a large number of zeros
(zero-inflation), a modified version of the Poisson distribution is given by the zero-inflated
Poisson (ZIP), which handles the presence of excess zeros. It is described by two parameters
denoted as the extra probability thrust ω and the intensity parameter λ. This is defined by:

ft(yt) = ωI{yt=0} + (1−ω)
e−λλyt

yt!
, (1)

where I{yt=0} is the indicator function, ω ∈ [0, 1] is the zero-inflation parameter, and λ > 0
is the intensity parameter, or the mean, of the baseline Poisson distribution. Note that the
pmf (1) is a mixture of the degenerate distribution with a point mass at zero and a Poisson
distribution. There is a large literature associated with the ZIP, starting from [15] to [16].

2.2. Copula

As a multivariate cumulative distribution function (cdf), the copula is a joint function
that captures the dependence structure between variables. With uniform margins U(0, 1) as
in [17], a p-dimensional copula is a function C : [0, 1]p → [0, 1] with the following properties:
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1. C(1, . . . , ai, . . . , 1) = ai, ∀i = 1, 2, . . . , p and ai ∈ [0, 1];
2. C(a1, a2, . . . , ap) = 0 if at least one ai = 0 f or i = 1, 2, . . . , p;
3. For any ai1 , ai2 ∈ [0, 1] with ai1 ≤ ai2 , for i = 1, 2, . . . , p,

2

∑
j1=1

2

∑
j2=1

. . .
2

∑
jp=1

(−1)j1+j2+...+jp C(a1j1 , a2j2 . . . , anjp) ≥ 0.

The copula is unique if the marginal distributions are continuous, but not when
some of the components are discrete. In fact, under Sklar’s theorem, if X1, X2, . . . , Xp are
random variables with marginal distribution functions F1, F2, . . . , Fp and joint cumulative
distribution function F, then the following hold:

1. There exists a p-dimensional copula C such that for all x1, x2, . . . , xp ∈ R:

F(x1, x2, . . . , xp) = C(F1(x1), F2(x2), . . . , Fp(xp));

2. If X1, X2 . . . , Xp are continuous, then the copula C is unique. Otherwise, C can be
uniquely determined on p- dimensional rectangle Range(F1) × Range(F2) × . . . ×
Range(Fp).

There are a number of copula functions, i.e., C, from which one can choose. Table 1
shows some of the popular functions of the copula families. For more details on these
families, see [18].

Table 1. Bivariate copula functions.

Copula Copula Function

Gaussian C(u1, u2; δ) = Φδ(Φ−1(u1), Φ−1(u2)), δ ∈ [−1, 1]

Frank C(u1, u2; δ) = − 1
δ log

[
1 + (e−δu1−1)(e−δu2−1)

e−δ−1

]
, δ ∈ R {0}

Gumbel C(u1, u2; δ) = exp
[
−
(
(− log (u1))

δ + (− log (u2))
δ
)1/δ

]
, δ ≥ 1

Clayton C(u1, u2; δ) = (u−δ
1 + u−δ

2 − 1)−1/δ, δ > 0

Plackett C(u1, u2; δ) =
[1+(δ−1)(u1+u2)]−

√
[1+(δ−1)(u1+u2)]2−4u1u2δ(δ−1)

2(δ−1) , δ ≥ 0

BVT C(u1, u2; δ) = τδ(τ
−1(u1), τ−1(u2)), δ ∈ [−1, 1]

3. Constructing the Bivariate Models

Assume we observe the following series of a two-dimensional vector, {Y t}n
t=1, where

Y t = (Y1t, Y2t)
′ for t = 1, 2, . . . , n. Using copula theory, we can separately study {Y1t}n

t=1
and {Y2t}n

t=1 and their joint behavior, which would describe the cross-dependence among
the bivariate series and with the assumption that each series {Y1t}n

t=1 and {Y2t}n
t=1 follows

a copula-based Markov process (see [2,3,19] for examples).
We were interested in studying the mean vector of the bivariate series, i.e., µt, and more

importantly, the correlation matrix, say Γ(t, t− 1), where:

µt = E(Y t)

=

[
E(Y1t)
E(Y2t)

]
,
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and:

Γ(t, t− 1) = COV(Y t, Y t−1)

=

[
COV(Y1t, Y1,t−1) COV(Y1t, Y2,t−1)
COV(Y2t, Y1,t−1) COV(Y2t, Y2,t−1)

]
, (2)

where the diagonal elements of the matrix in (2) describe the autocovariance among each
of the two series, while the off-diagonal elements describe the cross-correlation between
Y1t and Y2t.

Hence, observing both types of correlations, the joint probability distribution of Yt1
and Yt2 given Y1,t−1 and Y2,t−1, respectively, for t = 1, . . . , n, is given by:

f (Y1t, Y2t|Y1,t−1, Y2,t−1) =
∫ V−1(F+

1,t)

V−1(F−1,t)

∫ V−1(F+
2,t)

V−1(F−2,t)
V2(z1, z2, R)dz2dz1, (3)

where V−1 is either the inverse cdf of the normal distribution or the t-distribution with
V2(., R) being the bivariate normal or t-distribution, respectively. Here, R is the correlation
matrix associated with the bivariate distribution capturing the cross-sectional dependence,
given by:

R =

[
1 ρ
ρ 1

]
,

where ρ is a dependence parameter of either the Gaussian or the t-copula function that
explains the cross-dependence between the two series. Furthermore, F+

i,t = F(yit|yi,t−1)

and F−i,t = F(yit − 1|yi,t−1), for i = 1, 2, where:

F(yit|yi,t−1) =
F12(yit, yi,t−1)− F12(yit, yi,t−1 − 1)

ft−1(yi,t−1; θ)

is the transition cdf of Yit given Yi,t−1, for i = 1, 2, and:

F12(yit, yi,t−1) = C(Ft(yit), Ft−1(yi,t−1); δ),

where C(.; δ) is a bivariate copula function with dependence parameter δ, describing the
serial dependence in a single series, and θ = (ω, λ) is a vector of the marginal parameters
of the ZIP distribution and reduces to a scalar with the Poisson distribution, i.e., θ = λ.

4. Estimation Method

To draw a likelihood-based inference, the log-likelihood function is built. Such a
function has no closed form, so its maximization is presented next.

With the likelihood function construction for t = 1, the joint (bivariate) distribution of
Y11 and Y21 is given by:

f (Y11, Y21) =
∫ V−1(F+

1,1)

V−1(F−1,1)

∫ V−1(F+
2,1)

V−1(F−2,1)
V2(z1, z2, R) dz2 dz1, (4)

and for t = 2, . . . , n, the conditional bivariate distribution of Y1t and Y2t given Y1,t−1 and
Y2,t−1 is given by:

f (Y1t, Y2t|Y1,t−1, Y2,t−1) =
∫ V−1(F+

1,t)

V−1(F−1,t)

∫ V−1(F+
2,t)

V−1(F−2,t)
V2(z1, z2, R) dz2 dz1. (5)
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Hence, combining the functions in (4) and (5), the likelihood function is given by:

L(ϑ; y) = f (Y11, Y21).
n

∏
t=2

f (Y1t, Y2t | Y1,t−1, Y2,t−1), (6)

where ϑ = (θ′, δ1, δ2, ρ)′, where θ is the marginal parameter vector and δ1 and δ2 are the
copula parameters to deal with the first and second time series, respectively. The bivariate
dependence parameter is captured by ρ. Therefore, taking the log of the function in (6), we
obtain the log-likelihood function as follows:

log L(ϑ; y) = l(ϑ; y) = log f (Y1t, Y2t) +
n

∑
t=2

log f (Y1t, Y2t | Y1,t−1, Y2,t−1). (7)

Maximizing the log-likelihood function in (7) provides ML estimates for the proposed
class of models. However, within the log-likelihood function exists a bivariate normal or t-
integral function that does not have a closed function as shown in (3). Hence, we evaluated
the bivariate integral function using the standard randomized importance sampling method
introduced by [20], which has been proven to be effective with dimensions less than ten.
Then, the parameter estimates, i.e., ϑ̂, can be obtained by:

ϑ̂ = arg max
ϑ

l(ϑ; y).

This maximizing technique produces a numerically calculated Hessian matrix that
provides the Fisher information matrix (FIM). Taking the inverse of the FIM yields the
standard errors of the ML estimates of ϑ. In the next section, we evaluate the proposed
class of bivariate models via comprehensive simulation studies to show the effectiveness
of the estimation method.

5. Simulation Studies

A comprehensive simulation study was conducted to evaluate the proposed method,
and the asymptotic properties of the parameter estimates were validated. For each uni-
variate time series, we considered a copula-based Markov model, where a copula family
was used for the joint distribution of subsequent observations, and then, coupled these
two time series using another copula at each time point. Here, λ1, λ2 denote the means
of the marginal distributions. δ1 and δ2 measure the serial dependence within each time
series, and ρ denotes the cross-correlation between two time series. The Gaussian copula
and Student’s t-copula were selected as candidate copula families with true parameters
(λ1 = 3, λ2 = 5, δ1 = 0.6, δ2 = 0.4, ρ = 0.5). The simulation was performed using sample
sizes of 100, 300, and 500 while replicating it 300 and 500 times. For each of these five
parameter estimates, the standard error was calculated, and the results are displayed in
Tables 2 and 3.

Tables 2 and 3 illustrate that the parameter estimates converge to true values as
the number of replicates increases and the standard error decreases as the sample size
increases. The results showed that the estimates become more and more robust as the
sample size increases.
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Table 2. Parameter estimates using the Gaussian copula for a univariate and joint distribution for
300 and 500 replicates.

Sample Size Parameters 300 Replicates 500 Replicates
Estimate SE Estimate SE

100

λ1 3.185 0.433 3.166 0.412
λ2 5.119 0.395 5.104 0.382
δ1 0.501 0.064 0.501 0.062
δ2 0.348 0.079 0.343 0.078
ρ 0.450 0.072 0.450 0.071

300

λ1 3.170 0.224 3.161 0.235
λ2 5.091 0.215 5.090 0.216
δ1 0.510 0.035 0.510 0.035
δ2 0.349 0.041 0.348 0.041
ρ 0.439 0.041 0.442 0.040

500

λ1 3.173 0.194 3.164 0.191
λ2 5.092 0.166 5.085 0.167
δ1 0.512 0.026 0.512 0.027
δ2 0.350 0.034 0.353 0.034
ρ 0.442 0.033 0.443 0.033

Table 3. Parameter estimates using the Gaussian copula for univariate distributions and the t-copula
for the joint distribution for 300 and 500 replicates.

Sample Size Parameters 300 Replicates 500 Replicates
Estimate SE Estimate SE

100

λ1 3.200 0.434 3.181 0.416
λ2 5.124 0.399 5.108 0.388
δ1 0.495 0.065 0.495 0.064
δ2 0.346 0.080 0.342 0.080
ρ 0.426 0.074 0.429 0.071

300

λ1 3.190 0.232 3.184 0.241
λ2 5.094 0.214 5.096 0.217
δ1 0.504 0.037 0.504 0.036
δ2 0.347 0.042 0.347 0.042
ρ 0.418 0.042 0.420 0.041

500

λ1 3.193 0.196 3.183 0.192
λ2 5.101 0.168 5.094 0.170
δ1 0.505 0.026 0.505 0.028
δ2 0.349 0.035 0.352 0.035
ρ 0.419 0.033 0.421 0.033

Expanding the results, we performed the simulations for the ZIP choosing the Gaus-
sian copula for the univariate and joint distributions with true parameters (λ1 = 3, λ2 = 5,
ω1 = 0.3, ω2 = 0.4, δ1 = 0.6, δ2 = 0.4, ρ = −0.5) where the marginals follow the Poisson or
ZIP marginals. here for the zero-inflated Poisson distribution where ω1 and ω2 represent
the zero-inflation parameters for the ZI marginal densities. The results in Table 4 indicate
the robustness of the parameter estimates even under negative cross-correlation.
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Table 4. Parameter estimates using the Gaussian copula for the univariate and joint distributions for
300 replicates with the Poisson and ZIP marginals.

Poisson ZIP

Sample Size Parameters Estimate SE Estimate SE

100

λ1 3.168 0.432 3.402 0.387
ω1 0.332 0.084
λ2 4.993 0.378 5.205 0.386
ω2 0.405 0.067
δ1 0.503 0.065 0.539 0.0841
δ2 0.341 0.082 0.354 0.099
ρ −0.453 0.075 −0.491 0.095

300

λ1 3.146 0.225 3.402 0.204
ω1 0.337 0.044
λ2 4.978 0.199 5.201 0.191
ω2 0.409 0.038
δ1 0.510 0.035 0.549 0.044
δ2 0.345 0.040 0.362 0.052
ρ −0.444 0.039 −0.479 0.052

500

λ1 3.147 0.191 3.401 0.173
ω1 0.338 0.035
λ2 4.970 0.157 5.199 0.148
ω2 0.409 0.03
δ1 0.510 0.026 0.55 0.033
δ2 0.350 0.031 0.367 0.041
ρ −0.441 0.032 −0.476 0.041

6. Applications

The proposed models were applied to two real-life examples, and the results are
presented in Sections 6.1 and 6.2.

6.1. Application to Forgery and Fraud Data

We considered monthly counts of forgery and fraud in the 61st police car beat in
Pittsburgh, PA. For a selected county, two count time series were selected to fit the proposed
bivariate Poisson class of models. The empirical means for the two count time series were
2.632 and 8.243, respectively. The cross-correlation between the two time series was 0.307,
which provided sufficient evidence that the two series are dependent. Monthly counts of
forgery and fraud are displayed in Figure 1. The fraud count series has higher counts and
larger fluctuations when compared to the fraud time series over time. Figure 2 shows the
distributions of the count via bar plots and sample autocorrelation functions (ACFs) for the
forgery and Fraud count series, respectively. The bar plots suggest that both counts follow
Poisson distributions, whereas the ACFs indicate that the two series are serially dependent.
Hence, we can now investigate both types of dependences properly using the proposed
method of bivariate Poisson time series.
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Figure 1. Forgery and fraud count series.
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Figure 2. Bar plot and ACFs for counts of forgery (top) and fraud (bottom).

Different copula families were fit for the univariate and joint distributions, and their
corresponding AIC values are reported in Table 5. Parameter estimates and the correspond-
ing standard deviations are recorded in Table 6.
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Table 5. AIC values for the bivariate Poisson model with different copula families.

Univariate Copula Family Joint Copula Family

Gaussian t

Gaussian 1448.63 1462.68
Frank 1461.7 1475.61

Clayton 1433.78 1447.85
Gumbel 1458.4 2315.55

Table 6. Parameter estimates for the bivariate Poisson model.

Parameter Estimate SE

λ1 2.695 0.0657
λ2 8.332 0.0350
δ1 0.261 0.0527
δ2 0.192 0.0478
ρ 0.178 0.0532

6.2. Application to Sandstorm Data

The dataset used for this application consisted of the monthly count of strong sand-
storms recorded by the AQI airport station in Eastern Province, Saudi Arabia. The zero-
inflated proportions for the two time series were 65% and 61%, respectively. The cross-
correlation between the two time series was 0.465, and this provided evidence that the two
counts are cross-correlated. For the proposed BZIP model, the parameter estimates and the
corresponding standard deviations are recorded in Table 8.

The two sandstorm count series are shown in Figure 3. The plot shows that there exist
the frequent occurrence of zeros for both time series. The bar plots and ACFs of sandstorm
counts for Rafha and Qaisumah are shown in Figure 4. The plots show that there exists
the frequent occurrence of zeros and low-ordered autocorrelation. Hence, we applied the
bivariate ZIP distribution to model the sandstorm counts.

0 100 200 300

0
5

1
0

1
5

2
0

Monthly sandstrom counts of Rafha and Qaisumah

time

c
o
u
n
t

Qaisumah

Rafha

Figure 3. Sandstorm counts of Rafha and Qaisumah.
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Figure 4. Bar plot and ACFs for sandstorm counts of Rafha (top) and Qaisumah (bottom).

Different copula families were fit for the univariate and joint distributions, and their
corresponding AIC values are reported in Table 7. Table 8 represents the parameter
estimates and corresponding standard deviations for the fitted bivariate zero-inflated
model using the Gaussian copula for the joint and marginal distributions.

The standard errors are very small under both the Poisson and ZIP marginals, which
emphasizes the robustness of our proposed method.

Table 7. AIC values for the BZIP model with different copula families.

Univariate Copula Family Joint Copula Family

Gaussian t

Gaussian 2232.2 2272.09
Frank 2122.9 2153.99

Clayton 2089.8 2268.88
Gumbel 4574.24 7646.1
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Table 8. Parameter estimates for the bivariate zero-inflated Poisson model.

Parameter Estimate SE

λ1 1.384 0.0003
ω1 0.502 0.0003
λ2 2.505 0.0604
ω2 0.690 0.1501
δ1 0.327 0.0024
δ2 0.300 0.0454
ρ 0.210 0.0469

7. Summary

In this paper, we proposed a class of bivariate integer-valued time series models
that was constructed via copula theory. The use of Markov chains to capture the serial
dependence via copula-based transition probabilities with the Poisson and the zero-inflated
Poisson (ZIP) margins was described. The copula theory was also used again to capture
the dependence between the two series using either the bivariate Gaussian or t-copula
functions. Simulated examples were given to evaluate the likelihood-based estimation
method with importance sampling to evaluate the bivariate normal or t-integrals. Two
sets of count data were analyzed using the introduced class of models with the Poisson
and ZIP margins, respectively. The simulation studies and real-life examples proved the
effectiveness of the proposed method.

A future extension will be constructed for a multivariate class with a larger dimension
using the vine copula.
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