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Abstract: Metabolic pathway analysis is a key method to study a metabolism in its steady state, and
the concept of elementary fluxes (EFs) plays a major role in the analysis of a network in terms of
non-decomposable pathways. The supports of the EFs contain in particular those of the elementary
flux modes (EFMs), which are the support-minimal pathways, and EFs coincide with EFMs when
the only flux constraints are given by the irreversibility of certain reactions. Practical use of both
EFMs and EFs has been hampered by the combinatorial explosion of their number in large, genome-
scale systems. The EFs give the possible pathways in a steady state but the real pathways are
limited by biological constraints, such as thermodynamic or, more generally, kinetic constraints and
regulatory constraints from the genetic network. We provide results on the mathematical structure
and geometrical characterization of the solution space in the presence of such biological constraints
(which is no longer a convex polyhedral cone or a convex polyhedron) and revisit the concept of EFMs
and EFs in this framework. We show that most of the results depend only on very general properties
of compatibility of constraints with vector signs: either sign-invariance, satisfied by regulatory
constraints, or sign-monotonicity (a stronger property), satisfied by thermodynamic and kinetic
constraints. We show in particular that the solution space for sign-monotone constraints is a union of
particular faces of the original polyhedral cone or polyhedron and that EFs still coincide with EFMs
and are just those of the original EFs that satisfy the constraint, and we show how to integrate their
computation efficiently in the double description method, the most widely used method in the tools
dedicated to EFs computation. We show that, for sign-invariant constraints, the situation is more
complex: the solution space is a disjoint union of particular semi-open faces (i.e., without some of
their own faces of lesser dimension) of the original polyhedral cone or polyhedron and, if EFs are
still those of the original EFs that satisfy the constraint, their computation cannot be incrementally
integrated into the double description method, and the result is not true for EFMs, that are in general
strictly more numerous than those of the original EFMs that satisfy the constraint.

Keywords: metabolic pathway analysis; steady state; flux cone; flux polyhedron; elementary flux
modes; elementary flux vectors and points; extreme vectors and points; double description method;
thermodynamic constraints; kinetic constraints; regulatory constraints; sign-monotonicity; sign-
invariance; support-minimality; conformal non-decomposability; conformal support-wise non-strict-
decomposability

1. Introduction
1.1. Metabolic Networks

In order to ensure this paper is self-contained and has no prerequisite to be read,
we summarize in this introduction the state-of-the-art related to the subject and fix the
notations adopted throughout the paper. The results quoted being known, are thus given
without proof and the reader is invited to refer to the works in [1–7], in addition to the
references in the text, for the proofs or surveys.

A metabolic network is made up of a set of r biochemical enzymatic reactions. Each
reaction consumes certain metabolites (called substrates of the reaction) and produces other
metabolites (called products of the reaction). Each metabolite is assigned a coefficient in the
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reaction, its stoichiometric coefficient (counted negatively for substrates and positively for
products). We distinguish internal from external metabolites w.r.t. the system under study
(e.g., a bacterium, an eukaryotic cell), the reactions involving both internal and external
metabolites being transfer reactions. If m is the number of internal metabolites (r > m), the
network is thus given by its stoichiometric matrix S ∈ Rm×r, where coefficient Sji is the
stoichiometric coefficient of internal metabolite j in reaction i (positive if j is a product of
reaction i and negative if it is a substrate). A state of the network at a given time t is given
by the net rates (or fluxes) in each of its reactions at t, i.e., by a flux vector (or rate vector, or
flux distribution) v(t) ∈ Rr. Denoting by M(t) ∈ R∗m+ the vector of the concentrations of
internal metabolites at t, the time evolution of the network is thus given by

dM(t)
dt

= Sv. (1)

1.2. Steady-State Behavior and Flux Subspace

We are interested in the steady-state behavior of the network. The steady-state as-
sumption means that the concentrations of internal metabolites remain constant along
time (no accumulation or reduction of internal metabolites inside the system, an approx-
imation which is valid for short time periods, e.g., a few minutes) and leads thus to the
fundamental equation

Sv = 0. (2)

With only this assumption, the solution space SolS, i.e., the space of all admissible flux
vectors v, is thus the linear subspace FS of Rr given by the kernel, or nullspace [8], of S:

SolS
4
= FS

4
= {v ∈ Rr | Sv = 0}. (3)

The dimension of the flux subspace is given by dim(FS) = r− rank(S) ≥ r−m. Often,
possibly after a preprocessing to eliminate its linearly dependent rows, S is assumed to be
of full rank and then dim(FS) = r−m.

The support of a vector x ∈ Rr is defined by

supp(x)
4
= {i | xi 6= 0}. (4)

The support of a flux vector v has thus an important biological signification as it
represents the reactions involved in the subnetwork (that we shall call pathway) defined
by v (i.e., those through which the flux given by v is not null).

1.3. Irreversible Reactions, Flux Cones and Polyhedral Cones

In addition to the homogeneous equality constraints provided by the steady-state as-
sumption, the flux vectors, in general, must also satisfy homogeneous inequality constraints
corresponding to reactions known as irreversible, whose set will be noted Irr:

vi ≥ 0 for i ∈ Irr. (5)

This means that fluxes in irreversible reactions are constrained to be non-negative (in
reversible reactions, fluxes may be either positive, or negative or null and the direction
fixed as positive is arbitrary, the role between substrates and products being able to switch).
If rI = |Irr|, with 0 ≤ rI ≤ r, is the number of irreversible reactions, the solution space
SolS,Irr is the intersection of the linear subspace FS with rI non-negative half-spaces, it is
thus a particular case of a convex polyhedral cone, called s-cone (subspace cone or special
cone) or flux cone, noted FC:

SolS,Irr
4
= FC

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr}. (6)
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A (general) convex polyhedral cone is defined implicitly (or by intension) by finitely
many homogeneous linear inequalities:

C
4
= {x ∈ Rr | Ax ≥ 0} (7)

with a suitable matrix A ∈ Rn×r (called a representation matrix of C) and is thus the
intersection of n half-spaces whose frontiers contain the origin. The dimension of C, noted
dim(C), is defined as the dimension of its affine span. A flux cone corresponds thus to a
particular matrix A ∈ R(2m+rI)×r given by

A =

 S
−S
IIrr

 (8)

where IIrr ∈ RrI×r is the extension of the (rI × rI) identity matrix by columns of zeros
corresponding to reversible reactions. This means that, for a flux cone, the homogeneous
linear inequalities are of a special type: part of these (m) are actually equalities defining
a lower-dimensional subspace given by the nullspace of the stoichiometric matrix S, the
others (rI) being non-negativity constraints regarding some single coordinate variables
(given by the irreversible reactions) corresponding thus to particular half-spaces defined
by such positive coordinate axes.

Conversely, to any convex polyhedral cone C in Rr defined by a representation matrix
A ∈ Rn×r, we can associate a flux cone FCC of the same dimension in Rr+n defined by

FCC
4
= {

(
x

Ax

)
∈ Rr+n | x ∈ C}

= {v ∈ Rr+n |
(
A −I

)
v = 0, vi ≥ 0 for r + 1 ≤ i ≤ r + n}.

(9)

Using this correspondence (which defines a bijection of C onto FCC), several properties,
proven for flux cones, can actually be lifted to general convex polyhedral cones.

From the definition of a cone, for every nonzero element x of C, the whole half-line
{αx | α ≥ 0} is contained in C. This is called a ray of C. Thus a flux vector is defined up
to a positive scalar multiplication. The lineality space of C is the union of all lines of C,
i.e., {x ∈ C | −x ∈ C}. If C is defined by a representation matrix A, its lineality space thus
equals the nullspace of A, i.e., {x ∈ Rr | Ax = 0}. For a flux cone FC given by Equation (6),
its lineality space is thus constituted by the flux vectors v such that vi = 0 for i ∈ Irr, i.e.,
flux vectors involving only reversible reactions (and thus the global flux can go in either
one direction or the other). The cone C is called pointed if it does not contain a line, i.e., if
its lineality space is reduced to {0}. For example, if C is contained in a closed orthant, it is
pointed (where the 3r closed orthants are defined by {x ∈ Rr | xi opi 0 for i = 1, . . . , r} for
an operator vector op ∈ {≤,=,≥}r). In particular, a flux cone FC with only irreversible
reactions (rI = r) is necessarily pointed as it is included in the positive r-orthant (i.e., of
dimension r). Actually, reversible flux vectors very rarely occur in metabolic networks,
which therefore often give rise to pointed flux cones.

1.4. Extreme Vectors and Generating Sets

We are interested in finding an explicit (by extension) representation of C in the form
of a (minimal) set of generators. A nonzero vector x ∈ C is called extreme (or extreme
pathway [9,10] if x is a flux vector), if

x = x1 + x2, with nonzero x1, x2 ∈ C, implies x1 = λx2 with λ > 0. (10)

If x ∈ C is extreme, then {αx | α ≥ 0} is called an extreme ray of C as all its nonzero
elements are extreme (and thus for simplifying notations, we will not distinguish extreme
vectors and extreme rays when it does not create confusion). In fact, C has an extreme ray if
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and only if C is pointed and, in this case, the extreme rays are the edges (faces of dimension
one) of C and, according to Minkowski’s theorem, constitute the unique minimal (finite)
set of generators of C for conical (i.e., non-negative linear) combination:

C = {∑k∈Kβkyk | βk ≥ 0} 4= cone({yk}) (11)

where the yk’s, k ∈ K (finite index set), are representatives of the extreme rays (unique up
to positive scalar multiplication) and cone is the conical hull. More precisely, we get an
upper bound for the number of extreme vectors that are sufficient to decompose any given
nonzero vector x ∈ C: x = ∑k∈Kx βkyk with |Kx| ≤ min(dim(C), |supp(x)|+ |supp(Ax)|).
This result can be demonstrated first for a flux vector v of a pointed flux cone FC with an
upper bound given by |Kv| ≤ min(dim(C), |supp(v)|) and then for a vector x of a general
pointed polyhedral cone C by using the correspondence (9) between C and FCC which
maps the extreme vectors of C onto the extreme vectors of FCC. Extreme vectors of a
pointed cone C will be noted ExVs.

The Double Description (DD) method [11,12], known as Fourier–Motzkin, is an incre-
mental algorithm (which processes one by one each linear inequality (Ax)j ≥ 0) to build an
explicit description of a pointed cone C, as a minimal generating matrix (whose columns
are in 1-to-1 correspondence with the extreme rays), from an implicit description of C by a
representation matrix, i.e., to enumerate its extreme rays.

If C is not pointed, it is still finitely generated:

C = {∑k∈Kβkyk + ∑l∈Lγlz
l | βk ≥ 0, γl ∈ R} = cone({yk, zl ,−zl}) (12)

with (not unique this time) minimal set of generators consisting of basis vectors zl of the
lineality space and suitable vectors yk not in the lineality space (e.g., the extreme vectors of
the pointed cone obtained by intersecting C with the orthogonal complement of its lineality
space). Actually, Minkowski–Weyl theorem for cones states that it is equivalent for a set C
to being a polyhedral cone (7) or to being a finitely generated cone, i.e., the conical hull of a
finite set of vectors (as the yk’s, zl’s and −zl’s).

1.5. Elementary Vectors and Conformal Generating Sets

Now, if the existence and uniqueness of a minimal set of generators for conical
decomposition in a pointed polyhedral cone C is satisfactory for an explicit geometric
description of C, it is not in general meaningful for a flux cone FC representing the steady-
state flux vectors of a metabolic network. In fact, for a metabolic pathway, only a conical
decomposition without any cancellations is biochemically meaningful, as a reversible
reaction cannot have a net rate in opposite directions in the contributing pathways. Indeed,
the second law of thermodynamics states that a reaction can only carry flux in the direction
of negative Gibbs free energy of the reaction, which is imposed by the values of the
concentrations of the metabolites. This means that, when decomposing a flux vector, only
so-called conformal sums, i.e., sums without cancellations, are biochemically admissible. A
sum v = v1 + v2 of vectors is called conformal if, for all i ∈ {1, . . . , r}:

vi = 0 implies v1
i = v2

i = 0, vi > 0 implies v1
i , v2

i ≥ 0, vi < 0 implies v1
i , v2

i ≤ 0. (13)

An equivalent definition is to define a sum v = v1 + v2 as conformal if

sign(v1), sign(v2) ≤ sign(v) (14)

where the sign vector sign(v) ∈ {−, 0,+}r is defined by applying the sign function
component-wise, i.e., sign(v)i = sign(vi), and the partial order ≤ on {−, 0,+}r is de-
fined by applying component-wise the partial order on {−, 0,+} induced by 0 < − and
0 < +. For example, there is a one-to-one mapping between closed orthants O and sign
vectors η, defined by O = {x ∈ Rr | sign(x) ≤ η} (O will be called defined by η and noted
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Oη), which induces a one-to-one mapping between closed r-orthants and full support (i.e.,
with only nonzero components) sign vectors. For ξ,η sign vectors and v a vector, we say
that ξ conforms to η if ξ ≤ η and that v conforms to η if sign(v) ≤ η. We call two vectors
v1, v2 conformal if sign(v1), sign(v2) ≤ η for a certain sign vector η or, equivalently, if
v1

i v2
i ≥ 0 for all i (so, v1 + v2 is a conformal sum if and only if v1 and v2 are conformal). A

conformal sum v = v1 + v2, i.e., verifying Equation (14), will be noted v = v1 ⊕ v2. It is
therefore natural to look for generators as conformally non-decomposable vectors, where a
nonzero vector x of a convex polyhedral cone C is called conformally non-decomposable, if

x = x1 ⊕ x2, with nonzero x1, x2 ∈ C, implies x1 = λx2 with λ > 0. (15)

A vector x (resp., flux vector v) of a convex polyhedral cone C (resp., a flux cone FC)
is called elementary [7] if it is conformally non-decomposable. All nonzero elements of the
ray defined by an elementary vector are elementary, i.e., elementary vectors are unique up
to positive scalar multiplication (and thus we will often not distinguish elementary vectors
and elementary rays). Elementary vectors (resp., flux vectors) will be noted EVs (resp.,
EFVs).

The elementary rays constitute the unique minimal (finite) set of conformal generators
of C, i.e., generators for conformal conical sum:

C = {
⊕

g∈VG
βgeg | βg ≥ 0} 4= cone⊕({eg}) (16)

where the eg’s, g ∈ VG (finite index set), are representatives of the elementary rays
(unique up to positive scalar multiplication) and cone⊕ is the conical conformal hull.
More precisely, we get an upper bound for the number of elementary vectors that are
sufficient to decompose any given nonzero vector x ∈ C: x =

⊕
g∈VGx βgeg with |VGx| ≤

min(dim(C), |supp(x)|+ |supp(Ax)|). This result can be demonstrated first for a flux vector
v of a flux cone FC with an upper bound given by |VGv| ≤ min(dim(C), |supp(v)|) and
then for a vector x of a general polyhedral cone C by using the correspondence (9) between
C and FCC which maps the elementary vectors of C onto the elementary flux vectors
of FCC.

It follows from (10) and (15) that an extreme vector of C is elementary, i.e., ExVs ⊆ EVs,
but the converse is generally false as a conformally non-decomposable vector may be
conically decomposable. Nevertheless, if C is contained in a closed orthant, there is identity
between extreme vectors and elementary vectors, i.e., ExVs = EVs. More precisely, for
nonzero x ∈ C and O a closed orthant with x ∈ O, then x is elementary in C if and only if it
is extreme in C ∩O. It results that the elementary vectors of C are the extreme vectors of
intersections of C with any closed orthant:

EVs(C) =
⋃

O orthant
ExVs(C ∩O). (17)

Elementary vectors of C can thus be obtained by using algorithms, such as DD, to
compute extreme vectors ExVs of the pointed polyhedral cones C ∩O. By doing this, it is
convenient to select in Equation (17) only a minimal subset of closed orthants O in order
to avoid equality or inclusion between the C ∩O’s (nonempty intersection can obviously
not be avoided as orthants are closed). It is clearly enough to consider only the 2r closed
r-orthants of maximal dimension r, but this does not avoid equality or inclusion. Let
{ηi} be the maximal (for the partial order defined above on {−, 0,+}r) sign vectors of
sign(C) = {sign(x) | x ∈ C}. It is then enough in Equation (17) to consider the closed
orthants Oi = {x ∈ Rr | sign(x) ≤ ηi}, and there is no equality or inclusion between the
C ∩Oi’s, where C ∩Oi = C≤ηi = {x ∈ C | sign(x) ≤ ηi}. The C≤ηi ’s are called topes,
noted Ts (flux topes [13] noted FTs for a flux cone FC). C is thus decomposed into topes
and Equation (17) can be rewritten as

EVs(C) =
⋃

ηi maximal in sign(C)
ExVs(C≤ηi ). (18)
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Note that, for a flux cone FC Equation (6), a FT is defined by specifying a maximal sub-
set of reactions with fixed directions (thus fixing the directions of reversible reactions), the
others having necessarily a zero flux. This simplifies if FC is consistent, i.e., without unused
reaction, which means that every reaction, in every possible direction for reversible reac-
tions, is supported by a flux vector: ∀i ∈ {1, . . . , r} ∃v ∈ FC vi > 0 and ∀i ∈ {1, . . . , r}\Irr
∃v ∈ FC vi < 0. We can always assume FC consistent after a preprocessing step (practically,
this can be achieved by using flux variability analysis [14]) that removes all reactions that
cannot carry nonzero steady-state flux and changes all reversible reactions that cannot
carry flux in both directions into irreversible ones. In this case, every remaining reaction in
every possible direction is supported by a flux vector with full support (i.e., with nonzero
flux in any reaction) and all FTs FC≤ηi have full support, i.e., the ηi’s have full support or,
equivalently, the Oi’s are r-orthants. An obvious upper bound for the number of FTs is
thus 2r−rI .

Now, for a flux cone FC, another commonly used method is, at the extreme opposite,
to have it included into a single (positive) orthant in a higher dimension by splitting each
reversible reaction i into a forward i+ and a backward i− irreversible reaction. This means
decomposing a flux in i as vi = v+

i − v−i with v+
i = vi+ ≥ 0 and v−i = vi− ≥ 0. Columns

of the stoichiometric matrix S corresponding to reversible reactions i are negated (which
means exchanging the roles of substrates and products in i) and appended to S as new
columns to form the new stoichiometric matrix S̃ ∈ Rm×r̃, where r̃ = 2r− rI is the new
number of reactions and all r̃ reactions are now irreversible, Ĩrr = {1, . . . , r̃}. FC is in
one-to-one correspondence with vectors v of F̃C such that vi+ .vi− = 0 for i reversible. In
particular, the fluxes of the form vi+ = vi− > 0 with all other components being null are
obtained as extreme vectors of F̃C but represent futile cycles (involving reactions i+ and
i−) without biological reality and must be eliminated. Finally, EFVs (FC) are in one-to-one
correspondence with ExVs (F̃C) \{futile cycles} (called at the origin extreme currents in
stoichiometric network analysis [15]). F̃C is included in the positive r̃-orthant and has thus
only one FT.

We therefore have two opposite ways of dealing with reversible reactions for comput-
ing EFVs of a flux cone FC: either splitting each reversible reaction into two irreversible
ones, such that FC is reduced to a single FT at the price of an increase in the space dimen-
sion by r− rI (which can cause serious efficiency problems to algorithms such as DD) or
keeping the reversible reactions unchanged and decomposing FC into FTs, in each of which
the directions of reversible reactions are fixed, at the price of a potentially exponential (in
terms of r− rI) number of FTs to consider. All intermediate cases, where only a subset of
reversible reactions are split into irreversible ones and the others are processed by decom-
position into FTs, are obviously possible. Independently of the solution adopted, we will
work most of the time in a given FT for FC, defined by a (full support if FC is consistent)
sign vector η, and the EFVs of FC which conform to η are thus given by the ExVs of this
FT FC≤η.

1.6. Elementary Modes

The null value 0 plays a component-wise crucial role in definitions of the support of
a vector (4), of a flux cone (6) and of a conformal sum Equations (13) and (14). A close
relationship results between support-minimal vectors and elementary vectors in a flux
cone. A nonzero vector x ∈ C is called support-minimal, if

supp(x′) ⊆ supp(x), with nonzero x′ ∈ C, implies supp(x′) = supp(x). (19)

A nonzero vector x (resp., flux vector v) of a convex polyhedral cone C (resp., a
flux cone FC) is called elementary mode (resp., elementary flux mode) if it is support-
minimal (the concept of elementary flux mode was first introduced, under the name of
elementary vector [16], for a subspace of Rr, i.e., for a flux linear subspace FS Equation (3)
and then [17] for a flux cone FC with a definition actually closer to that of a support-wise
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non-decomposable vector). All nonzero elements of the ray defined by an elementary
mode are elementary modes having the same support, i.e., elementary modes are unique
up to positive scalar multiplication (and we will therefore in general identify two positively
proportional elementary modes). Elementary modes (resp., flux modes) will be noted
EMs (resp., EFMs). The concept of EFM in a flux cone FC is biologically significant as it
represents a minimal pathway operating in a steady state, i.e., with all reactions involved
necessarily active (with a nonzero net rate), which means that no proper sub-pathway can
operate in a steady state.

Note that if x is an EFM, then sign(x) is a minimal (for the partial order defined
above on {−, 0,+}r) nonzero element of sign(FC) and, conversely, it is shown that a
minimal nonzero sign vector σ ∈ sign(FC) determines an EFM x with sign(x) = σ by
FC≤σ = {v ∈ FC | sign(v) ≤ σ} = {v ∈ FC | sign(v) = σ} ∪ {0} = {λx | λ ≥ 0}.
There is thus a one-to-one mapping between EFMs and minimal nonzero sign vectors of
sign(FC). Comparing with the one-to-one mapping between FTs and maximal sign vectors
of sign(FC), we see that EFMs and FTs are dual concepts.

Now, for a flux cone FC, support-minimality and conformal non-decomposability are
equivalent properties, i.e., there is identity between elementary flux modes and elementary
flux vectors: EFMs = EFVs. For metabolic pathways in a flux cone FC, there is therefore
identity between minimal (for support inclusion) pathways and non-decomposable (for
conformal sum) pathways. From Equation (16), the EFMs constitute a conformal generating
set (i.e., generating set for conformal sum) for FC, and in fact the unique minimal such set
(for that matter one way of proving Equation (16) for flux cones FC is to prove it with EFMs
as a conformal generating set and to prove that EFMs = EFVs). From Equation (18), for
any maximal sign vector η of sign(FC), the EFMs of FC which conform to η are the EFMs
of the FT FC≤η and coincide with the ExVs of the said FT, this result being the basis of
methods for computing EFMs [18,19]. EFMs are thus decomposed into subsets according
to the decomposition of FC into flux topes [13]: the EFMs of the FT FC≤η correspond to the
FC≤σ’s, where the σ’s are the minimal nonzero sign vectors of sign(FC) such that σ ≤ η.

For a general polyhedral cone C, there is no direct relationship between elementary
modes and elementary vectors. Nevertheless, from Equation (16), it follows that, for any
EM in C, there is an EV with the same support. Thus, all minimal support patterns of
vectors appear in the set of supports of elementary vectors and are actually the minimal
elements in this set for subset inclusion:

supp(EMs) = Min⊆{supp(EVs)}. (20)

In addition, for a general polyhedral cone C, the correspondence (9) between C and the
higher dimensional flux cone FCC maps the elementary vectors of C onto the elementary
flux vectors of FCC, i.e., the elementary flux modes of FCC:

EVs(C) = {x ∈ Rr |
(

x
y

)
∈ EFMs(FCC)} (21)

with FCC given by Equation (9).
Moreover, it remains true that any vector which is support-minimal in a given C≤η

is actually support minimal in C, as it depends only on the convexity of C: if x and x′ are
vectors in a convex set with supp(x′) ⊂ supp(x), then a vector x′′ exists in this convex
set with sign(x′′) ≤ sign(x) and supp(x′′) ⊂ supp(x) (we take x′′ = λx′ + (1− λ)x with
λ minimal in (0, 1] such that x′′i = 0 for a certain i with xi 6= 0). Thus, EMs of C can be
computed tope by tope:

EMs(C) =
⋃

ηi maximal in sign(C)
EMs(C≤ηi ). (22)

See Figure 1 for an illustration of the concepts of extreme vectors, elementary vectors
and elementary modes in a convex polyhedral cone.
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Figure 1. On the left, we consider the convex polyhedral cone shaded in gray. The extreme vectors
are the blue vectors. The elementary vectors are all the blue or red vectors and coincide with the
extreme vectors for all topes (here we have two topes: the subcone with x ≥ 0 and the subcone with
x ≤ 0). The elementary mode is the red vector (common to both topes). Flux cones being defined by
linear inequalities of the form vi ≥ 0, elementary modes coincide with elementary vectors in this
case (at right).

1.7. Inhomogeneous Linear Constraints and Polyhedra

Additionally, in this standard setting, fluxes may be constrained by other constraints,
typically lower and upper bounds regarding reaction rates:

v−i ≤ vi ≤ v+
i (23)

or, more generally, any set of inhomogeneous linear constraints, noted ILC, that can be
written in the general form

Gv ≥ h (24)

where G ∈ Rl×r is a matrix and h ∈ Rl a vector with nonzero components, defining a
general inhomogeneous convex polyhedron PILC = {v ∈ Rr | Gv ≥ h}. The solution
space SolS,Irr,ILC is thus now a s-polyhedron or flux polyhedron noted FP and defined by

SolS,Irr,ILC
4
= FP

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, Gv ≥ h} = FC ∩ PILC. (25)

This is a particular case of (general) convex polyhedron that is defined implicitly by
finitely many linear inequalities:

P
4
= {x ∈ Rr | Ax ≥ b} (26)

with a suitable matrix A ∈ Rn×r and vector b ∈ Rn and is thus the intersection of n (affine)
half-spaces (Rr is equipped with both its structure of affine space, with origin 0, and its
underlying structure of vector space and we will identify a point in the affine space with
the corresponding vector in the vector space). Its dimension is defined as the dimension
of its affine span. In this way, a flux polyhedron FP corresponds to a particular matrix
A ∈ R(2m+rI+l)×r and vector b ∈ R2m+rI+l given by

A =


S
−S
IIrr
G

 b =


0
0
0
h

 (27)

meaning that the inequalities that are homogeneous actually divide into m equalities
defining a lower-dimensional subspace given by the nullspace of the stoichiometric matrix
S and into rI non-negativity constraints regarding certain single coordinate variables
(given by the irreversible reactions). A polyhedral cone (resp., flux cone) is a special case of
polyhedron (resp., flux polyhedron) where b = 0 (resp., ILC = ∅).
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To any nonempty polyhedron P given by Equation (26) is associated its so-called
recession cone CP = {x ∈ Rr | Ax ≥ 0}, which is the polyhedral cone containing all
unbounded directions (rays) of P (if P is a polyhedral cone, then P = CP). A bounded
polyhedron is called a polytope and thus P is a polytope if and only if its recession cone is
trivial: CP = {0}. P is called pointed if its recession cone CP is pointed, i.e., if its lineality
space {x ∈ Rr | Ax = 0}, also called the lineality space of P (as it contains all unbounded
lines of P), is trivial. For a flux polyhedron FP, we have: CFP = FC ∩ CPILC (thus FP can be
a polytope without PILC being so and be pointed without either FC or PILC being so). Note
that CFP is not in general a flux cone.

1.7.1. Extreme Points and Vectors and Generating Sets

A vector x ∈ P is called an extreme point, if it cannot be written as a convex combina-
tion of two distinct vectors of P:

x = λx1 + (1− λ)x2, with x1, x2 ∈ P and 0 < λ < 1, implies x1 = x2. (28)

Note that, as P is convex, it is enough to consider the midpoint of x1 and x2, i.e., to
take λ = 0.5. Extreme points coincide with vertices of P, where a vertex of P is defined as a
face of dimension 0. P is pointed if and only if it has a vertex and in this case, according to
Minkowski’s theorem, the vertices of P and the extreme rays of CP constitute the unique
minimal (finite) set of “bounded” and “unbounded” generators of P for convex and conical
combination, respectively:

P = {∑j∈Jαjpj + ∑k∈Kβkyk | αj, βk ≥ 0, ∑j∈Jαj = 1} 4= conv({pj}) + cone({yk}) (29)

where the pj’s, j ∈ J (finite index set), are the extreme points (vertices) of P, noted ExPs,
and the yk’s, k ∈ K (finite index set), are the extreme vectors of CP (unique up to positive
scalar multiplication), noted ExVs, and conv is the convex hull (if P is a pointed polyhedral
cone, then it has only one vertex, which is the zero vector, and the Equation (29) reduces to
Equation (11)). More precisely, we get an upper bound for the number of extreme points and
vectors that are sufficient to decompose any given vector x ∈ P: x = ∑j∈Jx αjpj + ∑k∈Kx βkyk

with |Jx| + |Kx| ≤ min(dim(P) + 1, |supp(x)| + |supp(Ax− b)| + 1). This result can be
deduced from result (11) for a pointed flux cone FC by using the following correspondence
between P and such a flux cone.

In fact, to any convex polyhedron P in Rr defined by a matrix A ∈ Rn×r and vector
b ∈ Rn Equation (26), we can associate a flux cone FCP in a higher dimension Rr+1+n

defined by

FCP
4
= {

 x
ξ

Ax− ξb

 ∈ Rr+1+n | ξ ≥ 0, Ax− ξb ≥ 0}

= {v ∈ Rr+1+n |
(
A −b −I

)
v = 0, vi ≥ 0 for r + 1 ≤ i ≤ r + 1 + n}.

(30)

This introduces a correspondence between vectors x of P and vectors
(

x
1

Ax− b

)
of FCP,

which maps vertices of P onto extreme vectors of FCP with component ξ = 1, and between

vectors x of CP and vectors
(

x
0

Ax

)
of FCP, which maps extreme vectors of CP onto extreme

vectors of FCP with component ξ = 0. Thanks to this correspondence, several properties,
proven for flux cones, can be lifted to general convex polyhedra.
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For the particular case where P is a flux polyhedron FP given by Equation (25), the
correspondence (30) simplifies by associating to FP the flux cone FCFP in dimension Rr+1+l

defined by

FCFP
4
= {

 v
ξ

Gv− ξh

 ∈ Rr+1+l | Sv = 0, vi ≥ 0 for i ∈ Irr, ξ ≥ 0, Gv− ξh ≥ 0}

= {v′ ∈ Rr+1+l |
(

S 0 0
G −h −I

)
v′ = 0,

v′i ≥ 0 for i ∈ Irr and for r + 1 ≤ i ≤ r + 1 + l}.

(31)

The DD method builds an explicit description of a pointed polyhedron P, in the form
of two generating matrices whose columns are respectively the pj’s and the yk’s, from an
implicit description of P as in Equation (26), i.e., enumerates its vertices ExPs and extreme
vectors ExVs.

If P is not pointed, it is still finitely generated:

P = {∑j∈Jαjpj + ∑k∈Kβkyk + ∑l∈Lγlz
l | αj, βk ≥ 0, γl ∈ R, ∑j∈Jαj = 1}

= conv({pj}) + cone({yk, zl ,−zl})
(32)

with a (not unique this time) minimal set of generators consisting of basis vectors zl of
the lineality space and suitable vectors pj and yk (e.g., the vertices and extreme vectors
of the pointed polyhedron obtained by intersecting P with the orthogonal complement
of its lineality space; if P is a non-pointed polyhedral cone, there is no nonzero pj and
Equation (32) reduces to Equation (12)). In fact, Minkowski–Weyl theorem for polyhedra
states that it is equivalent for a set P to be a polyhedron (26) or to be finitely generated, i.e.,
to be the Minkowski sum of the convex hull of a finite set of vectors (as the pj’s) and of the
conical hull of a finite set of vectors (as the yk’s, zl’s and −zl’s).

1.7.2. Elementary Points and Vectors and Conformal Generating Sets

However, such a decomposition into a finite set of generators is not in general sat-
isfactory for a flux polyhedron as only a decomposition without any cancellations is
biochemically meaningful, as was stipulated for a flux cone in Section 1.5. In the same
way as we replaced, as generators for a polyhedral cone, extreme vectors by conformally
non-decomposable vectors, we will replace, as generators for a polyhedron P, extreme
points (vertices) by convex-conformally non-decomposable vectors (and, for its recession
cone CP, extreme vectors by conformally non-decomposable vectors). A vector x of a
polyhedron P is called convex-conformally non-decomposable, if

x = λx1 ⊕ (1− λ)x2, with x1, x2 ∈ P and 0 < λ < 1, implies x1 = x2. (33)

Given a polyhedron P (resp., flux polyhedron FP), a vector (resp., flux vector) x
is called an elementary point (resp., elementary flux point)—also called “bounded” ele-
mentary vector—of P if x ∈ P is convex-conformally non-decomposable and is called an
elementary vector (resp., elementary flux vector)—also called “unbounded” elementary
vector—of P if x ∈ CP is conformally non-decomposable (it is unique only up to positive
scalar multiplication) [7]. Elementary points (resp., flux points) will be noted EPs (resp.,
EFPs) and elementary vectors (resp., flux vectors) will be noted EVs (resp., EFVs), which is
consistent with the same notation for polyhedral cones and flux cones. We will note Es =
EPs ∪ EVs (resp., EFs = EFPs ∪ EFVs) the elementary elements (resp., elementary fluxes) of
P (resp., FP).
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The elementary points and the elementary rays constitute the unique minimal (finite)
set of conformal generators of P, i.e., generators for convex-conformal (for elementary
points) and conformal (for elementary vectors) sum:

P = {
⊕

g∈PG
αgeg ⊕

⊕
g∈VG

βgeg | αg, βg ≥ 0, ∑g∈PGαg = 1}
4
= conv⊕({eg | g ∈ PG})⊕ cone⊕({eg | g ∈ VG})

(34)

where the eg’s, g ∈ PG (finite index set), are the elementary points and the eg’s, g ∈ VG
(finite index set), are the elementary vectors (unique up to positive scalar multiplication),
and conv⊕ is the convex conformal hull. More precisely, we get an upper bound for the
number of elementary points and vectors that are sufficient to decompose any given vector
x ∈ P: x =

⊕
g∈PGx αgeg ⊕⊕g∈VGx βgeg with |PGx|+ |VGx| ≤ min(dim(P) + 1, |supp(x)|+

|supp(Ax− b)|+ 1). This result can be demonstrated from result (16) for a flux cone by
using the correspondence (30) between P and FCP which maps the elementary points of P
onto the elementary flux vectors of FCP with component ξ = 1 and the elementary vectors
of P onto the elementary flux vectors of FCP with component ξ = 0.

We already know that an extreme vector of CP is elementary, and is therefore an
elementary vector of P, i.e., ExVs ⊆ EVs. It follows from Equations (28) and (33) that
an extreme point (vertex) of P is an elementary point of P, i.e., ExPs ⊆ EPs, but the
converse is generally false as a convex-conformally non-decomposable vector may be
convex decomposable. Nevertheless, if P is contained in a closed orthant (and thus CP too),
any sum of vectors of P (resp., CP) is conformal and thus there is identity between extreme
points (vertices) and elementary points (resp., between extreme vectors and elementary
vectors), i.e., ExPs = EPs and ExVs = EVs. More precisely, for x ∈ P (resp., x ∈ CP and
nonzero) and O a closed orthant with x ∈ O, then x is an elementary point (resp., elementary
vector) of P if and only if it is a vertex in P∩O (resp., an extreme vector in CP ∩O = CP∩O).
It follows that the elementary points (resp., elementary vectors) of P are the vertices (resp.,
extreme vectors) of intersections of P (resp., CP) with any closed orthant, which are pointed
subpolyhedra (resp., pointed subcones):

EPs(P) =
⋃

O orthant
ExPs(P ∩O) EVs(P) =

⋃
O orthant

ExVs(CP ∩O). (35)

Note in particular that, if 0 ∈ P, then 0 ∈ EPs. Elementary points and vectors can
therefore be obtained by using algorithms, such as DD, to compute vertices ExPs and
extreme vectors ExVs of the pointed polyhedra P ∩ O. It is obvious that considering
only the 2r closed r-orthants is enough. Now, as for polyhedral cones, decomposing the
polyhedron into topes is better:

EPs(P) =
⋃

ηi maximal in sign(P)
ExPs(P≤ηi )

EVs(P) =
⋃

ηj maximal in sign(CP)
ExVs(CP≤ηj).

(36)

If Oi is the closed orthant defined by ηi, then the corresponding tope for P is P ∩Oi =
P≤ηi = {x ∈ P | sign(x) ≤ ηi} and, as seen for polyhedral cones, CP ∩Oj = CP≤ηj

is a tope for the recession cone CP. Examine how the equality CP≤η = CP≤η, for η

an arbitrary sign vector, can be expressed in terms of topes. Note first that any ηj is
dominated by at least one ηi for the partial order ≤ on {−, 0,+}r: ∀ηj∃ηiηj ≤ ηi, which
means that Oj is a sub-orthant of Oi, and we have CP≤ηj = CP≤ηi , expressing the relation
between the topes for the recession cone of the polyhedron and the recession cones of
certain of the polyhedron topes (precisely those topes P≤ηi for which ηi dominates an
ηj, necessarily unique). More generally, the recession cone of any tope P≤ηi for P can be
expressed as a subcone of a tope for the recession cone of P by CP≤ηi = CP≤c(ηi), where

c(ηi) = max{η ∈ sign(CP) | η ≤ ηi} is the greatest (it is necessarily unique) sign vector in
sign(CP) dominated by ηi (thus, if ηi does not dominate any ηj, CP≤c(ηi) is not a tope for
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CP; this is the case for example if P is not a polytope but P≤ηi is, implying that c(ηi) = 0
and that CP≤c(ηi) = {0} is not a tope for CP 6= {0}).

For the particular case of a flux polyhedron FP (25), we have FP≤η = FC≤η ∩ PILC
and CFP≤η = CFP≤η = FC≤η ∩ CPILC , for any sign vector η. Any flux tope FP≤ηi for FP
can thus be expressed as FP≤ηi = FC≤ηk ∩ PILC, for a certain flux tope FC≤ηk for FC, i.e.,
by applying the constraints ILC to a flux tope for FC. The same holds for the recession cone:
CFP≤ηi = CFP≤c(ηi) = FC≤ηk ∩ CPILC , i.e., by applying the homogeneous counterparts of
constraints ILC to a flux tope for FC. If FP is assumed to be consistent (same definition as
for a flux cone, i.e., without unused reaction, always with a zero flux), all FTs FP≤ηi then
have full support, i.e., the ηi’s have full support or, equivalently, the Oi’s are r-orthants. An
obvious upper bound for the number of FTs is thus 2r−rI . Note that CFP to be consistent is a
sufficient (but not necessary) condition for FP to be consistent, and that, if FP is consistent,
so is FC (but FP can be inconsistent even if both FC and PILC are consistent).

The method used to include a flux cone into a single (positive) orthant in higher
dimension, by splitting each reversible reaction i into a forward i+ and a backward i−

irreversible reaction, applies as well to a flux polyhedron FP. Matrix G is extended into
matrix G̃ ∈ Rl×r̃ in the same way that S is extended into S̃ ∈ Rm×r̃, where r̃ = 2r− rI is
the new number of reactions and all r̃ reactions are now irreversible, Ĩrr = {1, . . . , r̃}. FP is
in one-to-one correspondence with vectors v of F̃P such that vi+ .vi− = 0 for i reversible.
In particular, the fluxes with vi+ , vi− > 0 for a certain i, which are obtained as vertices or
extreme vectors of F̃P, are futile (involving a net rate in opposite directions in reactions i+

and i−) without biological reality and must be eliminated (they are not generally limited to
futile cycles as in flux cones). Finally, the set of elementary fluxes EFs (FP) is in one-to-one
correspondence with (ExPs (F̃P) ∪ ExVs (F̃P)) \{futile fluxes}. As F̃P is included in the
positive r̃-orthant, it has only one FT.

As for flux cones, there are two opposite ways of dealing with reversible reactions for
computing EFs = EFPs ∪ EFVs of a flux polyhedron FP: either splitting each reversible
reaction into two irreversible ones, reducing FP to a single FT in higher dimension, or keep-
ing the reversible reactions unchanged and decomposing FP into FTs without increasing
the dimension; all intermediate cases are possible. Whatever the solution adopted, EFs
are obtained as the union of ExPs and ExVs for each flux tope for FP and thus we will
generally work in a given FT for FP, defined by a (full support if FP is consistent) sign
vector η, and the EFs of FP which conform to η are thus given by the ExPs and ExVs of
this FT FP≤η.

1.7.3. Elementary Modes

For a general polyhedron P (and even for a flux polyhedron FP), there is no direct
relationship between support-minimal Equation (19) vectors and elementary elements as
it was the case for flux cones FC. Nevertheless, from Equation (34), it follows that, for
any support-minimal nonzero vector in P (still called elementary mode EM), there is an
elementary element with the same support. Thus, Equation (20) generalizes to the case
of polyhedra and all minimal support patterns of vectors appear in the set of supports
of elementary elements and are actually the minimal nonempty elements in this set for
subset inclusion:

supp(EMs) = Min⊆({supp(Es)}\{∅}). (37)

In particular, for a metabolic network, this means that any set of reactions involved in
a minimal pathway (EFM) appears as the set of reactions involved in a certain elementary
flux (EF).

In addition, for a general polyhedron P, the correspondence (30) between P and the
higher dimensional flux cone FCP maps the elementary points (resp., elementary vectors) of
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P onto the elementary flux vectors, i.e., the elementary flux modes, of FCP with component
ξ = 1 (resp., with component ξ = 0):

EPs(P) = {x ∈ Rr |

x
1
y

 ∈ EFMs(FCP)}

EVs(P) = {x ∈ Rr |

x
0
y

 ∈ EFMs(FCP)}

(38)

with FCP given by Equation (30). The same formula holds for the particular case of a flux
polyhedron FP (25) with FCFP given by Equation (31).

Moreover, as seen in the proof of Equation (22), any vector which is support-minimal
in a certain P≤η is actually support minimal in P, thus EMs of P can be computed tope by
tope:

EMs(P) =
⋃

ηi maximal in sign(P)
EMs(P≤ηi ). (39)

See Figure 2 for an illustration of the concepts of extreme points and vectors, elemen-
tary points and vectors and elementary modes in a convex polyhedron.

Figure 2. We consider the convex polyhedron in gray and its associated recession cone delimited
by dashed lines. The extreme points are the vertices in blue and the extreme vectors are the blue
vectors. The elementary points are all the blue or red points, and the elementary vectors are all the
blue or red vectors, and they coincide, respectively, with the extreme points and extreme vectors for
all topes (here we have four topes, corresponding to the subpolyhedra in the four quadrants defined
by x and y). The elementary modes are the purple segment and half-line and they do not have a
direct relationship with elementary elements, but their two possible supports, {x} and {y}, are the
minimal nonempty supports of the elementary elements.

1.8. Complexity Results

Enumerating the vertices of an unbounded polyhedron has been proven to be an NP-
hard enumeration problem [20]. However, the hardness of vertex generation for bounded
polyhedra, and also the complexity of enumerating together vertices and extreme rays of
polyhedra, are open problems. Consequently, the complexity of enumerating all EFs or
EFMs of a metabolic network remains an open problem [21]. Nevertheless, enumerating
all extreme rays of a flux cone that contain a given reaction in their support has been
proven not to be in polynomial total time unless P = NP [21], which means that the output
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cannot be generated in time polynomial in the combined size of the input and the output.
The problem of enumerating the extreme vectors of a polyhedral cone or the vertices of a
polytope with a polynomial delay (i.e., the time between one output item and the next is
bounded by a polynomial function in terms of the input size), or the even weaker question
whether this enumeration can be done in polynomial total time, is an open problem too.
Therefore, the possibility of enumerating EFs or EFMs of a metabolic network with a
polynomial delay is an open problem [22] (except for a flux cone with all reactions being
reversible, i.e., a flux linear subspace (3), as the EFMs are then the circuits of a linear
matroid [16]). Given a flux cone and two reactions, deciding if there exists an extreme
ray of the cone that has both reactions in its support is NP-complete [21]. Thus, given a
metabolic network, deciding if an EF or EFM exists with a given support of size at least
two is an NP-complete problem. The same result holds for deciding if an EF or EFM exists
whose support size is bounded above by a given positive integer [22].

Regarding now the number of EFs or EFMs, counting the extreme rays of a polyhedral
cone or the vertices of a polytope has been proven to be a #P-complete problem [23].
Thus, counting the number of EFs or EFMs of a metabolic network is also a #P-complete
problem [22]. The McMullen’s upper bound theorem [24] states that, for any fixed positive
integers d and n, the maximum number of j-faces of a d-polytope with n facets (i.e., faces of
dimension d− 1) is attained by the dual cyclic polytope c?(d, n) for all j = 0, 1, . . . , d− 2. A
consequence is that the maximum number of vertices of a d-polytope with n facets is given

by
(

n− dd/2e
n− d

)
+

(
n− bd/2c − 1

n− d

)
∼ 2

(
n− bd/2c

n− d

)
. We thus obtain that the number of

EFs or EFMs in a metabolic network (after having split each reversible reaction into two

irreversible ones) is bounded above by a quantity approximately equal to 2
(
b(r̃ + m)/2c

m

)
with r̃ = 2r− rI (so r̃ varies between r and 2r). If the number m of internal metabolites is
small compared to the total number r̃ of reactions (after having split reversible reactions),
the number of EFs or EFMs is then bounded above by a quantity of order Θ((r̃/2)m). If m
is close to r̃, this number is bounded above by a quantity of order Θ(r̃(r̃−m)/2). The worst

case occurs when m is close to r̃/3 with an upper bound approximately equal to 2
(

2m
m

)
.

We obtain the same results with r instead of r̃ if we do not split reversible reactions but
fix their signs arbitrarily, i.e., if we consider EFs or EFMs in an arbitrary closed r-orthant
O, i.e., in an arbitrary flux tope for FC (or FP). However, note that in practice the actual
number of EFs or EFMs of a metabolic network is likely to be much smaller than these
upper bounds.

2. Metabolic Pathways in the Presence of Biological Constraints

Although the current improved implementations of the DD method [25,26] allow the
computation of millions, even billions, of EFMs or EFs, tackling genome-scale metabolic
models (GSMMs) is still beyond our reach. Moreover, most of the computed EFMs or EFs
are not biologically valid, because only stoichiometry and certain flux constraints, such
as irreversibility of reactions or bounds on reaction rates, are taken into account. For both
scaling up to large systems and limiting the number of biologically invalid solutions, it is
necessary to consider additional biological constraints, such as thermodynamic, kinetic or
regulatory constraints.

2.1. Biological Constraints
2.1.1. Thermodynamic Constraints

Assuming constant pressure and a closed system, according to the second law of
thermodynamics, a reaction i proceeds spontaneously only in the direction of its negative
Gibbs free energy ∆rGi [27], given by

∆rGi = ∆rG′0i + RT ln(∏jM
Sji
j ) (40)
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where ∆rG′0i is the standard Gibbs free energy of reaction i, R the molar gas constant, T
the absolute temperature, Mj the (positive) concentration of metabolite j and Sji is the
stoichiometric coefficient of metabolite j in reaction i (i.e., S ∈ R(m+m)×r is the extension of
the stoichiometric matrix S to the m external metabolites). This means that ∆rGi < 0, (resp.,
∆rGi > 0) is a necessary condition to get vi > 0 (resp., vi < 0), which can be expressed
by the constraint sign(vi) ≤ −sign(∆rGi), and that a flux vector v is thermodynamically
feasible [28] if and only if all its components vi satisfy such a constraint (it is enough
to consider those i ∈ supp(v) as the constraint is trivially satisfied when vi = 0). The
thermodynamic constraint for v, that depends on the vector M of metabolite concentrations,
can thus be defined as

TCM(v)
4
= ∀i ∈ supp(v), sign(vi) = −sign(∆rG′0i + RT ln(∏jM

Sji
j )). (41)

As at equilibrium ∆rGi is null, we obtain ∆rG′0i = −RT ln(Ki
eq), where Ki

eq = ∏j M
Sji
jeq

is

the equilibrium constant of reaction i. Thus, ∆rGi can be rewritten as ∆rGi = RT ln(∏jM
Sji
j /Ki

eq)

and the thermodynamic constraint TCM(v) as

TCM(v)
4
= ∀i ∈ supp(v), sign(vi) = −sign(∏jM

Sji
j − Ki

eq). (42)

Often, the concentrations of external metabolites can be measured and included in
the constraint as known parameters, keeping only a dependency of the constraint on the

concentrations of internal metabolites. The formula ∆rGi = RT ln(∏jM
Sji
j /Ki

eq) can be
rewritten, by dividing the numerator and denominator of the fraction by the terms dealing

with external metabolites, as ∆rGi = RT ln(∏jM
Sji
j /K̂i

eq), where K̂i
eq = Ki

eq/∏jM
Sji
j is the

apparent equilibrium constant of the reaction i and M (resp., M) the vector of internal
(resp., external) metabolite concentrations. The thermodynamic constraint (42) can thus be
rewritten as

TCM(v)
4
= ∀i ∈ supp(v), sign(vi) = −sign(∏jM

Sji
j − K̂i

eq). (43)

For given metabolite concentrations vector M (resp., internal metabolite concentra-
tions vector M), let tsM ∈ {−, 0,+}r (resp., tsM) be the fixed thermodynamic sign vector
defined by:

(tsM)i = −sign(∆rG′0i + RT ln(∏jM
Sji
j )) = −sign(∏jM

Sji
j − Ki

eq)

(tsM)i = −sign(∏jM
Sji
j − K̂i

eq) for 1 ≤ i ≤ r.
(44)

Then, the thermodynamic constraint TCM (resp., TCM) can be rewritten as

TCM(v)
4
= sign(v) ≤ tsM TCM(v)

4
= sign(v) ≤ tsM. (45)

Thus, the set SolTCM (resp., SolTCM
) of vectors v satisfying the constraint TCM(v)

(resp., TCM(v)), given by {v ∈ Rr | sign(v) ≤ tsM} (resp., {v ∈ Rr | sign(v) ≤ tsM}),
is the closed orthant OtsM (resp., OtsM) defined by tsM (resp., tsM), of dimension r if
tsM (resp., tsM) has full support, i.e., (tsM)i 6= 0 (resp., (tsM)i 6= 0) for all i, of lesser
dimension otherwise.

Lemma 1. Given metabolite concentrations M (resp., internal metabolite concentrations M), the set
SolTCM (resp., SolTCM

) of vectors in Rr satisfying the thermodynamic constraint TCM (resp., TCM)
is the set of vectors that conform to the thermodynamic sign vector tsM (resp., tsM) Equation (44),
i.e., the closed orthant OtsM (resp., OtsM ) defined by tsM (resp., tsM).
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2.1.2. Kinetic Constraints

Metabolic reactions are catalyzed by enzymes. The catalytic mechanisms of key
enzymes have been investigated in great detail and described by mathematical formulas.
However, many kinetic equations are still unknown and have to be substituted by standard
rate laws such as mass-action kinetics, power laws, reversible Hill kinetics, lin-log kinetics,
convenience kinetics, generic rate equations or TKM rate laws [29]. What is important for
our study is that these modular rate laws share the general form

vi = Eiκi(M) with κi = f reg
i

Ti

Di + Dreg
i

(46)

where Ei is the (non-negative) level of the enzyme catalyzing the reaction i (given either
as an amount or as a concentration, in which case the rate law is pre-multiplied by the
compartment volume) and κi depends on the concentrations of the metabolites occurring
in i (reactants of i) and on reaction i stoichiometry, rate law considered, allosteric regulation
and parameters. In the general form of κi, Ti is the thermodynamic numerator (which
can be written in the compact form k+i θ+i − k−i θ−i with turnover rate parameters k±i ) that
gives its sign to κi (and thus to vi) and reflects the relationship between chemical potentials
and reaction directions and ensures that the rate vanishes at chemical equilibrium, f reg

i
and Dreg

i , both positive, implement enzyme regulation (partial or complete for the first
one, specific for the second) and Di is the (positive) kinetic denominator, a polynomial of
scaled reactant concentrations whose terms correspond to different binding states of the
enzyme (reducing the enzyme amount available for catalysis), which depends on the rate
law considered.

The kinetic constraint for v depends both on the vector E of enzyme concentrations
and on the vector M of metabolite concentrations and can thus be defined as

KCE,M(v)
4
= v = E ◦ κ(M) (47)

where ◦ is the component-wise product of vectors: (E ◦ κ)i = Eiκi. This means that the flux
vector is a component-wise linear function of the vector of enzyme concentrations (and
a nonlinear function of the metabolite concentrations vector). For nonzero Ei, the sign of
Ti gives the direction in which reaction i proceeds, so in this sense the kinetic constraint
includes the thermodynamic constraint.

This can be highlighted on a widely-used rate law, the reversible Michaelis–Menten
kinetics [30]. In the simple case of a reaction i where the enzyme can only exist in one of
three distinct states: free, all substrates bound, or all products bound, it can be written as

κi =
k+i ∏j|Sji<0(Mj/KM

ij )
−Sji − k−i ∏j|Sji>0(Mj/KM

ij )
Sji

1 + ∏j|Sji<0(Mj/KM
ij )
−Sji + ∏j|Sji>0(Mj/KM

ij )
Sji

(48)

where k+i and k−i are the maximal forward and backward rates in reaction i per unit of
enzyme and the KM

ij ’s are the Michaelis constants. Equating the numerator to zero at

equilibrium, we obtain k+i
k−i

∏j(KM
ij )

Sji = Ki
eq. This gives

κi = k+i

 ∏j|Sji<0(Mj/KM
ij )
−Sji

1 + ∏j|Sji<0(Mj/KM
ij )
−Sji + ∏j|Sji>0(Mj/KM

ij )
Sji


1−

∏jM
Sji
j

Ki
eq

 (49)

that is, the product of three terms: the positive capacity term per unit of enzyme, the positive
(smaller than one) fractional saturation term depending on M and the thermodynamic
term, which can be rewritten as 1− e∆rGi/RT and gives the sign of κi (and thus the sign of
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vi): κi > 0⇔ ∆rGi < 0, i.e., the thermodynamic constraint. Thus, sign(κ(M)) = tsM and
we will assume that this equality holds for all kinetic laws we consider.

Note that, for given metabolite and enzyme concentrations M and E, the kinetic constraint
KCE,M defines completely and uniquely the only vector that satisfies it: SolKCE,M = {E ◦ κ(M)}.

2.1.3. Regulatory Constraints

Coupling metabolic networks with Boolean transcriptional regulatory networks allows
us to express the additional constraints imposed by gene regulatory information on a
metabolic network and to take them into account when computing EFMs [31–33]. In all
generality, such a constraint may be given by an arbitrary Boolean formula in terms of
the reactions i, viewed as propositional symbols, i.e., the positive literal i meaning that
reaction i is active (nonzero flux) and the negative literal ¬i meaning it is inactive (zero
flux). Thus, when applying this Boolean constraint, noted Bc, to a flux vector v, the positive
literal i is interpreted as vi 6= 0, i.e., i ∈ supp(v) (4), and the negative literal ¬i as vi = 0,
i.e., i /∈ supp(v).

The regulatory constraint RCBc for v induced by Bc can thus be defined as

RCBc(v)
4
= Bc(vi). (50)

Note that coupled reactions as used by Flux Coupling Analysis (FCA) [34–36] can be
easily represented by such constraints. For example, i directionally coupled to j, meaning
that zero flux through i implies zero flux through j, is expressed by Bc = i ∨ ¬j, and i
partially coupled to j, meaning that zero flux through i is equivalent to zero flux through j,
is expressed by Bc = (i ∧ j) ∨ (¬i ∧ ¬j).

By rewriting the Boolean constraint Bc in DNF (Disjunctive Normal Form), Bc =
∨

k Dk,
the set SolRCBc = {v ∈ Rr | RCBc(v)} of vectors v satisfying the constraint RCBc is a union
of the solution spaces for each disjunct Dk (and this union can be assumed to be disjoint
by taking the disjuncts Dk two by two inconsistent). Now a disjunct is a conjunction of
literals, where a negative literal ¬i corresponds to the constraint vi = 0 and a positive
literal i to the constraint vi 6= 0, which can be rewritten as the disjunctive constraint
(vi < 0) ∨ (vi > 0). Finally, a propositional symbol i that does not appear in the disjunct
corresponds to an absence of constraint on vi, which can be rewritten as the disjunction
(vi < 0) ∨ (vi = 0) ∨ (vi > 0). Thus, the solution space for a disjunct is itself the dis-
joint union of subspaces each one defined by constraints of type vi opi 0 for all i, with
opi ∈ {<,=,>}, that is, defined by {v ∈ Rr | sign(v) = rs} for a given sign vector
rs ∈ {−, 0,+}r, i.e., an open orthant O̊rs (which, for rs 6= 0, is topologically open in
the vector subspace it spans and is the interior in this subspace of the closed orthant
Ors = {v ∈ Rr | sign(v) ≤ rs}, which is the closure of O̊rs in Rr). In summary, SolRCBc is
thus the disjoint union of such open orthants. Now, instead of keeping this partition of
SolRCBc in open orthants, it can be more practical to generalize this concept and deal with
what we will call semi-open orthants O◦, i.e., orthants O without some of their faces of
lesser dimension (open orthant is thus a particular case of semi-open orthant, without any
facet thus without any face of lesser dimension). To do this, we can group together with
any given open orthant O̊rsj in SolRCBc , in a same cluster C, all other open orthants O̊rsk

in SolRCBc such that Orsk ⊂ Orsj , i.e., Orsk is a face of Orsj , and, for any arbitrary orthant
Orsl with Orsk ⊂ Orsl ⊂ Orsj (which is equivalent to rsk < rsl < rsj), then O̊rsl ∈ C. In this
case

⋃
O̊∈C O̊ is a semi-open orthant O◦. We can iteratively process like this by consider-

ing each time the open orthants in SolRCBc that have not yet been selected in any cluster,
which guarantees that the semi-open orthants built in this way are disjoint. In addition, by
choosing as open orthant, O̊rsj , to start with at each iteration, a maximal one among those
that remain, we are sure that no two of the semi-open orthants thus built can be grouped
together to constitute a bigger semi-open orthant, i.e., the collection obtained is minimal in
this sense. We finally obtain that SolRCBc can be written as a disjoint union of semi-open
orthants, with no merging possible between any two of them. However, note that such a
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decomposition is not unique and that an inclusion can still exist between the closures of
two such semi-open orthants. If we consider the particular case of a Boolean constraint
which is an arbitrary disjunct D, then for any closed r-orthant Oη, i.e., for any full support
sign vector η, SolRCD ≤η is a semi-open orthant, which is the face of Oη defined by vi = 0
for all i such that ¬i is a literal of D, without its facets of equation vi = 0 for all i such that i
is a literal of D.

Lemma 2. The set SolRCBc of vectors in Rr satisfying the regulatory constraint RCBc is a disjoint
union of open orthants O̊. These can be grouped together such that SolRCBc is a disjoint union of
semi-open orthants O◦, i.e., orthants O without some of their faces, such that no two of them can be
grouped together to constitute a bigger semi-open orthant. If Bc is a conjunction of literals and η an
arbitrary full support sign vector, then SolRCBc ≤η is itself a semi-open orthant.

2.2. Characterizing the Solution Space

We start from a flux cone (6) (or more generally a flux polyhedron (25)) representing the
flux vectors of a metabolic network in a steady state, satisfying the stoichiometric equations,
the inequalities regarding irreversibility of reactions (and possibly some inhomogeneous
linear constraints). Then, we consider additional biological constraints, such as those
described in Section 2.1. In all generality, these constraints will be noted Cx(v), where
v represents a flux vector in Rr and x a vector of biochemical quantities involved in
the constraint (typically, metabolite concentrations and enzyme concentrations). Some
parameters (such as stoichiometric coefficients), that are not made explicit in the notation
for sake of simplicity, are also present. In the following, the solution space in Rr of an
arbitrary constraint C will be noted SolC, defined as SolC = {v ∈ Rr | C(v)}. For given
values of quantities x, the solution space is thus the constrained flux cone subset (not
necessarily a cone, depending on Cx):

SolS,Irr,C(x)
4
= CFCC(x)

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, Cx(v)}

= SolS,Irr ∩ SolCx = FC ∩ SolCx

(51)

or, more generally, the constrained flux polyhedron subset (not necessarily a polyhedron,
depending on Cx):

SolS,Irr,ILC,C(x)
4
= CFPC(x)
4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, Gv ≥ h, Cx(v)}
= SolS,Irr,ILC ∩ SolCx = FP ∩ SolCx = CFCC(x) ∩ PILC.

(52)

Now, very often, most of the values of quantities x, if not all, are unknown. We then
only require consistency of the set of constraints Cx, i.e., the existence of values for variables
x such that the constraints are satisfied. This means that we replace the constraint Cx by the
constraint ∃xCx whose solution space is Sol∃xCx = {v ∈ Rr | {x | Cx(v)} 6= ∅} = ⋃

xSolCx .
The solution space becomes

SolS,Irr,C
4
= CFCC

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, ∃xCx(v)}

= SolS,Irr ∩ Sol∃xCx =
⋃

x
SolS,Irr,C(x) = FC ∩

⋃
x
SolCx

(53)

or

SolS,Irr,ILC,C
4
= CFPC

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, Gv ≥ h, ∃xCx(v)}

= SolS,Irr,ILC ∩ Sol∃xCx =
⋃

x
SolS,Irr,ILC,C(x) = FP ∩

⋃
x
SolCx = CFCC ∩ PILC.

(54)
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If some but not all of the values of quantities x are known, ∃x concerns only those x
whose value is unknown, the known values being integrated in C as parameters to simplify
the notations.

We will obtain examples of such constraints ∃xCx(v) from the cases of thermodynamic
constraint TC and kinetic constraint KC.

Depending on the constraint considered, the solution space is in general no longer
a cone or polyhedron and no longer convex. Nevertheless, the definitions of extreme
vectors and extreme points, of elementary flux vectors and elementary flux points, and
of elementary flux modes are still valid, as, respectively, non-decomposable and convex
non-decomposable vectors, conformally non-decomposable and convex-conformally non-
decomposable vectors, and support-minimal vectors, where decomposition and support
minimality have to be understood w.r.t. vectors of the solution space. It is then clear that if
a vector of FC (resp., FP) satisfies one of those properties in FC (resp., FP) and satisfies the
given constraint, then it satisfies the same property in the solution space, i.e.,

ExVs(FC) ∩ SolCx ⊆ ExVs(CFCC(x)) ExVs(FC) ∩ Sol∃xCx ⊆ ExVs(CFCC)

ExVs(CFP) ∩ SolCx ⊆ ExVs(CFPC(x)) ExVs(CFP) ∩ Sol∃xCx ⊆ ExVs(CFPC)

ExPs(FP) ∩ SolCx ⊆ ExPs(CFPC(x)) ExPs(FP) ∩ Sol∃xCx ⊆ ExPs(CFPC)

EFVs(FC) ∩ SolCx ⊆ EFVs(CFCC(x)) EFVs(FC) ∩ Sol∃xCx ⊆ EFVs(CFCC)

EFVs(CFP) ∩ SolCx ⊆ EFVs(CFPC(x)) EFVs(CFP) ∩ Sol∃xCx ⊆ EFVs(CFPC)

EFPs(FP) ∩ SolCx ⊆ EFPs(CFPC(x)) EFPs(FP) ∩ Sol∃xCx ⊆ EFPs(CFPC)

EFMs(FC) ∩ SolCx ⊆ EFMs(CFCC(x)) EFMs(FC) ∩ Sol∃xCx ⊆ EFMs(CFCC)

EFMs(FP) ∩ SolCx ⊆ EFMs(CFPC(x)) EFMs(FP) ∩ Sol∃xCx ⊆ EFMs(CFPC)

(55)

For EFMs, the above formulas are valid whatever the structure of SolC. It is also the
case for ExPs and EFPs but, in practice, only really meaningful if CFPC(x) (resp., CFPC) is
a convex polyhedron. Finally, for ExVs and EFVs, this is only meaningful if CFCC(x) (resp.,
CFCC) is a convex polyhedral cone and CFPC(x) (resp., CFPC) is a convex polyhedron. This
is the case when SolCx (resp., Sol∃xCx ) is itself a convex polyhedral cone and we will see that,
for almost all common biological constraints, this solution space is actually a union of such
cones or of semi-open cones and thus the formulas will apply for each conical component.
In this case we have CCFPC = CFCC ∩ CPILC = CFP ∩ SolC. This can be generalized when
SolC is a convex polyhedron, and thus CFCC and CFPC too, with CCFCC = FC ∩ CSolC and
CCFPC = CCFCC ∩ CPILC = CFP ∩ CSolC , by replacing SolC by CSolC in the formulas above
regarding ExVs and EFVs.

However, in all the above cases, we generally do not have the reciprocal subset
inclusion. This is what we will study for particular constraints.

2.2.1. Application to Thermodynamics

Assume first that the concentrations of the metabolites (resp., of the internal metabo-
lites) are known and given. From Equations (51) and (52) and Lemma 1, we obtain

CFCTC(M) = FC≤tsM CFCTC(M) = FC≤tsM (56)

CFPTC(M) = FP≤tsM CFPTC(M) = FP≤tsM . (57)

CFCTC(M), CFCTC(M) are thus flux cones and CFPTC(M), CFPTC(M) flux polyhe-
dra (possibly equal to {0} or empty (for polyhedra) if the flux directions imposed by the
concentrations of the metabolites and by the second law of thermodynamics are incompati-
ble with the steady-state assumption). When nonempty, they consist of a single flux tope.
From Equation (18), (36) and (39), it follows that

EFVs(CFCTC(M)) = EFVs(FC)≤tsM =

EFMs(CFCTC(M)) = EFMs(FC)≤tsM = ExVs(FC≤tsM)
(58)
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EFPs(CFPTC(M)) = EFPs(FP)≤tsM = ExPs(FP≤tsM)

EFVs(CFPTC(M)) = EFVs(CFP)≤tsM = ExVs(CFP≤tsM
)

EFMs(CFPTC(M)) = EFMs(FP)≤tsM

(59)

and the same for CFCTC(M) and CFPTC(M). Now, considering the decomposition of FC
(resp., FP) into flux topes, we can proceed flux tope by flux tope for the computation of
the sets above. Starting from a FT FC≤η (resp., FP≤η), we have (FC≤η)≤tsM = FC≤η′

(resp., (FP≤η)≤tsM = FP≤η′ ) with η′ =inf (η, tsM) (where inf is defined component-wise
with inf (−,+) = 0) and the four sets above are equal to ExVs (FC≤η′ ), ExPs (FP≤η′ ),
ExVs (CFP≤η′ ) and EFMs (FP≤η′ ) respectively. This is in particular the case if we split each

reversible reaction into two irreversible ones as, in higher dimension, F̃C (resp., F̃P) is
reduced to a single flux tope defined by η = +, the all-positive sign vector, and thus η′ is
obtained from tsM by changing each − into 0. Note also that FC (resp., FP) consistent does
not imply that CFCTC(M) (resp., CFPTC(M)) is consistent (η being full support does not
imply that η′ is full support).

Proposition 1. Given metabolite concentrations M, the space of flux vectors in FC (resp., FP)
satisfying the thermodynamic constraint TCM is a flux cone (resp., a flux polyhedron), made
up of vectors of FC (resp., FP) which conform to the thermodynamic sign vector tsM given in
Equation (44). Its elementary flux vectors, identical to elementary flux modes, (resp., elementary
flux points, elementary flux vectors and elementary flux modes) are exactly those of FC (resp., FP)
that satisfy the constraint, i.e., that conform to tsM. The same result holds for internal metabolite
concentrations M and thermodynamic constraint TCM with tsM.

Let us now consider the more usual case where the concentrations of the metabolites (at
least those of internal metabolites) are unknown. From Equation (45), we obtain one or the other
form for the thermodynamic constraint (existentially quantified on metabolite concentrations):

TC(v)
4
= ∃M TCM(v)

4
= ∃M sign(v) ≤ tsM

TC(v)
4
= ∃M TCM(v)

4
= ∃M sign(v) ≤ tsM.

(60)

Though the metabolite concentrations Mj are unknown, some lower bounds M−j
and upper bounds M+

j on these concentrations are often known. They are thus added as
additional constraints:

TCb(v)
4
= ∃M (sign(v) ≤ tsM ∧M− ≤M ≤M+)

TCb(v)
4
= ∃M (sign(v) ≤ tsM ∧M− ≤M ≤M+).

(61)

The solution space in Rr of these constraints is thus SolTC =
⋃

MSolTCM (idem for TC)
and SolTCb =

⋃
M|M−≤M≤M+SolTCM (idem for TCb). From the result of Lemma 1, it follows

that SolTC =
⋃

MOtsM and SolTCb =
⋃

M|M−≤M≤M+OtsM (idem for TC and TCb with OtsM ).
This is obviously enough to take the union on the maximal tsM’s (resp., tsM’s) when M
varies. As these are at most 2r, the union is finite.

Lemma 3. The set SolTC (resp., SolTCb ) of vectors in Rr satisfying the thermodynamic constraint
TC (resp., TCb) is a union of closed orthants. More precisely, it is the (finite) union for all M (resp.,
all bounded M) of the sets of vectors that conform to tsM, i.e., OtsM ’s. The same result holds for TC
and TCb with M and OtsM .

It follows from Equations (53), (54), (56) and (57) that

CFCTC =
⋃

M
FC≤tsM CFCTCb =

⋃
M|M−≤M≤M+ FC≤tsM (62)
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CFPTC =
⋃

M
FP≤tsM CFPTCb =

⋃
M|M−≤M≤M+ FP≤tsM (63)

and the same for TC and TCb with M and tsM, where all unions are finite.
From this and Equations (18), (36) and (39), we get

EFVs(CFCTC) =
⋃

M
EFVs(FC≤tsM) =

⋃
M

EFVs(FC)≤tsM =

EFMs(CFCTC) =
⋃

M
EFMs(FC≤tsM) =

⋃
M

EFMs(FC)≤tsM =
⋃

M
ExVs(FC≤tsM)

(64)

EFPs(CFPTC) =
⋃

M
EFPs(FP≤tsM) =

⋃
M

EFPs(FP)≤tsM =
⋃

M
ExPs(FP≤tsM)

EFVs(CFPTC) =
⋃

M
EFVs(CFP≤tsM

) =
⋃

M
EFVs(CFP)≤tsM =

⋃
M

ExVs(CFP≤tsM
)

EFMs(CFPTC) =
⋃

M
EFMs(FP≤tsM) =

⋃
M

EFMs(FP)≤tsM

(65)

and the analog for TCb, TC and TCb. Now, considering the decomposition of FC (resp.,
FP) into flux topes, we can proceed flux tope by flux tope for the computation of the sets
above. Starting from a FT FC≤η (resp., FP≤η), we have

⋃
M(FC≤η)≤tsM =

⋃
iFC≤ηi (resp.,⋃

M(FP≤η)≤tsM =
⋃

iFP≤ηi ) where {ηi} are the maximal sign vectors in {inf (η, tsM) |M ∈
R∗(m+m)
+ } and the four sets above are equal to

⋃
iExVs (FC≤ηi ),

⋃
iExPs (FP≤ηi ),

⋃
iExVs

(CFP≤ηi ) and
⋃

iEFMs (FP≤ηi ), respectively. This is in particular the case if we split each

reversible reaction into two irreversible ones as, in higher dimension, F̃C (resp., F̃P) is
reduced to a single flux tope defined by η = +. The analog holds for TCb, TC and TCb.

Proposition 2. The space of flux vectors in FC (resp., FP) satisfying the thermodynamic constraint
TC, or TCb, is a finite union of flux cones (resp., flux polyhedra), obtained as those vectors of FC
(resp., FP) which conform to tsM, for a certain M, or bounded M. It is thus no longer convex but
made up of particular faces FC≤ηi (resp., FP≤ηi ) of each flux tope FC≤η for FC (resp., FP≤η for
FP), with ηi ≤ η. Its elementary flux vectors, identical to elementary flux modes, (resp., elementary
flux points, elementary flux vectors and elementary flux modes) are exactly those of FC (resp., FP)
that satisfy the constraint, i.e., that conform to a certain tsM, and coincide thus with the extreme
vectors (resp., the extreme points, extreme vectors and elementary modes) of the FC≤ηi ’s (resp.,

FP≤ηi ’s). The same result holds for TC, or TCb, with M and tsM.

We will now refine this result in order to characterize the faces involved. Consider
the case of a flux cone where the concentrations of external metabolites are given and
assume first there are no bounds on the concentrations of the internal metabolites [37]. As
CFCTC = FC∩⋃MOtsM and CFPTC = FP∩⋃MOtsM , let us begin by studying

⋃
MOtsM . We

have x ∈ ⋃MOtsM ⇔ ∃M ∈ R∗m+ (sign(x) ≤ tsM) ⇔ ∃M ∈ R∗m+ ∀i, 1 ≤ i ≤ r, (sign(xi) ≤
−sign(∏jM

Sji
j − K̂i

eq)) from Equation (44). By applying the monotonic logarithm function
and noting LM ∈ Rm the vector whose components are given by LMj = ln(Mj), we obtain
x ∈ ⋃

MOtsM ⇔ ∃LM ∈ Rm ∀i, 1 ≤ i ≤ r, (sign(xi) ≤ −sign(∑jSjiLMj − ln(K̂i
eq))) ⇔

∃LM ∈ Rm ∀i ∈ supp(x) (sign(xi)∑jSjiLMj < sign(xi)ln(K̂i
eq)). We will now make use of

Gale’s theorem (or Kuhn–Fourier theorem), which is a form of Farkas’ duality lemma (for
two vectors x, y, x < y means xi < yi for all i):

Gale’s theorem (a form of Farkas’ lemma). For any A ∈ Rp×q and b ∈ Rp, exactly one
of the following statements holds:

(a) there exists y ∈ Rq such that Ay < b;
(b) there exists z ∈ Rp\{0} such that z ≥ 0, zTA = 0 and zTb ≤ 0.

Applying this theorem in the formula above to A ∈ Rsupp(x)×m (where we note

Rsupp(x) 4= Rr ∩⋂i|xi=0{zi = 0} the subspace of vectors having a null component outside
the support of x), given by Aij = sign(xi)Sji, and b ∈ Rsupp(x), given by bi = sign(xi)ln(K̂i

eq),
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provides x ∈ ⋃MOtsM ⇔ ∀z ∈ Rsupp(x)\{0}(z ≥ 0, ∀j, 1 ≤ j ≤ m, ∑iSjisign(xi)zi = 0 ⇒
∑isign(xi)ziln(K̂i

eq) > 0) ⇔ ∀z ∈ Rr\{0}(sign(z) ≤ sign(x), Sz = 0 ⇒ zTlnK̂eq > 0)
where lnK̂eq ∈ Rr is defined by: (lnK̂eq)i = ln(K̂i

eq).
We thus obtain CFCTC = {v ∈ FC | ∀z ∈ FC\{0}(sign(z) ≤ sign(v) ⇒ zTlnK̂eq >

0)}. This can be rewritten as CFCTC = {v ∈ FC | FC≤sign(v)\{0} ⊆ H+
lnK̂eq

}, where

H+
lnK̂eq

4
= {z ∈ Rr | zTlnK̂eq > 0} is an open half-space with the hyperplane HlnK̂eq

4
=

{z ∈ Rr | zTlnK̂eq = 0} as a frontier. Considering the decomposition of FC into FTs
FC≤η, this is equivalent to CFCTC ≤η = {v ∈ FC≤η | FC≤sign(v)\{0} ⊆ H+

lnK̂eq
} for all η’s

maximal sign vectors in sign(FC). Now, note that, in this formula, FC≤sign(v is the minimal
face (for set inclusion) of FC≤η containing v. We finally obtain finally:

CFCTC ≤η =
⋃

i
FC≤ηi for all maximal ηi ≤ η s.t. FC≤ηi\{0} ⊆ H+

lnK̂eq
. (66)

That is to say, CFCTC is the union of all the maximal faces FC≤ηi of the FTs for FC
such that FC≤ηi\{0} ⊆ H+

lnK̂eq
or, equivalently, the union of all maximal faces Fi of the

FC ∩O’s for all r-orthants O such that Fi\{0} ⊆ H+
lnK̂eq

(see Figure 3).

Figure 3. Structure of the solution space in the presence of the thermodynamic constraint (without
bounds on the metabolite concentrations). We consider a given flux tope and represent the section of
the flux cone with an affine hyperplane (polytope shaded in pink). Vertices e1 to e8 thus represent the
EFMs. When we add the thermodynamic constraint, the solution space is the union of all the maximal
faces of the flux cone that are entirely contained in the open half-space {z ∈ Rr | zTlnK̂eq > 0} (left
side of frontier H in the section), represented in red. In particular, the thermodynamically feasible
EFMs are given by the vertices e1 to e5 that belong to this half-space. The set of these EFMs is
decomposed into LTCSs, made up of the EFMs of the maximal faces above (in the 2D shape, these
LTCSs are thus given by {{e1, e2}, {e2, e3}, {e3, e4}, {e4, e5}}).

A topological consequence of this characterization is that CFCTC\{0} is a connected
set (actually arc-connected). Another consequence, regarding EFMs (or, equivalently,
EFVs), is:

EFMs(CFCTC) = EFMs(FC) ∩ SolTC = EFMs(FC) ∩ H+
lnK̂eq

(67)
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i.e., the elementary flux modes in the (non-convex) cone of those flux vectors in FC satisfy-
ing the thermodynamic constraint TC are exactly those elementary flux modes in FC that
satisfy TC, i.e., that belong to the open half-space H+

lnK̂eq
. We can equivalently write

EFMs(CFCTC) = EFMs(FC+
lnK̂eq

)\HlnK̂eq

with FC+
lnK̂eq

4
= {v ∈ Rr | Sv = 0, vi ≥ 0 for i ∈ Irr, vTlnK̂eq ≥ 0}

(68)

where FC+
lnK̂eq

is the polyhedral cone obtained from FC merely by adding the homogeneous

linear inequality vTlnK̂eq ≥ 0 [38]. Each flux vector of CFCTC is a conformal conical sum
of these EFMs, but the converse is false as CFCTC is not convex. Thus the set of EFMs,
considered globally, does not characterize the solution space CFCTC. More precisely,
we have

CFCTC ≤η =
⋃

i
cone⊕(Ei) with Ei = EFMs(FC≤ηi ) (69)

where FC≤ηi is as in Equation (66), i.e., CFCTC is characterized by the decomposition of
the set of EFMs into the (non-disjoint) subsets Ei. Now, the Ei’s are exactly the maximal
subsets of EFMs included in a given flux tope for FC (i.e., in a given r-orthant O) and
whose conical hull is included in CFCTC, i.e., all vectors in this hull must satisfy the
constraint TC: Ei maximal such that Ei ⊆ EFMs (CFCTC) and Ei ⊆ O with O r-orthant
and cone⊕(Ei) ⊆ CFCTC. Such an Ei is called a largest thermodynamically consistent set
(LTCS) of EFMs [39] in O (or, equivalently, in the flux tope FC≤η = FC ∩O defined by O).

We could want to estimate the ratio of thermodynamically feasible EFMs on all
EFMs, i.e., the ratio of EFMs (CFCTC) on EFMs (FC). If all reactions are reversible (rI =
0), then the function v 7→ −v maps the EFMs on one side of hyperplane HlnK̂eq

onto
the EFMs on the other side. Thus, if we neglect the EFMs that might belong to this
hyperplane, it means that 50% of the EFMs are thermodynamically feasible (and thus
only 50% eliminated). Now, intuitively, irreversible reactions given in Irr come from an
expert knowledge that can be seen as a form of compiled thermodynamic knowledge,
as we saw that it is thermodynamics which imposes the direction in which a reaction
may proceed. Therefore, we can assume, provided the adequacy of the model for some
given environment (such as the concentrations of external metabolites, supposed here to be
known), that any thermodynamically feasible EFM satisfies these irreversibility constraints.
Under this assumption, the irreversibility constraints rule out only thermodynamically
unfeasible EFMs so if we then apply the thermodynamic constraint TC we only eliminate
at most than 50% of the remaining EFMs (from 50% when all reactions are reversible to
0% when all are irreversible, without splitting any reversible reaction into two irreversible
ones).

If inhomogeneous linear constraints are added, we have CFPTC = CFCTC ∩ PILC,
with PILC = {v ∈ Rr | Gv ≥ h} Equation (25) and we obtain in the same way, for all η’s
maximal sign vectors in sign(FC)

CFPTC ≤η =
⋃

i
FP≤ηi for all maximal ηi ≤ η s.t. FC≤ηi\{0} ⊆ H+

lnK̂eq
. (70)

That is to say, CFPTC is the union of all the FP≤ηi = FC≤ηi ∩ PILC such that FC≤ηi is
a maximal face of a FT for FC verifying FC≤ηi\{0} ⊆ H+

lnK̂eq
or, equivalently, the union

of the Fi ∩ PILC for all maximal faces Fi of the FC ∩ O’s for all r-orthants O such that
Fi\{0} ⊆ H+

lnK̂eq
. Take care because the FP≤ηi ’s involved are faces of FP≤η included in

H+
lnK̂eq

∪ {0}, but not any face of FP≤η included in H+
lnK̂eq

∪ {0} is included in CFPTC (as

such a face may be defined by inhomogeneous equality constraints coming from ILC and
not only by nullity constraints of the form vi = 0). CFPTC is no longer a connected set
in general.

We can sum up these results as follows.
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Proposition 3. The space of flux vectors in FC satisfying the thermodynamic constraint TC is
a finite union of flux cones, obtained as all the maximal faces of all the flux topes FC≤η that are
entirely contained (except the null vector) in the open half-space H+

lnK̂eq
= {z | zTlnK̂eq > 0}. The

thermodynamically feasible EFMs are thus those EFMs which belong to this half-space and can be
simply computed as the EFMs of the flux cone obtained from FC by adding to it the homogeneous
linear inequality vTlnK̂eq ≥ 0 (and removing those EFMs that would belong to the frontier
hyperplane of H+

lnK̂eq
). The set of these EFMs can be decomposed into (non-disjoint) maximal

subsets of EFMs belonging to a same flux tope (i.e., a same r-orthant) and whose conical hull is
made up of thermodynamically feasible vectors, each of these subsets thus representing the set of
EFMs of one of the maximal faces above. At most 50% of the EFMs can thus be ruled out as
thermodynamically infeasible, if we assume that no thermodynamically feasible flux vector violates
given irreversibility constraints. In the presence of additional inhomogeneous linear constraints on
flux vectors given by Gv ≥ h, the space of flux vectors in FP satisfying TC is a finite union of flux
polyhedra, obtained as intersections of the flux cones above with the polyhedron defined by Gv ≥ h.
All these results hold for constraint TC by just replacing the K̂i

eq’s by the Ki
eq’s.

This applies in particular to F̃C and F̃P (after splitting each reversible reaction into
two irreversible ones) with the simplification, as F̃C (resp., F̃P) is reduced to a single flux
tope defined by η = +, that we must just consider the maximal faces of F̃C that are entirely
contained (except the null vector) in the open half-space H+

lnK̂eq
.

Consider now the case where certain bounds on the concentrations of internal metabo-
lites are known, i.e., the case of the thermodynamic constraint TCb. We have CFCTCb =

FC ∩ ⋃M|M−≤M≤M+OtsM . From what precedes, we obtain x ∈ ⋃
M|M−≤M≤M+OtsM ⇔

∃LM ∈ Rm(∀i ∈ supp(x) (sign(xi) ∑jSjiLMj < sign(xi)ln(K̂i
eq)) ∧ LM ≤ ln(M+) ∧

−LM ≤ −ln(M−)). Applying Gale’s theorem in this formula to

 A
Im
−Im

 ∈ R(supp(x)+2m)×m,

with Aij = sign(xi)Sji, and

 b
lnM+

−lnM−

 ∈ Rsupp(x)+2m, with bi = sign(xi) ln(K̂i
eq), pro-

vides x ∈ ⋃M|M−≤M≤M+OtsM ⇔ ∀

z
z
z

 ∈ Rr+2m(z 6= 0, z ≥ 0, z ≥ 0, sign(z) ≤ sign(x),

Sz + z− z = 0 ⇒ (zTzTzT)lnK̂b
eq > 0) where lnK̂b

eq ∈ Rr+2m is defined by lnK̂b
eq = lnK̂eq

lnM+

ln(1/M−)

 = ln

 K̂eq
M+

1/M−

. Let FCb 4
= {

z
z
z

 ∈ Rr+2m | (S Im −Im)

z
z
z

 = 0,

zi ≥ 0 for i ∈ Irr, z ≥ 0, z ≥ 0} = {

 z
w + (Sz)−

w + (Sz)+

 ∈ Rr+2m | zi ≥ 0 for i ∈ Irr, w ≥ 0},

where (Sz)+j = max((Sz)j, 0) and (Sz)−j = max(−(Sz)j, 0). FCb is a flux cone in Rr+2m

of dimension r + m and FCb ∩ (Rr × {0}) = FC. We thus obtain CFCTCb = {v ∈ FC |

∀(zTzTzT)T ∈ FCb (z 6= 0, sign(z) ≤ sign(v)⇒ (zTzTzT)lnK̂b
eq > 0)}. This is equivalent

to: CFCTCb ≤η = {v ∈ FC≤η | ∀(zTzTzT)T ∈ FCb (z ∈ Osign(v)\{0} ⇒ (zTzTzT)lnK̂b
eq >

0)} = {v ∈ FC≤η | ∀z ∈ Rr(z ∈ Osign(v)\{0} ⇒ (zT(Sz)−T(Sz)+T)lnK̂b
eq > 0)} for

all flux topes FC≤η for FC. This can be rewritten as CFCTCb ≤η = {v ∈ FC≤η | FCb ∩

(Osign(v)\{0} ×R2m
+ ) ⊆ H+

lnK̂b
eq
}, where we note H+

lnK̂b
eq

4
= {Z ∈ Rr+2m | ZTlnK̂b

eq > 0}

the open half-space with hyperplane H
lnK̂b

eq

4
= {Z ∈ Rr+2m | ZTlnK̂b

eq = 0} as a frontier.
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We have H+

lnK̂b
eq
∩Rr = H+

lnK̂eq
and H

lnK̂b
eq
∩Rr = HlnK̂eq

. Now, note that, in the formula

above, FCb ∩ (Osign(v) ×R2m
+ ) is a face of the cone FCb

≤η+ (we note η+ the sign vector of
dimension r + 2m obtained by concatenation of η of dimension r and + of dimension 2m,
thus FCb

≤η+ = FCb ∩ (Oη ×R2m
+ )) whose intersection with Rr × {0} is equal to FC≤sign(v),

the minimal face of the tope FC≤η containing v. Actually, among all the faces of FCb
≤η+

whose intersection with Rr × {0} is equal to FC≤sign(v), this is the maximal one (without
any constraint on the R2m

+ factor). Thus, finally,

CFCTCb ≤η =
⋃

j
FC≤ηj for all maximal ηj ≤ η s.t. Fb

j \({0} ×R2m) ⊆ H+

lnK̂b
eq

, (71)

where Fb
j is the maximal face of FCb

≤η+ whose intersection with Rr × {0} is equal to FC≤ηj .
Note that any FC≤ηj given by Equation (71) is a face of a certain FC≤ηi given by

Equation (66) (i.e., ∀ηj∃ηi ηj ≤ ηi). CFCTCb\{0} is no longer a connected set in general. A
consequence, for EFMs (or, equivalently, EFVs), is:

EFMs(CFCTCb ≤η) = EFMs(FC≤η) ∩ SolTCb

= {v ∈ EFMs(FC≤η) | Fb
v\({0} ×R2m) ⊆ H+

lnK̂b
eq
}, (72)

where Fb
v is the maximal face of FCb

≤η+ s.t. Fb
v ∩ (Rr × {0}) = R+v. This means that the

elementary flux modes in the (non-convex) cone of those flux vectors in FC≤η satisfying
the thermodynamic constraint TCb are exactly those elementary flux modes v in FC≤η (or
in CFCTC ≤η) that satisfy TCb, i.e., such that the maximal face of FCb

≤η+ whose intersection
with Rr × {0} is equal to the ray R+v is included in H+

lnK̂eq
∪ ({0} ×R2m). Note that EFMs

(CFCTCb) is thus given by

{v ∈ EFMs(FC) | ∀z ∈ Rr

(sign(z) ≤ sign(v), (zT(Sz)−T(Sz)+T)lnK̂b
eq ≤ 0⇒ z = 0)}.

(73)

Each flux vector of CFCTCb is a conformal conical sum of these EFMs, but the converse
is false as CFCTCb is not convex. More precisely, we have

CFCTCb ≤η =
⋃

j
cone⊕(Ej) with Ej = EFMs(FC≤ηj) (74)

where FC≤ηj is as in Equation (71), i.e., CFCTCb is characterized by the decomposition of
the set of EFMs into the (non-disjoint) subsets Ej. Now, the Ej’s are exactly the maximal
subsets of EFMs included in a given flux tope for FC (i.e., in a given r-orthant O) and
whose conical hull is included in CFCTCb , i.e., all vectors in this hull must satisfy the

constraint TCb: Ej maximal such that Ej ⊆ EFMs (CFCTCb) and Ej ⊆ O with O r-orthant
and cone⊕(Ej) ⊆ CFCTCb . Such an Ej is called a largest thermodynamically consistent
(for bounded concentrations of internal metabolites) set (LTCbS) of EFMs [39] in O (or,
equivalently, in the flux tope FC≤η = FC ∩O defined by O) and is included in a certain
LTCS Ei as in Equation (69).

If inhomogeneous linear constraints ILC are added, we have, for all η’s maximal sign
vectors in sign(FC):

CFPTCb ≤η =
⋃

j
FP≤ηj (75)

with ηj as in Equation (71). That is to say, CFPTCb is the union of all the FP≤ηj = FC≤ηj ∩
PILC such that FC≤ηj is given as in Equation (71).

We can sum up these results as follows.
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Proposition 4. For FC a flux cone in Rr, let us define its lift to Rr+2m as the flux cone FCb =
{Z ∈ Rr×R2m

+ ) | (S Im−Im)Z = 0, Zi ≥ 0 for i ∈ Irr, 1 ≤ i ≤ r}. Thus, FCb ∩ (Rr×{0}) =
FC. For any flux tope FC≤η for FC and any face FC′ of FC≤η, its lift to Rr+2m is defined as the
maximal face of FCb

≤η+ whose intersection with Rr ×{0} is equal to FC′. The space of flux vectors
in FC satisfying the thermodynamic constraint TCb is a finite union of flux cones, obtained as all
the maximal faces of all the flux topes FC≤η whose lifts to Rr+2m are entirely contained (except
vectors from {0} ×R2m) in the open half-space H+

lnK̂b
eq
= {Z ∈ Rr+2m | ZTlnK̂b

eq > 0}, where

lnK̂b
eq = ln(K̂eq M+ 1/M−)T . The thermodynamically feasible EFMs in FC≤η are those EFMs

in FC≤η whose lifts (as rays) are contained (except vectors from {0} ×R2m) in this half-space. The
set of these EFMs can be decomposed into (non-disjoint) maximal subsets of EFMs belonging to
a same flux tope (i.e., a same r-orthant) and whose conical hull is made up of thermodynamically
feasible vectors, each of these subsets representing thus the set of EFMs of one of the maximal faces
above. In the presence of additional inhomogeneous linear constraints on flux vectors given by
Gv ≥ h, the space of flux vectors in FP satisfying TCb is a finite union of flux polyhedra, obtained
as intersections of the flux cones above with the polyhedron defined by Gv ≥ h.

2.2.2. Application to Kinetics

In the same way, we obtain for the kinetic constraint in the absence of knowledge
regarding values of concentrations of enzymes and metabolites:

KC(v)
4
= ∃E, M KCE,M(v)

4
= ∃E, M v = E ◦ κ(M). (76)

Once more we can add optional lower and upper bounds M−j and M+
j on metabolite

concentrations and/or lower and upper bounds E−i and E+
i on enzyme concentrations if

they are known, and also a global enzymatic resource constraint, which is often considered,
as cTE ≤W, where c is a constant positive vector of size r and W a positive constant:

KCb(v)
4
= ∃E, M (v = E ◦ κ(M) ∧ cTE ≤W ∧ E− ≤ E ≤ E+ ∧M− ≤M ≤M+). (77)

We can also consider intermediate constraints, existentially quantified only on metabo-
lite concentrations if enzyme concentrations are known:

KCE(v)
4
= ∃M KCE,M(v) (78)

possibly with bounds on metabolite concentrations in the quantification:

KCb
E(v)

4
= ∃M (KCE,M(v) ∧M− ≤M ≤M+) (79)

or only on enzyme concentrations if metabolite concentrations are known:

KCM(v)
4
= ∃E KCE,M(v) (80)

possibly with enzymatic resource constraint and bounds on enzyme concentrations in
the quantification:

KCb
M(v)

4
= ∃E (KCE,M(v) ∧ cTE ≤W ∧ E− ≤ E ≤ E+). (81)

The solution space in Rr of the constraint KCM is SolKCM =
⋃

ESolKCE,M =
⋃

E∈Rr
+
{E ◦

κ(M)} = {v ∈ Rr | sign(v) ≤ sign(κ(M))} = {v ∈ Rr | sign(v) ≤ tsM} = SolTCM , as the
sign of κ(M) is the thermodynamic sign vector tsM. It is thus the same as the solution space
of the thermodynamic constraint TCM and is the closed orthant OtsM . It follows that the
solution space of the constraint KC, given by SolKC =

⋃
MSolKCM =

⋃
MSolTCM = SolTC, is

the same as the solution space of the thermodynamic constraint TC and is the finite union of
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the closed orthants OtsM . Similarly, SolKCb = SolTCb if the bounds are only on the metabolite
concentrations, i.e., there are no bounds on enzyme concentrations. From SolKCb

M
=⋃

E−≤E≤E+∧cTE≤W{E ◦ κ(M)}, it follows that the flux vectors in SolKCb
M

are defined by the

linear inequalities: κi(M)E−i ≤ vi ≤ κi(M)E+
i for those i’s such that κi(M) > 0, κi(M)E+

i ≤
vi ≤ κi(M)E−i for those i’s such that κi(M) < 0, vi = 0 for those i’s such that κi(M) = 0
and ∑i|κi(M) 6=0 ciκi(M)−1vi ≤ W − ∑i|κi(M)=0 ciE−i . Thus SolKCb

M
is a convex polyhedron

(a parallelepiped contained in the closed orthant OtsM , truncated by a hyperplane). Now,
if E− = 0, i.e., in the absence of positive lower bounds on enzyme concentrations, this
polyhedron has 0 as a vertex and is nothing else than SolKCM , i.e., the closed orthant
OtsM , truncated as a parallelepiped by the faces given by vi = κi(M)E+

i for those i’s
such that κi(M) 6= 0 and by the hyperplane ∑i|κi(M) 6=0 ciκi(M)−1vi = W. Consequently,
SolKCb =

⋃
MSolKCb

M
is equal to a certain truncation of SolKC = SolTC, defined as the finite

union of truncations of the closed orthants OtsM (each Ots becoming a parallelepiped, after
being truncated by hyperplanes according to equations vi = sup(κi(M))E+

i if tsi = +
(resp., vi = in f (κi(M))E+

i if tsi = −), where sup (resp., in f ) applies to those M such that
sign(κ(M)) = ts, which gives a polyhedron, but also, in the presence of an enzymatic
resource constraint, by an algebraic, nonlinear, surface, which gives in this case a local
solution space in Ots that is no longer a polyhedron and is not necessarily convex).

Proposition 5. Given metabolite concentrations M, the kinetic constraint KCM is identical to
the thermodynamic constraint TCM and thus the set SolKCM of vectors in Rr satisfying KCM is
the closed orthant defined by the thermodynamic sign vector tsM. The kinetic constraint KC is
identical to the thermodynamic constraint TC and thus the set SolKC of vectors in Rr satisfying
KC is a union of closed orthants. In the presence of bounds only on metabolite concentrations
(and not on enzyme concentrations), the kinetic constraint KCb is identical to the thermodynamic
constraint TCb and thus the set SolKCb of vectors in Rr satisfying KCb is a union of closed
orthants. Therefore, these kinetic constraints boil down to thermodynamic constraints and the
results regarding the geometrical structure of the corresponding spaces of flux vectors and the
characterization of elementary flux vectors (or elementary flux modes) given by Propositions
1–4 apply: in particular, CFCKC(M) = CFCTC(M) is a flux cone and CFCKC = CFCTC and
CFCKCb = CFCTCb are finite unions of flux cones. For a given M and in the presence of bounds
on enzyme concentrations, the set of vectors in Rr satisfying KCb

M is a convex polyhedron and
CFCKCb(M) is thus a flux polyhedron. In the particular case where positive lower bounds on
enzyme concentrations are absent, CFCKCb(M) is just the parallelepiped obtained by truncating
the flux cone CFCKC(M) = CFCTC(M) by hyperplanes originating from the upper bounds on
enzyme concentrations and by a hyperplane originating from the enzymatic resource constraint and
coincides thus with the said flux cone in a certain adequate neighborhood of 0, i.e., for sufficiently
small values of the fluxes. In this case, CFCKCb is thus a truncation (by an algebraic surface) of
CFCTC and coincides with this union of flux cones in a certain adequate neighborhood of 0 and the
characterization of elementary flux vectors remains valid in this neighborhood. These results extend
in the presence of additional inhomogeneous linear constraints on flux vectors given by Gv ≥ h by
intersecting the solution spaces above with the polyhedron defined by Gv ≥ h, giving rise to flux
polyhedra (results in a neighborhood of 0 holding only if h < 0).

However, the geometric structure of SolKCE , of SolKCb
E

and of SolKCb in the presence
of positive lower bounds on enzyme concentrations, depends on the kinetic function κ(M)
and CFCKC(E), CFCKCb(E) and CFCKCb are generally neither polyhedra nor convex.

Proposition 5 has important consequences on constrained enzyme allocation problems
in kinetic metabolic networks. Considering a kinetic metabolic network, with possible
bounds on metabolite concentrations, but not on enzyme concentrations, i.e., with solution
space CFCKC = CFCTC, or CFCKCb = CFCTCb , which is a finite union, for M varying,
of the flux cones FC≤tsM , the generic enzyme allocation problem consists in maximizing
the specific flux (or specific rate, i.e., rate expressed per unit of biomass amount) of a
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given reaction, say k, defined as vk/ET , where v is a flux vector in CFCKC or CFCKCb and
ET denotes the total protein content in the system. ET is expressed in all generality as a
fixed weighted sum of the enzyme concentrations, ET = ∑r

i=1 wiEi (the wi’s being given
positive weights that denote the fraction of the resource used per unit of enzyme), able
to encode different enzymatic constraints (such as limited cellular or membrane surface
space) as well as other constraints regarding the abundance of certain enzymes. Likewise,
the steady-state flux component vk > 0 may stand for diverse metabolic processes, ranging
from the synthesis rate of a particular product within a specific pathway to the rate of
overall cellular growth. The formation rate of a metabolic product expressed per gram
of biomass and the specific growth rate of a cell are both examples of such specific rates.
We look for maximization in the solution space by varying the metabolite concentrations
(inside their bounds, if any) and the enzyme concentrations (without bounds), which gives
rise to a complex non-convex optimization problem. Now, maximizing vk/ET is equivalent
to fixing the rate vk to a positive value, e.g., to 1, and minimizing the ET needed to attain
this level of vk. This means minimizing the function ∑r

i=1(wi/κi(M))vi by varying M (with
possible bounds) and, for each given M, the flux vector v in FPM = FC≤tsM ∩ {v | vk = 1}
(without bounds on v as we assume there are no bounds on enzyme concentrations).
If all FPM’s are empty, the problem is unsolvable, i.e., vk > 0 is incompatible with the
kinetics. Otherwise, i.e., when the problem is solvable, we consider successively each
nonempty FPM. Such an FPM is a flux polyhedron whose elementary flux points (which
are equal to the extreme points or vertices) correspond to the intersections of the hyperplane
{v | vk = 1} with extreme rays (edges) of FC≤tsM , i.e., EFMs of CFCKC or CFCKCb , and
whose elementary vectors (equal to extreme vectors), if any, correspond to the extreme
rays of FC≤tsM ∩ {v | vk = 0}. As, for M fixed, the function to minimize is linear in v, its
minimum on FPM is reached on a lower-dimensional face of FPM (as vi/κi(M) ≥ 0, wi > 0
and FPM is included in a closed orthant, this face is necessarily a convex hull of certain
extreme points of FPM even if it is not a polytope, i.e., no extreme vector may occur as one of
the generators of this face), and thus reached in particular at at least one extreme point, i.e.,
at an EFM. Now, as the total number of EFMs is finite, so is the number of those for which
the minimum of the function occurs for any given M, considering all nonempty FPM’s.
Therefore, when M varies in its domain, we obtain the result that the maximum of the
specific flux vk/ET occurs (at least) at an EFM of CFCKC or CFCKCb . In the case of CFCKCb

and assuming the κi(M)’s are continuous, this maximum is attained at an EFM at finite
metabolite concentrations as M then varies in the compact set ∏j[M

−
j , M+

j ]. In the case of
CFCKC, the maximum might not be attained at finite metabolite concentrations. This is the
result already obtained in [40,41] and we followed a similar proof, but relying this time on a
precise characterization of the solution space CFCKC or CFCKCb and of the EFMs given by
the Proposition 5, which was not the case in the above-quoted works. Finally, the enzyme
allocation problem can theoretically be solved by computing all the thermodynamically
feasible EFMs having k in their support (i.e., satisfying the Boolean constraint Bc = k, see
next subsection), say {el} (all components of which are fixed by el

k = 1), and, for each one,
by computing the minimum (if it exists) of ∑i∈supp(el)(wiel

i)/κi(M) for M varying in its

domain, such that sign(κi(M)) = sign(el
i) for all i ∈ supp(el), which is a much simpler

optimization problem than the initial one. The global minimum, if it exists, is then the
smallest of these local minima, for all el’s. We then obtain the maximum value of the
specific flux vk/ET , an EFM where this maximum occurs and the values of the metabolite
concentrations for which it occurs.

Proposition 6. Given a kinetic metabolic network with possible bounds on metabolite concen-
trations, but not on enzyme concentrations, i.e., with solution space CFCKC or CFCKCb , if the
enzyme allocation problem, which consists in maximizing the specific flux (rate per unit of biomass
amount) in a given reaction k, i.e., vk/ET , where v is a flux vector in CFCKC or CFCKCb and
ET = ∑r

i=1 wiEi is the total protein content in the system (the wi’s being fixed positive weights),
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has an optimal solution (which is always the case for CFCKCb if the problem is solvable), then this
solution is reached in particular at an EFM of CFCKC or CFCKCb .

2.2.3. Application to Regulatory Constraints

From Lemma 2, we obtain that CFCRCBc (resp., CFPRCBc ) is the disjoint union of
FC ∩ O̊’s (resp., FP ∩ O̊’s), for certain open orthants O̊ and, after merging, the disjoint
union of FC ∩O◦’s (resp., FP ∩O◦’s), for certain semi-open orthants O◦ (orthants without
some of their faces), without any further merging possible.

We will call open polyhedral cone (resp., open polyhedron) in dimension r > 0 an
r-polyhedral cone C (resp., r-polyhedron P) without its facets, and we will note it C̊ (resp.,
P̊) as it coincides with the topological interior of C (resp., P) in the affine span of C (resp.,
P). Reciprocally, C (resp., P) is the topological closure of C̊ (resp., P̊) in Rr. C̊ (resp.,
P̊) is defined as in Equation (7) (resp., in Equation (26)) but with strict inequalities (and
equalities for defining its affine space). We will in particular consider open faces of a cone
C or polyhedron P as F̊ for F a face of C or P. C (resp., P) is the disjoint union of its open
faces (by convention, a face of dimension 0, i.e., a vertex, is equal to its open face).

It follows from these definitions that, for any closed r-orthant O and any open orthant
O̊′ ⊂ O, FC ∩ O̊′ (resp., FP ∩ O̊′) is an open face of FC ∩O (resp., a disjoint union of open
faces of FP ∩O, as we have to keep faces corresponding to Gv = h). In all, we obtain that
CFCRCBc ∩O (resp., CFPRCBc ∩O) is a disjoint union of open faces of the flux cone FC ∩O
(resp., the flux polyhedron FP ∩O) or, equivalently, that, for any flux tope FC≤η for FC
(resp., FP≤η for FP), CFCRCBc ≤η (resp., CFPRCBc ≤η) is a disjoint union of open faces of
FC≤η (resp., FP≤η). As we grouped together open orthants into semi-open orthants in
Lemma 2, we can also group together with such an open face F̊ all those other open faces
F̊′ in question where F′ is a face of F to obtain thus a (minimal) disjoint union of semi-open
polyhedral cones (resp., semi-open polyhedra). Here, we call semi-open polyhedral cone
C◦ (resp., semi-open polyhedron P◦) a polyhedral cone C (resp., polyhedron P) without
certain (between zero and all) of its faces of lesser dimension, that can be thus expressed as
a disjoint union of certain (between all and only C̊, resp., P̊) of the open faces of C (resp.,
P). We have: C̊ ⊆ C◦ ⊆ C (resp., P̊ ⊆ P◦ ⊆ P).

Proposition 7. Given an arbitrary Boolean constraint Bc, the solution space CFCRCBc (resp.,
CFPRCBc ) for the regulatory constraint RCBc is a finite disjoint union of open polyhedral cones
(resp., open polyhedra), which are certain open faces of all the flux topes FC≤η (resp., FP≤η).
Grouping together certain of these open faces according to Lemma 2, we obtain a disjoint union
of semi-open (i.e., without certain of their faces of lesser dimension) faces of the FC≤η’s (resp.,
FP≤η’s), without any possible further merging of two of them to make up a bigger semi-open face.

Note that the rules presented in the proof of Lemma 2 to group together open faces into
semi-open faces are applied globally to all flux topes. If we choose to apply them separately
for each flux tope, then the union of semi-open faces obtained is no longer disjoint in
general as two such semi-open faces for two different flux topes may have a nonempty
intersection (as CFCRCBc ∩O (resp., CFPRCBc ∩O) and CFCRCBc ∩O′ (resp., CFPRCBc ∩O′),
for two different closed r-orthants O and O′ may have open faces in common). Note also
that, even after this merging, there may exist a strict inclusion relationship between the
closures of two semi-open faces.

From this geometrical structure of the solution space, we will now deduce what its
EFMs and its EFVs (or EFPs) are. Let us begin with a preliminary remark. We know that,
by definition of EFVs, we have, for a flux cone FC, EFVs (FC) =

⋃
η maximal in sign(FC) EFVs

(FC≤η) (and idem for a flux polyhedron FP with EFPs and EFVs), which remains true
for any constrained flux cone subset CFCC (or constrained flux polyhedron subset CFPC)
whatever the biological constraint C is. We saw that this equality was also satisfied by EFMs
for FC: EFMs (FC) =

⋃
η maximal in sign(FC) EFMs (FC≤η) (and idem for FP) and remained

true for CFCC for C any thermodynamic constraint or any kinetic constraint of the form
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KCM, KC or KCb (in the absence of bounds on enzyme concentrations), thus allowing in
these cases to decompose the identification of EFMs flux tope by flux tope, as for EFVs.
However this is no longer true for regulatory constraints. Actually, counter-examples can
be found in the presence of reversible reactions, used in a given direction in an EFM local to
a certain flux tope and in the other direction in an EFM local to another flux tope, choosing
the Boolean constraint such that it imposes a strict set inclusion between the supports of
these two local EFMs.

Example 1. Consider the simple network comprising one reaction R : A → B, where A and B
are the two internal metabolites, and four transfer reactions T1 : → A, T2 : → B, T3 : A →,
T4 : B→, and assume that R and T1 are reversible (we will note par rev() the reversed reaction), the
three other reactions being irreversible (see Figure 4). It is obvious that e1 = (1, 1, 0, 0, 1)T , made
up of T1, R, T4, e4 = (−1,−1, 1, 0, 0)T , made up of T2, rev(R), rev(T1), and e3 = (0, 0, 1, 0, 1)T ,
made up of T2, T4, are EFMs of FC. Consider now the Boolean constraint Bc = T1∧ T4. Then,
e1 is an EFM of CFCRCBc , belonging to CFCRCBc ≤(+,+,+,+,+)T . Moreover, any e = λe3 + e4

with λ > 0 is an EFM of CFCRCBc ≤(−,−,+,+,+)T (obviously, the sub-pathways e3 and e4 of e do
not belong to CFCRCBc ). As supp(e1) = {R, T1, T4} and supp(e) = {R, T1, T2, T4}, we have
supp(e1) ⊂ supp(e) and thus e is not an EFM of CFCRCBc .

Figure 4. Simple network of Example 1 with R and T1 reversible. e1, e4, e3 are EFMs. When we add
the regulatory constraint T1∧ T4, e1 is still an EFM, which is not the case of any positive combination
of e3 and e4, which has a larger support. Nevertheless, the latter is an EFM in the flux tope defined
by reverse fluxes in R and T1.

Now, from a biological point of view, it is not relevant to compare supports of two
pathways with a certain reaction in a given direction in the first support and in the other
direction in the second support (case of R and T1 in the example). This means that the useful
concept concerning minimality is not support-minimality, but sign-minimality (exactly in
the same way as, concerning decomposition, we saw that the useful concept is not non-
decomposability but conform non-decomposability), which is equivalent to comparing
supports separately for each closed r-orthant, i.e., for each flux tope. We will thus identify
the EFMs flux tope by flux tope (note that this is analog to distinguishing a positive
flux from a negative flux in a regulatory constraint, e.g., distinguishing the constraints
T1+ ∧ T4 and T1− ∧ T4 in the example above, which could be done by adopting a tri-
valued logic instead of a Boolean logic to represent these constraints; this is obviously done
automatically when splitting each reversible reaction into two irreversible ones, where only
the positive r-orthant has to be considered).



Computation 2021, 9, 111 31 of 56

Therefore, we will consider in the following an arbitrary closed r-orthant O given by a
full support sign vector η (with ηi = + for i ∈ Irr) and consider the part of the solution
space limited to this orthant, i.e., CFCRCBc ≤η (resp., CFPRCBc ≤η), thus we can limit our-
selves to sign vectors η that are maximal in sign(CFCRCBc) (resp., sign(CFPRCBc)). We saw
that we could rewrite the Boolean constraint as a disjunction of two by two exclusive dis-
juncts, Bc =

∨
k Dk, decomposing thus the solution space CFCRCBc ≤η (resp., CFPRCBc ≤η)

into the disjoint solution spaces for each disjunct, CFCRCDk
≤η (resp., CFPRCDk

≤η). The
elementary flux vectors (i.e., faces of dimension one) of FC≤η that satisfy the constraint
RCDk are obviously elementary flux vectors of CFCRCDk

≤η and the reciprocal is also true:
if a flux vector of the semi-open polyhedral cone CFCRCDk

≤η is not an elementary flux
vector of FC≤η, i.e., is not a face of dimension one, then it belongs to the interior of a face
of CFCRCDk

≤η of dimension at least two and is thus conformally decomposable in this
face, i.e., is not elementary in CFCRCDk

≤η. It follows that the elementary flux vectors of
CFCRCBc ≤η are made up of all the elementary flux vectors of the CFCRCDk

≤η’s. We can
sum up the results regarding EFVs as:

For Bc =
∨

k
Dk, EFVs(CFCRCBc) =

⋃
η maximal in sign(CFCRCBc )

EFVs(CFCRCBc ≤η)

=
⋃

η

⋃
k
EFVs(CFCRCDk

≤η) =
⋃

η

⋃
k
EFVs(FC≤η) ∩ SolRCDk

.
(82)

This means that EFVs can be computed flux tope by flux tope and constraint-disjunct
by constraint-disjunct. Moreover, the result holds also for EFPs (by considering vertices of
FP≤η) and EFVs of CFPRCBc .

However, for EFMs, we have to take care that a phenomenon similar to that described
in the example above still arises and that, even in a given flux tope, an EFM of CFCRCDk

≤η
is not necessarily an EFM of CFCRCBc ≤η.

Example 2. Consider the network comprising three irreversible reactions and one internal metabo-
lite A: R1 :→ A, R2 :→ A, R3 : A→, and the Boolean constraint Bc = ¬R1∨ R2, decomposed
as Bc = D1 ∨ D2, with D1 = ¬R1 and D2 = R1 ∧ R2 (see Figure 5). Take η = +. Then,
e1 = (0, 1, 1)T , made up of R2, R3, which is the only EFM of CFCRCD1 ≤η

, is also the only EFM
of CFCRCBc ≤η. However any e2 = (λ, 1, 1 + λ)T with λ > 0, made up of R1, R2, R3, is an EFM
of CFCRCD2≤η

and is not an EFM of CFCRCBc ≤η. Note that the way the constraint is decomposed
matters. With the decomposition Bc = D′1 ∨ D′2 with D′1 = R2 and D′2 = ¬R1∧ ¬R2, the result
for D′1 is identical to that for D1, but CFCRCD′2

≤η = {0}.

Figure 5. Simple network of Example 2. When we add the regulatory constraint ¬R1∨ R2, e1 is the
only EFM, and also the only one for the disjunct D1 = ¬R1 of the constraint, but no e2 combination
is an EFM, while it is an EFM for the disjunct D2 = R1∧ R2.

This means that, if it is natural to study each CFCRCDk
≤η (resp., CFPRCDk

≤η) sepa-
rately in order to characterize the solution space and if EFVs are obtained in this way by
collecting all the local EFVs, it is not the case for EFMs and, after collecting all local EFMs,
we must only keep those with minimal support:

EFMs(CFCRCBc ≤η) = Minsupp-⊆{EFMs(CFCRCDk
≤η)}k

. (83)
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Proposition 8. Given an arbitrary regulatory constraint RCBc with Bc =
∨

k Dk, where the
disjuncts Dk are taken two by two inconsistent, and the associated constrained flux cone subset
CFCRCBc (resp., constrained flux polyhedron subset CFPRCBc ), its EFVs (resp., EFPs and EFVs)
are obtained by collecting these for each flux tope (i.e., in each r-orthant O≤η) and for each disjunct,
i.e., for each CFCRCDk

≤η (resp., CFPRCDk
≤η), and are nothing else than the EFVs (resp., EFPs

and EFVs) of FC (resp., FP) satisfying the constraint RCBc. This is not the case for EFMs. First, an
EFM of CFCRCBc ≤η is not necessarily an EFM of CFCRCBc , but actually the biologically relevant
minimality concept being sign-minimality and not support-minimality, we will consider EFMs
for each flux tope CFCRCBc ≤η. Second, an EFM of CFCRCDk

≤η is not necessarily an EFM of
CFCRCBc ≤η. EFMs of CFCRCBc ≤η are actually obtained by collecting EFMs of CFCRCDk

≤η for
all k and keeping only those with minimal support.

This being said, we will now focus on an arbitrary disjunct D of the form
∧

i∈I vi ∧∧
j∈J ¬vj with I, J ⊆ {1, . . . , r}, I ∩ J = ∅. Thus, CFCRCD ≤η (resp., CFPRCD ≤η) is the semi-

open face F◦ of FC≤η (resp., FP≤η), obtained from the face F defined by {vj = 0, j ∈ J}
(i.e., F = FC≤η ∩

⋂
j∈J{vj = 0}, idem with FP) by removing its facets {vi = 0} for

all i ∈ I. Let’s note EFMs RCD
4
= EFMs (FC≤η) ∩ SolRCD those EFMs of FC≤η that

satisfy the constraint RCD and EFMs RCD

4
= EFMs (CFCRCD ≤η) the EFMs of the part

of the solution space in Oη. Obviously, EFMs RCD ⊆ EFMs RCD . If I = ∅, F◦ = F and
EFMs RCD = EFMs RCD , so we will consider the case I 6= ∅. In this case, and contrary to
what happens for thermodynamic and kinetic (as described in Proposition 5) constraints,
there is generally no longer identity between EFMs RCD and EFMs RCD [42].

Example 3. Consider the network of Example 1 (thus D = T1 ∧ T4) and let η = + and
e2 = (0, 1, 0, 1, 0)T be the EFM of FC≤η made up of T1 and T3. Then, for any λ > 0, e2 + λe3,
positive conformal combination of the two EFMs e2 and e3 of FC≤η, has support {T1, T2, T3, T4}
and belongs to EFMsRCD\EFMsRCD (see Figure 6).

Figure 6. Simple network of Example 3. e2 and e3 are EFMs. When we add the regulatory constraint
T1 ∧ T4, any positive combination of e2 and e3 is now an EFM, that is not obtained as an original
EFM satisfying the constraint.

EFMs RCD correspond to the faces of dimension one (edges or extreme rays), if any, of
the semi-open face F◦, i.e., the edges of the face F that have not been removed, which means
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that they are not included in any hyperplane of equation vi = 0, for a certain i ∈ I, or
equivalently that their supports contain I. Now, consider a face F′ of F, of dimension at least
two, such that F̊′ ⊆ F◦ but no facet of F′ has its interior included in F◦ (i.e., any facet of F′

is included in an hyperplane of equation vi = 0, for a certain i ∈ I), if any. Note that several
such F′ may exist, but none can be included in another one, i.e., they are not comparable
for inclusion in the lattice of the faces of F. Then, all vectors of F̊′ have the same minimal
support, i.e., F̊′ ⊆ EFMs RCD\ EFMs RCD . If {ek}k∈K (with |K| ≥ 2) are representatives of the
extreme vectors of F′, we have F′ = cone⊕({ek}) (which is actually the same as cone({ek})
as we are in orthant O≤η) and thus F̊′ = {⊕k∈Kβkek | βk > 0} 4= cone+⊕({ek}) and the
common minimal support of all vectors of F̊′ is supp(F̊′) =

⋃
k∈K supp(ek). Conversely,

if v ∈ EFMs RCD , let F′ be the minimal face of F containing v. If F′ has dimension one
(extreme ray), then F′\{0} ⊆ F◦ and v ∈ EFMs RCD . If F′ has dimension at least two, then
no facet of F′ has its interior included in F◦, because if it were the case for one facet, then
any vector of its interior would have its support strictly included in the support of v, which
would contradict the minimality of the latter. Finally, v ∈ F̊′ ⊆ F◦ and all vectors of F̊′ have
the same support as v and belong to EFMs RCD\ EFMs RCD . We have thus characterized
both EFMs RCD and EFMs RCD\ EFMs RCD . We stipulate now, for the latter one, the
decomposition of its vectors into ek ∈ EFMs (F)\ EFMs RCD , in order to compute their
supports, which is generally the only useful information (the precise decomposition into
fluxes not often being very relevant). Therefore, we consider a face F′ of F, of dimension
at least two, such that F̊′ ⊆ F◦ but no facet of F′ has its interior included in F◦ and
{ek}1≤k≤N a minimal set of vectors in EFMs (F′) such that supp(F̊′) =

⋃
1≤k≤N supp(ek).

Note that, for any k, supp(ek) ∩ I 6= ∅ (and, as we have seen, I * supp(ek)), because if
for a certain k0 we had supp(ek0) ∩ I = ∅, then ek0 would belong to all hyperplanes of
equation vi = 0 for i ∈ I, thus to all facets of F′, which is impossible for a non-null vector.
Let us note S1 = supp(e1) ∩ I and, for any k, 2 ≤ k ≤ N, Sk = (supp(ek) ∩ I)\⋃1≤j≤k−1 Sj.
Then, for any k, Sk 6= ∅, because if for a certain k0 we had Sk0 = ∅, then the vectors of
cone+⊕({ek}k 6=k0) would verify the constraint RCD and have their supports included in
supp(F̊′), thus equal to it as it is minimal for vectors in CFCRCD ≤η, which would contradict
the minimality of {ek}. Finally, as by construction I =

⋃
1≤k≤N Sk and Sk ∩ Sj = ∅ for

k 6= j, we obtain that {Sk}1≤k≤N constitutes a partition of I and {ek}1≤k≤N is a set of
vectors in EFMs (F′) ⊆ EFMs (F)\ EFMs RCD such that supp(ek) ⊇ Sk by construction
and supp(ek) + Sj for any j 6= k, otherwise, by the same reasoning as above, ej could
be suppressed from the set {ek}, contradicting its minimality. Finally, we obtain that the
support of any vector in EFMs RCD\ EFMs RCD can be written as

⋃
1≤k≤N supp(ek), where

{ek}1≤k≤N , N ≥ 2, are vectors in EFMs (F) verifying supp(ek) ⊇ Sk and supp(ek) + Sj for
all k and j 6= k, where {Sk}1≤k≤N is a partition of I (note that we have the same result for
EFMs RCD by taking N = 1). Now, a given

⋃
1≤k≤N supp(ek) is not necessarily minimal

among the whole collection when we vary N, {ek} and {Sk}. It is also possible that it
strictly contains the support of a vector in EFMs RCD . Therefore, to obtain exactly the
supports of vectors in EFMs RCD\ EFMs RCD , we must only keep the minimal elements for
inclusion w.r.t. the whole collection extended by supp(EFMs RCD ).

Example 4. Let us continue with the network of Examples 1 and 3, so D = T1∧ T4 and η = +.
We have EFMs(F) = {e1, e2, e3} and EFMsRCD = {e1} (see Figure 4). The only partition of
{T1, T4} with a size ≥ 2 is given by: S1 = {T1} and S2 = {T4}. The only vector in EFMs(F)
whose support contains S1 and not S2 is e2 and the only one whose support contains S2 and
not S1 is e3. Thus, supp(EFMsRCD\EFMsRCD ) = {supp(e2) ∪ supp(e3)} = {{T1, T3} ∪
{T2, T4}} = {{T1, T2, T3, T4}}. Actually, we have from Example 3: EFMsRCD\EFMsRCD =
{e2 + λe3 | λ > 0} (see Figure 6).

Consider now the following network comprising two internal metabolites and seven irreversible
reactions, six of which are transfer reactions, R : A→ B, T1 :→ A, T2 : B→, T3 :→ A, T4 : B→,
T5 : A →, T6 :→ B (see Figure 7). Let D = T1 ∧ T2 and η = +. Let e1 = (1, 1, 1, 0, 0, 0, 0)T
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made up of T1, R, T2, e2 = (1, 0, 0, 1, 1, 0, 0)T made up of T3, R, T4, e3 = (1, 1, 0, 0, 1, 0, 0)T made
up of T1, R, T4, e4 = (1, 0, 1, 1, 0, 0, 0)T made up of T3, R, T2, e5 = (0, 1, 0, 0, 0, 1, 0)T made up of
T1, T5, e6 = (0, 0, 0, 1, 0, 1, 0)T made up of T3, T5, e7 = (0, 0, 1, 0, 0, 0, 1)T made up of T6, T2 and
e8 = (0, 0, 0, 0, 1, 0, 1)T made up of T6, T4. We have EFMs(F) = {e1, e2, e3, e4, e5, e6, e7, e8}
and EFMsRCD = {e1}. The only partition of {T1, T2} with a size ≥ 2 is given by S1 = {T1}
and S2 = {T2}. The vectors in EFMs(F) whose support contains S1 and not S2 are e3 and e5 and
those whose support contains S2 and not S1 are e4 and e7. We have supp(e3) ∪ supp(e4) =
{R, T1, T2, T3, T4}, supp(e3) ∪ supp(e7) = {R, T1, T2, T4, T6}, supp(e5) ∪ supp(e4) =
{R, T1, T2, T3, T5} and supp(e5) ∪ supp(e7) = {T1, T2, T5, T6}. Each one of the four sup-
ports obtained is minimal in this collection, but the first three contain supp(e1) = {R, T1, T2}.
Thus, supp(EFMsRCD\EFMsRCD ) = {{T1, T2, T5, T6}}. Actually, EFMsRCD\EFMsRCD =
{e5 + λe7 | λ > 0}.

Figure 7. Second network of Example 4. e1 to e8 are all the EFMs. When we add the regulatory
constraint T1∧ T2, only e1 remains an EFM, with support {T1, T2, R}, but new EFMs appear, made
up of any positive combination of e5 and e7, all with the same support {T1, T2, T5, T6}.

Finally, consider another network comprising three internal metabolites and seven irreversible
reactions, five of which are transfer reactions, R1 : B → A, R2 : C → A, T1 :→ B + C,
T2 : A →, T3 : A →, T4 :→ B, T5 :→ C. Let D = R1 ∧ R2 ∧ T2 and η = + (see Figure 8).
Let e1 = (1, 1, 1, 2, 0, 0, 0)T made up of T1, R1, R2, T2, e2 = (1, 1, 1, 0, 2, 0, 0)T made up of
T1, R1, R2, T3, e3 = (1, 0, 0, 1, 0, 1, 0)T made up of T4, R1, T2, e4 = (1, 0, 0, 0, 1, 1, 0)T made
up of T4, R1, T3, e5 = (0, 1, 0, 1, 0, 0, 1)T made up of T5, R2, T2 and e6 = (0, 1, 0, 0, 1, 0, 1)T

made up of T5, R2, T3. We have EFMs(F) = {e1, e2, e3, e4, e5, e6} and EFMsRCD = {e1}. There
are four partitions of {R1, R2, T2} with a size ≥ 2. The partition {{R1}, {R2}, {T2}} gives
nothing because there is no vector in EFMs(F) whose support contains {T2} but neither {R1}
nor {R2}. For the partition S1 = {R1, T2} and S2 = {R2}, the vector in EFMs(F) whose
support contains S1 and not S2 is e3 and those whose support contains S2 and not S1 are e2, e5

and e6, providing supp(e3) ∪ supp(e2) = {R1, R2, T1, T2, T3, T4}, supp(e3) ∪ supp(e5) =
{R1, R2, T2, T4, T5} and supp(e3) ∪ supp(e6) = {R1, R2, T2, T3, T4, T5}. For the partition
S1 = {R2, T2} and S2 = {R1}, the vector in EFMs(F) whose support contains S1 and not S2
is e5 and those whose support contains S2 and not S1 are e2, e3 and e4, providing supp(e5) ∪
supp(e2) = {R1, R2, T1, T2, T3, T5}, supp(e5) ∪ supp(e3) = {R1, R2, T2, T4, T5} and
supp(e5)∪ supp(e4) = {R1, R2, T2, T3, T4, T5}. For the partition S1 = {R1, R2} and S2 = {T2},
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the vector in EFMs(F) whose support contains S1 and not S2 is e2 and those whose support con-
tains S2 and not S1 are e3 and e5, providing supp(e2) ∪ supp(e3) = {R1, R2, T1, T2, T3, T4}
and supp(e2) ∪ supp(e5) = {R1, R2, T1, T2, T3, T5}. The minimal elements of this collection of
supports are {R1, R2, T1, T2, T3, T4}, {R1, R2, T1, T2, T3, T5} and {R1, R2, T2, T4, T5}. Min-
imizing also w.r.t. supp(e1) = {R1, R2, T1, T2} gives thus supp(EFMsRCD\ EFMsRCD ) =
{{R1, R2, T2, T4, T5}}. Actually, EFMsRCD\EFMsRCD = {e3 + λe5 | λ > 0}.
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Figure 8. Third network of Example 4. e1 to e6 are all the EFMs. When we add the regulatory con-
straint R1∧ R2∧ T2, only e1 remains an EFM, with support {T1, R1, R2, T2}, but new EFMs appear,
made up of any positive combination of e3 and e5, all with the same support {T4, T5, R1, R2, T2}.

We have thus proved the following result.

Proposition 9. Given a Boolean constraint D as a conjunction of literals
∧

i∈I vi ∧
∧

j∈J ¬vj
and an arbitrary closed r-orthant O≤η, let CFCRCD ≤η be the constrained flux cone subset for
the regulatory constraint RCD in O≤η. Let F be the face of the flux cone FC≤η defined as
FC≤η ∩

⋂
j∈J{vj = 0}, then CFCRCD ≤η is the semi-open flux cone F◦ obtained from F by

removing its facets {vi = 0} for all i ∈ I. Let EFMsRCD
4
= EFMs(FC≤η) ∩ SolRCD be

the EFMs of FC≤η that satisfy RCD and EFMsRCD

4
= EFMs(CFCRCD ≤η) be the EFMs of

CFCRCD ≤η. We get EFMsRCD ⊆ EFMsRCD but, unlike the case of thermodynamic and kinetic
(as in Proposition 5) constraints, there is generally no longer identity between EFMsRCD and
EFMsRCD . EFMsRCD correspond to the extreme rays (faces of dimension one) of F◦, i.e., the edges
of F whose support contains I. EFMsRCD\EFMsRCD are the vectors of the F̊′’s for all F′ faces of F
of dimension at least two, such that F̊′ ⊆ F◦ (i.e., F′ is not included in any hyperplane {vi = 0}
with i ∈ I) but no facet of F′ has its interior included in F◦ (i.e., any facet of F′ is included in a
certain hyperplane {vi = 0} with i ∈ I). The supports of those vectors in EFMsRCD\EFMsRCD

are obtained as
⋃

1≤k≤N supp(ek), where {ek}1≤k≤N , N ≥ 2, are vectors in EFMs(F) verifying
supp(ek) ⊇ Sk and supp(ek) + Sj for all k and j 6= k, where {Sk}1≤k≤N is a partition of I (they
are actually the minimal elements, for subset inclusion and including the supports of EFMsRCD

when checking minimality, obtained like this, for any partition {Sk} of I, of size at least two, and
any choice of {ek} as above).
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This characterization of EFMs for flux cones in the presence of regulatory constraints
does not hold as simply for flux polyhedra, because the added inhomogeneous linear
constraints ILC, given by Gv ≥ h, may not respect the structure of CFCRCBc at all and may
cut the interior of flux cones; we already mentioned that there is no direct relationship
between EFMs and extreme or elementary fluxes for a flux polyhedron. Nevertheless, the
ideas developed above for flux cones can be applied to flux polyhedra FP≤η, where certain
of their faces have to be removed due to the constraint D because they are included in
certain hyperplanes {vi = 0}, in order to determine EFMs RCD\ EFMs RCD . Moreover,
in practice, ILC is generally only used to bound (below and/or above) fluxes, in which
case each extreme ray R+e of FC≤η is still partly present in FP≤η as for example an
edge [α−, α+]e, defined by the two vertices α−e and α+e. The results above can then
be transposed by using convex-conformal decomposition into vertices and conformal
decomposition into elementary vectors to characterize EFMs RCD\ EFMs RCD .

We are now interested in looking for vectors in the solution space that are (in some
sense) non-decomposable while not being support-minimal, and in characterizing them, if
any. We could think of EFVs (or EFPs) but, from the study above regarding EFMs, we note
that, for a flux cone constrained by the regulatory constraint D, the vectors in EFMs RCD\
EFMs RCD are necessarily conformally decomposable, as they can be described as the
interiors of polyhedral cones in O≤η of dimension at least two (for example, e2 + e3 in
Example 3 can be decomposed as (0.7e2 + 0.3e3)+ (0.3e2 + 0.7e3)). More straightforwardly,
we can notice that EFMs RCD is equal to EFVs (CFCRCD ≤η), i.e., precisely the conformally
non-decomposable vectors. As already pointed out, what matters more than the precise
decomposition into fluxes is the decomposition of the supports (in the decomposition
above of e2 + e3, the supports of the components are unchanged, i.e., equal to supp(e2) ∪
supp(e3) = {T1, T2, T3, T4}). It follows that a relevant concept for a solution vector is not
to be conformally non-decomposable but, less strictly, to be (conformally) support-wise
non-decomposable, in the sense that the vector cannot be conformally decomposed into
two vectors of different (necessarily not greater) supports. Now, for all faces F′ of F of
dimension at least two such that F̊′ ⊆ F◦, not covered by Proposition 9, i.e., owning at
least one facet F′′ with interior included in F◦, it so happens that all vectors of F̊′ are
actually support-wise decomposable, as each such vector can always be decomposed into
a vector of F̊′ of same support and into a vector of F̊′′ of smaller support. Therefore,
in the decomposition, we do not authorize the same support for one of the component
vectors. Thus the really relevant (less strict) concept is that the vector cannot be conformally
decomposed into two vectors of smaller supports and we call a nonzero vector x of a convex
polyhedral cone C as (conformally) support-wise non-strictly-decomposable, if

x = x1 ⊕ x2, with nonzero x1, x2 ∈ C, implies

supp(x1) = supp(x) or supp(x2) = supp(x).
(84)

The (conformally) support-wise non-strictly-decomposable vectors in C (resp., flux
vectors in a flux cone FC) will be noted swNSDVs (resp., swNSDFVs). Note that we
could have defined support-wise non-strictly decomposability more generally without
imposing a conformal decomposition, but, as already pointed out, this is not relevant for
biological fluxes and we will only use this concept in a certain tope. It is obvious that, in
such a tope (resp., flux tope), EMs, ExVs = EVs ⊆ swNSDVs (resp., ExVs = EFVs = EFMs =
swNSDFVs, so that all four definitions coincide). We will introduce a similar definition
with a convex combination for a polyhedron P (the previous definition and the associated
relationships above being valid for its recession cone CP). A vector x of a polyhedron P is
called support-wise convex(-conformally) non-strictly-decomposable, if

x = λx1 ⊕ (1− λ)x2, with x1, x2 ∈ P, 0 < λ < 1, implies

supp(x1) = supp(x) or supp(x2) = supp(x).
(85)
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The support-wise convex(-conformally) non-strictly-decomposable vectors in P (resp.,
flux vectors in a flux polyhedron FP) will be called support-wise non-strictly-decomposable
points (resp., support-wise non-strictly-decomposable flux points) and noted swNSDPs
(resp., swNSDFPs). It is obvious that, in any given tope (resp., flux tope), EMs, ExPs = EPs
⊆ swNSDPs (resp., EFMs, ExPs = EFPs ⊆ swNSDFPs).

With the notations of Proposition 9, let swNSDFVs RCD
4
= swNSDFVs (FC≤η) ∩

SolRCD and swNSDFVs RCD

4
= swNSDFVs (CFCRCD ≤η). We have thus EFMs RCD =

swNSDFVs RCD ⊆ EFMs RCD ⊆ swNSDFVs RCD but, unlike the case of thermodynamic and
kinetic (as in Proposition 5) constraints for flux cones, not only there is no longer identity
between swNSDFVs RCD and swNSDFVs RCD (consequence of the non-identity between
EFMs RCD and EFMs RCD ), but we will now see that there is generally no longer identity
between EFMs RCD and swNSDFVs RCD .

Example 5. Continuing with the network of Example 3, e1 + e3 ∈ swNSDFVsRCD\EFMsRCD .
More precisely, we have (by considering only a representative for each ray) EFMsRCD =
swNSDFVsRCD = {e1} ⊂ EFMsRCD = EFMsRCD ∪ {e2 + λe3 | λ > 0} ⊂ swNSDFVsRCD
= EFMsRCD ∪ {e1 + λe2 | λ > 0} ∪ {e1 + λe3 | λ > 0} (see Figure 9).

Figure 9. Simple network of Examples 3 and 5. The EFMs are e1, e2, e3. When we add the regulatory
constraint T1∧ T4, only e1 remains an EFM, with support {T1, R, T4}, but new EFMs appear, made
up of any positive combination of e2 and e3, all with the same support {T1, T2, T3, T4}. Moreover,
new swNSDFVs also appear, which are not EFMs: any positive combination of e1 and e2, all with the
same support {T1, R, T3, T4}, and any positive combination of e1 and e3, all with the same support
{T1, R, T2, T4}.

Therefore, we extend the results of Proposition 9 by refining the structure in F of
swNSDFVs RCD . Let {em}m∈M be representatives of the extreme vectors of F, thus F =
cone⊕({em}m∈M). We get the following structure for F◦ regarding EFMs and swNSDFVs,
given in the form of an algorithm.

• Let R = {m ∈ M | em ∈ F◦} = {m ∈ M | ∀i ∈ I em
i 6= 0}. Then EFMs RCD =

{em}m∈R. Note that R can vary from ∅ to M, thus EFMs RCD from ∅ to EFMs (F). If
R = M, then EFMs RCD = EFMs RCD = swNSDFVs RCD = EFMs (F) and the analysis
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is done (if η has been chosen maximal in sign(CFCRCD ), this case corresponds to
I = ∅). We consider the case R ⊂ M here below.

• Let us consider successively all faces F′ of F of dimension at least two, such that
F̊′ ⊆ F◦, i.e., F′ is not included in any hyperplane {vi = 0} with i ∈ I (the lattice
of faces of F can be explored for example in a way such that a sub-face is visited
before a super-face; once such an F′ has been found, all faces of F containing it are
also suitable). Let {ek}k∈K, with K ⊆ M, be representatives of the extreme vectors
of F′. Thus, F̊′ = cone+⊕({ek}k∈K) and I ⊆ ⋃k∈K supp(ek). For each of these F′, three
exclusive cases can now be distinguished.

• If no facet of F′ has its interior included in F◦, i.e., any facet of F′ is included in a
certain hyperplane {vi = 0} with i ∈ I (a necessary but insufficient condition is
K ⊆ M\R), then F̊′ ⊆ EFMs RCD\ EFMs RCD and

⋃
k∈K supp(ek) is a minimal support

for vectors in F◦.
• If exactly one facet of F′ has its interior included in F◦, i.e., it is the only facet not

included in any hyperplane {vi = 0}with i ∈ I, then F̊′ ⊆ swNSDFVs RCD\ EFMs RCD

and
⋃

k∈K supp(ek) is a non-strictly-decomposable non-minimal support for vectors in
F◦ (non-strictly-decomposable support means that any vector which is a conical sum of
the ek’s having this support is support-wise non-strictly-decomposable, independently
of the choice of the non-negative coefficients fixing the contribution of each ek in the
distribution of the fluxes). This result follows immediately from the facts that one
facet is not enough to decompose a certain vector in F̊′ strictly in terms of supports
and that the support of the vectors in the interior of the facet in question is strictly
included in the support of the vectors in F̊′.

• If at least two facets of F′ have their interior included in F◦, i.e., these facets are
not included in any hyperplane {vi = 0} with i ∈ I, then let {el}l∈L, with L ⊆ K,
be representatives of the extreme vectors of all these facets (note that we have then
necessarily K ∩ R ⊆ L, i.e., K\L ⊆ K\R). Thus, the strict conical sum of the interiors of
these facets, which is equal to cone+⊕({el}l∈L), is not empty in F̊′ (as there are at least
two such facets) and is made up of the support-wise strictly-decomposable vectors
of F̊′ (by construction): cone+⊕({el}l∈L) = F̊′\ swNSDFVs RCD . Two subcases must
therefore be distinguished.

• If L = K, i.e., the strict conical sum of the interiors of these facets is equal to F̊′, then
F̊′ ⊆ F◦\ swNSDFVs RCD and

⋃
k∈K supp(ek) is a strictly-decomposable support for

vectors in F◦ (which means that any vector which is a conical sum of the ek’s having
this support is support-wise strictly-decomposable, independently of the choice of
the non-negative coefficients fixing the contribution of each ek in the distribution of
the fluxes).

• If L ⊂ K, then F̊′ is split into two nonempty subsets: cone+⊕({el}l∈L) ⊆ F◦\
swNSDFVs RCD and F̊′\cone+⊕({el}l∈L) ⊆ swNSDFV RCD\ EFMs RCD (note that
F̊′\cone+⊕ ({el}l∈L) is made up of the vectors of cone+⊕({ek}k∈K) the conical decom-
position of which on the ek’s requires at least one ek with k ∈ K\L). This means that
part of the vectors of F̊′ are support-wise non-strictly-decomposable and part are
support-wise strictly-decomposable, while having the same non-minimal support⋃

k∈K supp(ek) (still equal to
⋃

l∈L supp(el)). This proves that support-wise strict de-
composability generally depends not only on the support, but also on the positive
values of the fluxes and that, unlike the particular cases above, we cannot speak
of a strictly-decomposable or non-strictly-decomposable support. Note that, in this
subcase, the support-wise non-strictly-decomposable vectors of F̊′ constitute the com-
plementary, in the open cone cone+⊕({ek}k∈K), of the open sub-cone cone+⊕({el}l∈L)
which is thus a finite disjoint union of semi-open cones, each of which is conically gen-
erated (with positive or non-negative coefficients according to faces that are present
or not) by extreme vectors ek’s with either k ∈ K\L ⊆ K\R or k ∈ L\R, thus in any
case with k ∈ K\R, i.e., by extreme vectors ek ∈ EFMs (F)\ EFMs RCD .
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We have finally proved the following result (keeping the notations of Proposition 9).

Proposition 10. Let swNSDFVsRCD

4
= swNSDFVs(CFCRCD ≤η) be the support-wise non-

strictly-decomposable vectors of CFCRCD ≤η. We obtain EFMsRCD ⊆ swNSDFVsRCD but,
unlike the case of thermodynamic and kinetic (as in Proposition 5) constraints, there is in general no
longer identity between EFMsRCD and swNSDFVsRCD . Consider all faces F′ of F of dimension at
least two, such that F̊′ ⊆ F◦ (i.e., F′ is not included in any hyperplane {vi = 0} with i ∈ I), and

let D(F′)
4
= cone+⊕({F̊′′ | F′′ facet of F′ with F̊′′ ⊆ F◦}). Result of Proposition 9 can be stated

as EFMsRCD\EFMsRCD =
⋃
{F′ |D(F′)=∅} F̊′. Now, we have swNSDFVsRCD\EFMsRCD =⋃

{F′ |∅ 6=D(F′)+F̊′} F̊′\D(F′). Note that the F′’s considered here necessarily own at least one facet
F′′ that is not included in any hyperplane {vi = 0} with i ∈ I. There are actually two cases:
For those F′’s which own exactly one such facet F′′ (thus D(F′) = F̊′′ ⊆ F◦\F̊′), we obtain
F̊′ ⊆ swNSDFVsRCD\EFMsRCD and the common support of vectors in F̊′ is thus a non-strictly-
decomposable (independently of the choice of the distribution of the fluxes) non-minimal support
for vectors in F◦. For those F′’s which own at least two such facets F′′, we obtain F̊′\D(F′) ⊆
swNSDFVsRCD\EFMsRCD and D(F′) ⊆ F◦\swNSDFVsRCD , thus part of the vectors of F̊′
(consisting of a finite disjoint union of semi-open cones) are support-wise non-strictly-decomposable
and part (consisting of an open cone) are support-wise strictly-decomposable (depending on the
choice of the distribution of the fluxes), while having the same non-minimal support.

Example 6. Let us continue with the network of Examples 3 and 5 (see Figure 9). FC is a
pointed cone of dimension 3 included in the positive orthant of R5 with axes {R, T3, T2, T1, T4}
in this order. We have FC = {(x y z x + y x + z)T | x, y, z ≥ 0}. FC has 3 extreme rays
(EFMs e1, e2, e3 seen above) and 3 facets (see Figure 10). When we add the Boolean constraint
D = T1 ∧ T4, then F = FC and the solution space is the semi-open cone CFCRCD = F◦ =
{(x y z x + y x + z)T | x, y, z ≥ 0, x + y > 0, x + z > 0}, i.e., F without its two edges
corresponding to e2 and e3. The only edge remaining in F◦ provides EFMsRCD = {e1} with
support {T1, R, T4}. There are three faces of F of dimension two with their interiors included
in F◦: F′1 = cone⊕({e2, e3}), F′2 = cone⊕({e1, e3}) and F′3 = cone⊕({e1, e2}). F′1 is the
only one to have no facet with its interior included in F◦, i.e., such that D(F′1) = ∅, thus
EFMsRCD\EFMsRCD = F̊′1 = cone+⊕({e2, e3}). This means that the new EFMs that appear are
all the positive combinations of e2 and e3, all with the same minimal support {T1, T3, T2, T4}. Re-
garding F′2 and F′3, they both have R+e1 as their only facet with interior included in F◦, thus
D(F′2) = D(F′3) = R∗+e1 and F̊′2 = cone+⊕({e1, e3}) and F̊′3 = cone+⊕({e1, e2}) are both
included in swNSDFVsRCD\EFMsRCD . {T1, R, T2, T4} and {T1, R, T3, T4} are thus non-
strictly-decomposable (independently of the respective values of the fluxes in T1 and T2 or in T3 and
T4, respectively) non-minimal supports. The last face of F with its interior included in F◦ is F itself,
of dimension three, with F̊ = cone+⊕({e1, e2, e3}). As all the facets F′1, F′2, F′3 of F have their interior
included in F◦, we obtain D(F) = F̊. Thus, the pathways with nonzero fluxes in all five reactions,
i.e., with support {T1, T3, R, T2, T4}, are exactly the support-wise strictly-decomposable ones.

Example 7. Let us consider the simple network comprising one reaction R : A→ B, where A and
B are the two internal metabolites, and four transfer reactions T1 :→ A, T2 :→ A, T3 : B →,
T4 : B →, and assume the five reactions irreversible (see Figure 11). FC is a pointed cone of
dimension 3 included in the positive orthant of R5 with axes {T1, T2, T3, R, T4} in this order. We
have: FC = {(x y z x + y x + y− z)T | x, y, z ≥ 0, x + y ≥ z}. FC has 4 facets and 4 extreme
rays. Representatives of these extreme rays (EFMs) are e1 = (1 0 1 1 0)T , e2 = (1 0 0 1 1)T ,
e3 = (0 1 1 1 0)T and e4 = (0 1 0 1 1)T , defined by their supports: {T1, R, T3}, {T1, R, T4},
{T2, R, T3} and {T2, R, T4}, respectively.

Let us consider the Boolean constraint D = T1∧ T3. Then, F = FC and the solution space
is the semi-open cone CFCRCD = F◦ = {(x y z x + y x + y− z)T | x, z > 0, y ≥ 0, x + y ≥ z},
i.e., F without its two facets {x = 0} and {z = 0}.

The only EFM still present in F◦ is e1, thus EFMsRCD = {e1} with support {T1, R, T3}.
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There are two faces of F of dimension two with their interiors included in F◦: F′1 = cone⊕({e1, e2})
and F′2 = cone⊕({e1, e3}), both with R+e1 as their only facet with interior included in F◦.
Thus, D(F′1) = D(F′2) = R∗+e1, EFMsRCD\EFMsRCD = ∅, F̊′1 = cone+⊕({e1, e2}) ⊆
swNSDFVsRCD\ EFMs RCD and F̊′2 = cone+⊕({e1, e3}) ⊆ swNSDFVsRCD\EFMsRCD . {T1,
R, T3, T4} and {T1, T2, R, T3} are thus non-strictly-decomposable (independently of the respective
values of the fluxes in T3 and T4 or in T1 and T2, respectively) non-minimal supports.

The last face of F with its interior included in F◦ is F itself, of dimension three, with F̊ =
cone+⊕({e1, e2, e3, e4}) defined in F◦ by {y > 0, x+ y > z}. F has exactly two facets with their interi-
ors included in F◦, namely, F′1 and F′2 and thus D(F) = cone+⊕({e1, e2, e3}) = F◦\swNSDFVsRCD .
The support-wise strictly-decomposable vectors constitute the open sub-cone of F̊ defined by {y < z}:
F◦\swNSDFVsRCD = {(x y z x + y x + y− z)T | x, y, z > 0, y < z < x + y}. They are the
pathways of support {T1, T2, R, T3, T4} such that the flux in T2 is smaller than the flux in T3;
actually any vector (x y z x + y x + y− z)T with x, y, z > 0, y < z < x + y can be decomposed as
(k(z− y)e1 + (x + y− z)e2)⊕ ((1− k)(z− y)e1 + ye3), with arbitrary k, 0 < k < 1, i.e., into
two support-wise non-strictly-decomposable vectors respectively in F̊′1 with support {T1, R, T3, T4}
and in F̊′2 with support {T1, T2, R, T3}.
We thus have F̊\D(F) = cone+⊕({e2, e3, e4})∪ cone+⊕({e2, e3}) ⊆ swNSDFVsRCD\EFMsRCD .
The support-wise non-strictly-decomposable vectors constitute the semi-open sub-cone of F̊ defined
by {z ≤ y}: {(x y z x + y x + y − z)T | x, y, z > 0, z ≤ y}. They are the pathways of sup-
port {T1, T2, R, T3, T4} such that the flux in T2 is not smaller than the flux in T3. Any vector
(x y z x + y x + y− z)T with x, y, z > 0, z ≤ y is equal to xe2 + ze3 + (y− z)e4 and belongs to
cone+⊕({e2, e3, e4}) if z < y and to cone+⊕({e2, e3}) if z = y.

Figure 10. Simple network of Examples 3, 5 and 6. The flux cone FC of dimension 3 has 3 extreme
rays, which are EFMs e1, e2, e3, and 3 facets (in color in the picture that represents the projection
of R5 on the subspace spanned by x, y, z, the fluxes in R, T3, T2, respectively). When we add the
regulatory constraint T1∧ T4, the solution space becomes FC without its two edges corresponding
to e2 and e3 (in gray), thus a disjoint union of the following open cones: extreme ray e1, the interiors
of the red, blue and green facets, and the interior of FC. Thus, only e1 remains an EFM, with support
{T1, R, T4}, but there are new EFMs, namely all positive combinations of e2 and e3 (the interior of the
red facet), all with the same minimal support {T1, T3, T2, T4}. Moreover, there are new swNSDFVs
with non-minimal support: all positive combinations of e1 and e3 (the interior of the blue facet),
all with the same non-strictly-decomposable support {T1, R, T2, T4}, and all positive combinations
of e1 and e2 (the interior of the green facet), all with the same non-strictly-decomposable support
{T1, R, T3, T4}. All vectors in the interior of FC, which have {T1, R, T3, T2, T4} as a support, are
support-wise strictly-decomposable.

However, in the case of a general constraint Bc =
∨

k Dk, take care that, if the
support-wise strictly-decomposable vectors of each CFCRCDk

≤η are support-wise strictly-
decomposable in CFCRCBc ≤η, it is not true for support-wise non-strictly-decomposable
vectors and some of them for CFCRCDk

≤η may be decomposable in CFCRCBc ≤η.
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Figure 11. Simple network of Example 7. Flux cone FC of dimension 3 has 4 extreme rays, which
are EFMs e1, e2, e3, e4, and 4 facets (in color in the picture that represents the projection of R5 on
the subspace spanned by x, y, z, the fluxes in T1, T2, T3, respectively). When we add the regulatory
constraint T1∧ T3, the solution space becomes FC without its two facets in yellow and orange, thus
a disjoint union of the following open cones: the extreme ray e1, the interiors of the blue and purple
facets, and the interior of FC. Thus, only e1 remains an EFM, with support {T1, R, T3} and there
are no new EFMs, but the following new swNSDFVs occur. First, any positive combination of e1

and e2 (the interior of the blue facet), all with the same support {T1, R, T3, T4}, and any positive
combination of e1 and e3 (the interior of the purple facet), all with the same support {T1, T2, R, T3},
these supports being thus non-strictly-decomposable (independently of the positive values of the
fluxes) though not minimal. Second, the complementary in the interior of FC of the open sub-cone
generated by the positive combinations of e1, e2, e3 (i.e., the interior of the cone with blue, purple
and grey facets), that is the original network with nonzero fluxes in all five reactions, thus with
support {T1, T2, R, T3, T4}, in the case where input flux y in T2 is not smaller than output flux z in T3,
obtained as a positive combination of e2, e3, e4 (the interior of the cone with yellow, orange and grey
facets) if y > z, or of e2, e3 (the interior of the gray cone) if y = z. On the other hand, when y is smaller
than z, the global pathway can be decomposed into two swNSDFVs of non-strictly-decomposable
supports {T1, R, T3, T4} and {T1, T2, R, T3} in an infinite number of ways depending on a parameter
k, 0 < k < 1 (decomposition of a vector in the interior of the cone with blue, purple and gray facets
into two vectors in the interiors of the blue and purple facets respectively). This shows that in general
support-wise strict-decomposability does not depend only on the support of the pathway but on the
distribution of the fluxes.
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This characterization of support-wise non-strictly-decomposable vectors in the pres-
ence of regulatory constraints does not extend directly from flux cones to flux polyhedra.
The reason is that, due to inhomogeneous linear constraints ILC, certain faces of FP≤η are
not defined by equalities of the form vk = 0 and thus play no role in the definition of the
support of the vectors they contain. Consequently, the basis of the reasoning above, namely,
that the support of vectors of the interior of any face is larger than the supports of vectors
of the interior of any facet of this face, does not hold. Nevertheless, the ideas developed
for flux cones for dealing with faces included in a certain hyperplane {vi = 0} with i ∈ I,
and thus removed from the solution space due to the Boolean constraint considered, can
be applied. However, it is necessary at each step, when considering an arbitrary face, to
distinguish its facets resulting from ILC, not involved in the definition of the support,
its facets included in a certain hyperplane {vk = 0} with k /∈ I that are still present and
contribute to the definition of the support, and its facets included in a certain hyperplane
{vi = 0} with i ∈ I that are removed.

2.2.4. Case of Several Types of Constraints

In general, when analyzing a metabolic pathway, all known biological constraints
will have to be taken into account together, typically kinetic constraints and regulatory
constraints. For two such constraints C1 (say, a kinetic constraint KC, equivalent to TC, or
KCb in the absence of bounds on enzyme concentrations, equivalent to TCb) and C2 (say a
regulatory constraint RCBc), the solution space, in the case of a flux cone FC (the reasoning
would be similar for a flux polyhedron FP) is given by CFCC1∧C2 = FC ∩ SolC1∧C2 =
FC ∩ SolC1 ∩ SolC2 = CFCC1 ∩ SolC2 . Now, from Propositions 2 and 5, CFCC1 is a finite
union of flux cones FCi, which are certain particular faces of each flux tope of FC and
the constraint C2 can be applied to each one as to an original flux cone: CFCC1∧C2 =⋃

i FCi ∩ SolC2 =
⋃

i CFCi C2 . From Proposition 7, each CFCi C2 is a disjoint union of
particular open faces of FCi. In all, the solution space is a disjoint union of particular open
faces of the flux topes of FC. From propositions above and Proposition 8, we can also
conclude that the EFVs of CFCC1∧C2 are exactly the EFVs of FC that satisfy both constraints
C1 and C2.

Proposition 11. The space of flux vectors in FC (resp., FP) satisfying both the kinetic constraint
KC (or KCb in the absence of bounds on enzyme concentrations) and the regulatory constraint
RCBc is a finite disjoint union of open polyhedral cones (resp., open polyhedra) which are certain
open faces of the flux topes of FC (resp., FP). The elementary flux vectors (resp., elementary flux
points and vectors) are those of FC (resp., FP) that satisfy both constraints.

Note that Proposition 10 applies also, by starting from each FCi instead of each
flux tope of FC, to determine elementary flux modes and support-wise non-strictly-
decomposable vectors.

3. General Case of Sign-Compatible Constraints

We are interested in determining, for general biological constraints C, what can be said
about the structure of the solution spaces CFCC or CFPC. More precisely, in identifying
certain general features regarding constraints C (some of which are present in particular in
biological constraints Equations (42), (47) and (50) we have considered so far), allowing us
to clarify the mathematical and geometrical structure of the solution space, to determine
the EFs (conformal non-decomposable fluxes) or EFMs (support-minimal fluxes) for this
space and whether they characterize it and lastly how to compute them efficiently, in
particular by checking the integration of this computation into the DD method. We will
focus on deducing pertinent geometrical characteristics of the solution space only from
general properties of the compatibility of the constraints with vector signs (i.e., with vector
supports in each closed r-orthant or flux tope) and we will see that part of the results
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obtained above for thermodynamic, kinetic and regulatory constraints actually depends
only on these general global properties.

3.1. Sign-Invariant Constraints

A constraint Cx(v) (resp., ∃xCx(v)), is said to be sign-invariant if it depends only on
sign(v), i.e., on the signs of the vi’s but not on their values (in the formulas below, free
variables are assumed universally quantified):

Cx(v), sign(v′) = sign(v)⇒ Cx(v′) (86)

∃xCx(v), sign(v′) = sign(v)⇒ ∃xCx(v′). (87)

It follows from these definitions that, if the Cx(v)’s are sign-invariant for all x, then
∃xCx(v) is sign-invariant. Note that the property for a constraint to be support-invariant
(i.e., to depend only on supp(v)) is stronger than the property to be sign-invariant. Actually,
in any flux tope (or in any given closed orthant), having the same sign for two vectors
is equivalent to having the same support and thus being sign-invariant for a constraint
means being support-invariant in each flux tope independently.

Example 8. It follows then from definitions Equations (41), (42) or (43) that the thermodynamic
constraint TCM(v) or TCM(v) is sign-invariant. Thus this is also the case for TC(v) and TC(v)
Equation (60) and for TCb(v) and TCb(v) Equation (61).

On the other hand, the kinetic constraint KCE,M(v) Equation (47) is not sign-invariant, and
this is also the case of KCE(v) Equation (78), because κi(M) is bounded below and above (e.g., for
Michaelis–Menten kinetics, −k−i < κi < k+i ) and thus, for a given nonzero enzyme concentration
Ei, there is no metabolite concentrations vector M allowing an arbitrary flux value vi in reaction i
(as soon as the value of vi/Ei is outside the κi bounds).

The kinetic constraint KCM(v) Equation (80) is however sign-invariant. This follows
from the linear dependency of vi on Ei. Actually, if KCM(v) is satisfied (for a certain E) and
sign(v′) = sign(v), then, for all i ∈ supp(v′), vi and κi(M) have the same sign; thus, it is also
the case for v′i and κi(M). Therefore, by taking E′i = v′i/κi(M) = Eiv′i/vi when v′i 6= 0, and
E′i = 0 when v′i = 0, KCM(v′) is satisfied (for E′). This sign-invariant property thus holds
also for KC(v) Equation (76) and for KCb(v) Equation (77) if the only bounds are on metabolite
concentrations. However, it does not hold for KCb

M(v) (81) and for KCb(v) (77) in the presence of
bounds on enzyme concentrations.

Finally, by definition, the regulatory constraint RCBc(v) Equation (50) depends only on
supp(v), so is support-invariant and thus sign-invariant.

Lemma 4. All thermodynamic constraints are sign-invariant. Only kinetic constraints KCM and
KC are sign-invariant, as well as KCb with bounds only on metabolite concentrations (but not on
enzyme concentrations, thus in particular without enzymatic resource constraint). The regulatory
constraints are support-invariant, thus sign-invariant.

The structure of the solution space of a sign-invariant constraint follows directly from
its definition. Actually, if v satisfies a given sign-invariant constraint C = Cx(v) (resp.,
C = ∃xCx(v)), then O̊sign(v) = {x ∈ Rr | sign(x) = sign(v)} is included in SolC and thus
SolC =

⋃
{v|C(v)} O̊sign(v) is a disjoint union of open orthants. This result can be compared

to Lemma 2. More precisely, if we consider a support-invariant constraint C, the same
reasoning applies and gives SolC =

⋃
{v|C(v)} Ssupp(v), where Sρ = {x ∈ Rr | supp(x) = ρ}

denotes the set of vectors of support ρ, where we code a support as a binary vector ρ

(1 coding support membership and 0 non-membership). A support-invariant constraint C
is thus equivalent (in extension) to a family {Sρi}i of such support sets and, as there are
2r possible binary vectors, there are thus 22r

different support-invariant constraints. Now,
a given Sρ is equivalent to the Boolean constraint Dρ =

∧
{i|ρi=1} vi ∧

∧
{j|ρj=0} ¬vj and

thus an arbitrary support-invariant constraint C is equivalent to the Boolean constraint
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Bc =
∨

i Dρi , thus to the regulatory constraint RCBc. Thus support-invariant constraints
identify with regulatory constraints and all properties we have demonstrated for the
latter apply to the first. For example, by associating with any sign vector η its support
ρ (i.e., the support of any vector having the given sign), given by ρi = 1 if ηi = + or −
and ρi = 0 if ηi = 0, we deduce that, for any binary vector ρ, there are 2|supp(ρ)| sign
vectors η with support ρ, given by ηi = + or − if ρi = 1 and 0 else, and we obtain
Sρ =

⋃
{ηi |supp(ηi)=ρ} O̊ηi and SolC =

⋃
{ηi |supp(ηi)=supp(v)∧C(v)} O̊ηi , i.e., that SolC is a

disjoint union of open orthants, which is precisely the statement of Lemma 2. Note that a
support-invariant constraint C is entirely defined by its restriction to an arbitrary closed r-
orthant Oη, i.e., for η an arbitrary full support sign vector, as SolC can be reconstituted from
SolC ∩Oη. Moreover, as to be sign-invariant and to be support-invariant coincide in any
closed r-orthant, a sign-invariant constraint is nothing but a constraint whose restriction to
any closed r-orthant is support-invariant, i.e., which coincides in any closed r-orthant with
a well-defined regulatory constraint (but such regulatory constraints differ in general from
one r-orthant to another, while obviously coinciding on their intersection). A sign-invariant
constraint C is equivalent to a family {O̊ηi}i of open orthants and, as there are 3r possible
sign vectors, there are thus 23r

different sign-invariant constraints. Applying the merging
method described in the proof of Lemma 2, these open orthants can be grouped together
in order to obtain a family of semi-open orthants, without any possible further merging
between any two of them.

Proposition 12. Support-invariant constraints coincide with Boolean constraints, i.e., regulatory
constraints. They are completely characterized by their restriction to any closed r-orthant and
number 22r

. Sign-invariant constraints coincide with constraints whose restriction to any closed
r-orthant is given by a regulatory constraint (with identity of such regulatory constraints on the
intersections of any two of these orthants). They number 23r

. The set SolC of vectors in Rr satisfying
the sign-invariant constraint C = Cx(v) (resp., C = ∃xCx(v)) is a disjoint union of open orthants,
which can be grouped together according to Lemma 2 to provide a disjoint union of semi-open
orthants without any possible further merging between any two of them.

An important consequence is that, if we reason for each closed r-orthant separately, i.e.,
flux tope by flux tope in the solution space, then all results demonstrated in Section 2.2.3 for
regulatory constraints apply to sign-invariant constraints. With the previous definitions of
open or semi-open polyhedral cones and open or semi-open polyhedra and, more generally,
of open or semi-open faces of polyhedral cones or polyhedra, we get the following result.

Theorem 1. Let C = Cx(v) (resp., C = ∃xCx(v)) be a sign-invariant constraint and CFCC
(resp., CFPC) be the associated constrained flux cone subset (resp., the associated constrained flux
polyhedron subset). Then, CFCC (resp., CFPC) is a finite disjoint union of open polyhedral cones
(resp., open polyhedra), which are certain open faces of the flux topes FC≤η (resp., FP≤η) for all η
maximal sign vectors in sign(FC) (resp., sign(FP)). They can be grouped together according to
Lemma 2 to provide a disjoint union of semi-open faces of the FC≤η’s (resp., FP≤η’s) without any
possible further merging between any two of them. Elementary fluxes are obtained by collecting
those for each flux tope (which is not the case for elementary flux modes where, after collecting them,
only those with minimal support have to be kept) and are nothing but the elementary fluxes of FC
(resp., FP) that satisfy the constraint C (which again is not the case for elementary flux modes):

EFVs(CFCC) = EFVs(FC) ∩ SolC = EFMs(FC) ∩ SolC ⊆ EFMs(CFCC) (88)

EFPs(CFPC) = EFPs(FP) ∩ SolC EFVs(CFPC) = EFVs(CFP) ∩ SolC. (89)

Proof of Theorem 1. The disjoint decomposition of the solution space into open faces of
the flux topes FC≤η (resp., FP≤η) results from Proposition 12 or directly from the fact that
all vectors of the strict conical hull cone+(v1, . . . , vn) = {β1v1 + . . . + βnvn | β1, . . . , βn > 0}
and of the strict convex hull conv+(v1, . . . , vn) = {α1v1 + . . . + αnvn | α1, . . . , αn > 0,
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α1 + . . . + αn = 1} of given vectors v1, . . . , vn in a flux tope, thus in a closed orthant (so
the sum is conformal), have the same support supp(v1) ∪ . . . ∪ supp(vn), thus the same
sign, and from the fact that an open face of a polyhedron is the Minkowski sum of the strict
convex hull of its vertices and the strict conical hull of its extreme vectors. Thus, an open
face of a flux tope FC≤η (resp., FP≤η ) either does not intersect the solution space or is com-
pletely included in it. We have seen (55) that any elementary flux or any elementary flux
mode of FC (resp., FP) that satisfies the constraint is an elementary flux or an elementary
flux mode of the solution space (the conditions of validity of (55) for elementary fluxes are
satisfied from the structure of the solution space). These elementary fluxes or elementary
flux modes actually identify with the extreme vectors of the FC≤η’s (resp., extreme points
of the FP≤η’s and extreme vectors of the CFP ≤η’s) that satisfy the constraint, i.e., whose
sign satisfies the constraint. Reciprocally, any vector of the solution space that is not in
this case necessarily belongs to an open face of a certain FC≤η (or CFP ≤η) of dimension
at least two (resp., of a certain FP≤η of dimension at least one) and is thus conformally
(resp., convex-conformally) decomposable in this open face and consequently cannot be an
elementary vector (resp., elementary point) of the solution space (obviously, the decom-
position involves two vectors of same support, thus nothing can be deduced regarding
elementary flux modes). This gives the result for elementary fluxes.

Theorem 1 applies in particular to all thermodynamic constraints, regulatory con-
straints and those kinetic constraints described in Lemma 4. Especially, we directly obtain
the results of Propositions 7 and 8 for regulatory constraints.

Note that our only knowledge of the EFVs for CFCC (resp., the EFPs and EFVs for
CFPC) is really a long way from characterizing the solution space CFCC (resp., CFPC):
actually they are just the ExVs of each tope CFCC ≤η (resp., the ExPs and ExVs of each
CFPC ≤η), i.e., the only one-dimension open polyhedral cones, i.e., edges (resp., zero-
dimension polyhedra, i.e., vertices, and edges for the recession cones) among all the open
cones (resp., open polyhedra) of any dimension that constitute CFCC (resp., CFPC).

As in each closed r-orthant, i.e., in each flux tope, a sign-invariant constraint identifies
with a regulatory constraint, Propositions 9 and 10 demonstrated for regulatory constraints
apply thus to sign-invariant constraints. Nevertheless, they are stated for constraints that
are conjunctions of literals and, even if a decomposition into such disjuncts is always
possible from the identity above, it is not necessarily natural for an arbitrary sign-invariant
constraint and a global characterization for each flux tope is preferable, in particular for
what concerns support-wise non-strictly-decomposable vectors. The difference is that one
has to deal for CFCC ≤η with an arbitrary family of open faces of FC≤η instead of a single
semi-open face of FC≤η, obtained specifically as a face of FC≤η without certain of its facets,
for CFCRCD ≤η.

Let us adopt notations similar to those used in Propositions 9 and 10, i.e., let EFMs C 4
=

EFMs (FC≤η)∩ SolC be the elementary flux modes of FC≤η that satisfy C (i.e., the elemen-

tary flux vectors of CFCC ≤η), EFMs C
4
= EFMs (CFCC ≤η) be the elementary flux modes

of CFCC ≤η and swNSDFVs C
4
= swNSDFVs (CFCC ≤η) be the support-wise non-strictly-

decomposable vectors of CFCC ≤η. We have thus EFMs C ⊆ EFMs C ⊆ swNSDFVs C. The
proof of Proposition 9 adapts straightforwardly: EFMs C correspond to the open faces of
dimension one (extreme rays) of FC≤η in CFCC ≤η and EFMs C\ EFMs C are made up of
all the open faces F̊ in CFCC ≤η where F is a face of dimension at least two of FC≤η but
not any proper (i.e., with positive dimension, less than the dimension of F) face F′ of F
is such that F̊′ is in CFCC ≤η. The result is based on the properties that all vectors of an
open face F̊ in CFCC ≤η have the same support, and the common support of vectors of F̊′,
where F′ is a face of F, is strictly included in that of vectors of F̊. In the same way, the proof
of Proposition 10 is easily adapted for what concerns swNSDFVs C\ EFMs C. For this we
consider successively all the open faces F̊ in CFCC ≤η where F is a face of dimension at
least two of FC≤η which owns at least one proper face F′ such that F̊′ is in CFCC ≤η. For
each such given F̊, let {F′j }j∈J be the family of all such F′. Let {ek}k∈K be representatives
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of the extreme vectors of F and {el}l∈L, with L ⊆ K, be representatives of the extreme
vectors of all these F′j . Thus, cone+⊕({ek}k∈K) = F̊ and cone+⊕({el}l∈L) = cone+⊕({F̊′j }j∈J)

and we obtain F̊ ∩ cone+⊕({el}l∈L) = F̊\ swNSDFVs C, as by construction those vectors of
F̊ which belong to cone+⊕({F̊′j }j∈J) are precisely those in F̊ which are support-wise strictly-

decomposable in CFCC ≤η, the decomposition being achieved along vectors in the F̊′j ’s,

whose support is strictly included in the common support of vectors in F̊. Therefore, three
different exclusive cases can be distinguished for F̊:

• cone+⊕({el}l∈L) ∩ F̊ = ∅, i.e., the F′j ’s are all included in a same facet of F, that is in
a same hyperplane {vi = 0} for a certain coordinate i of the affine span of F, which
is still equivalent to

⋃
l∈L supp(el) ⊂ ⋃

k∈K supp(ek) (this is for example the case if
|J| = 1). Then, F̊ ⊆ swNSDFVs C\ EFMs C is entirely made up of support-wise
non-strictly-decomposable vectors and

⋃
k∈K supp(ek) is a non-strictly-decomposable

non-minimal support for vectors in CFCC ≤η.
• cone+⊕({el}l∈L) = F̊, i.e., L = K. Then, F̊ ⊆ CFCC ≤η\ swNSDFVs C is entirely made

up of support-wise strictly-decomposable vectors and
⋃

k∈K supp(ek) is a strictly-
decomposable support for vectors in CFCC ≤η.

• cone+⊕({el}l∈L) ⊂ F̊, i.e., L ⊂ K and not all F′j ’s are included in a same facet of F, which
means that, for all i coordinates of the affine span of F, there exists j ∈ J such that F′j is
not included in the hyperplane {vi = 0}, or equivalently, there exists l ∈ L such that
el

i 6= 0, which is still equivalent to
⋃

l∈L supp(el) =
⋃

k∈K supp(ek). Then, F̊ is split into
two nonempty subsets: cone+⊕({el}l∈L) = F̊\ swNSDFVs C, made up of support-wise
strictly-decomposable vectors, and F̊\cone+⊕({el}l∈L) ⊆ swNSDFVs C\ EFMs C, made
up of support-wise non-strictly-decomposable vectors (note that F̊\cone+⊕({el}l∈L)
is made up of those vectors of F̊ the conical decomposition of which on the ek’s
requires at least one ek with k ∈ K\L). As all vectors of F̊ have the same non-minimal
support

⋃
k∈K supp(ek), this proves that support-wise strict decomposability does

not generally only depend on the support but also on the positive values of the
fluxes and that, unlike the two particular cases above, we cannot speak of a strictly-
decomposable or non-strictly-decomposable support. Note that the support-wise
non-strictly-decomposable vectors of F̊ are obtained as the complementary, in this
open cone, of the open sub-cone cone+⊕({el}l∈L), which is thus a disjoint union of
semi-open cones (its connected components), each of which being conically generated
both by certain extreme vectors ek with k ∈ K\L (that necessarily do not belong to
EFMs C), with non-negative coefficients, and by certain extreme vectors ek with k ∈ L
(that may belong or not to EFMs C), with positive coefficients (in order to keep the
concerned facets common with cone⊕({el}l∈L)).

We have finally proved the following result (while keeping the notations of Theorem 1).

Theorem 2. For C a sign-invariant constraint, FC≤η a flux tope and CFCC ≤η the associ-
ated subset of the solution space (disjoint union of open faces of FC≤η from Theorem 1), let

EFMsC 4
= EFMs(FC≤η)∩ SolC be the elementary flux modes of FC≤η that satisfy C (equal

to EFVs(CFCC ≤η)), EFMsC
4
= EFMs(CFCC ≤η) be the elementary flux modes of CFCC ≤η,

and swNSDFVsC
4
= swNSDFVs (CFCC ≤η) be the support-wise non-strictly-decomposable

vectors of CFCC ≤η, with EFMsC ⊆ EFMsC ⊆ swNSDFVsC. EFMsC correspond to the open
faces of dimension one (extreme rays) of FC≤η belonging to CFCC ≤η. Consider now successively
all the open faces F̊ in CFCC ≤η where F is a face of dimension at least two of FC≤η, and for each
such given F, let {ek}k∈K be representatives of the extreme vectors of F and {el}l∈L, with L ⊆ K,
be representatives of the extreme vectors of all proper (i.e., with positive dimension, less than the
dimension of F) faces F′ of F such that F̊′ belongs to CFCC ≤η. Thus, cone+⊕({ek}k∈K) = F̊ and

let D(F)
4
= cone+⊕({el}l∈L). Consequently, if L = ∅, then F̊ ⊆ EFMsC\EFMsC; if L 6= ∅

and
⋃

l∈L supp(el) ⊂ ⋃
k∈K supp(ek), then F̊ ⊆ swNSDFVsC\ EFMsC and

⋃
k∈K supp(ek)
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is a non-strictly-decomposable non-minimal support for vectors in CFCC ≤η; if L = K, then
F̊ ⊆ CFCC ≤η\swNSDFVsC and

⋃
k∈K supp(ek) is a strictly-decomposable support for vectors

in CFCC ≤η; if L ⊂ K and
⋃

l∈L supp(el) =
⋃

k∈K supp(ek), then D(F) = F̊\swNSDFVsC,
a non-empty open cone, constitutes the support-wise strictly-decomposable vectors in F̊ and
F̊\D(F) ⊆ swNSDFVsC\EFMsC, a non-empty finite disjoint union of semi-open cones, consti-
tutes the support-wise non-strictly-decomposable vectors in F̊, all having the same non-minimal
support (decomposability depending in this case not only on the support but also on the distribution
of the fluxes). We finally obtain EFMsC\EFMsC and swNSDFVsC\EFMsC by collecting these
vectors for each F̊.

Note that even the knowledge of swNSDFVs C is not enough to completely reconstruct
the tope CFCC ≤η of the solution space.

In order to deal with the usual enzymatic resource constraint (more generally capacity
constraints) in the kinetic constraints, we generalize the sign-invariance criterion. A
constraint Cx(v) (resp., ∃xCx(v)), is said to be contracting-sign-invariant if, when satisfied
by one vector, it is satisfied by any vector having the same sign which is not greater (on
each component), i.e., that belongs to the open rectangle parallelepiped defined by the null
vector and the given vector:

Cx(v), sign(v′) = sign(v), ∀i|v′i| ≤ |vi| ⇒ Cx(v′) (90)

∃xCx(v), sign(v′) = sign(v), ∀i|v′i| ≤ |vi| ⇒ ∃xCx(v′). (91)

Obviously a sign-invariant constraint is contracting-sign-invariant and, if the Cx(v)’s are
contracting-sign-invariant for all x, then ∃xCx(v) is contracting-sign-invariant.

Example 9. The kinetic constraints KCb
M(v) Equation (81) and KCb(v) Equation (77) are contracting-

sign-invariant in the absence of positive lower bounds on enzyme concentrations (i.e., when E− = 0).
Actually, if KCb

M(v) is satisfied (for a certain E verifying cTE ≤W and E ≤ E+) and sign(v′) =
sign(v) with |v′i| ≤ |vi| for all i, we saw that, by taking E′i = v′i/κi(M) = Eiv′i/vi when v′i 6= 0,
and E′i = 0 when v′i = 0, then KCM(v′) is satisfied (for E′). Now, as |v′i| ≤ |vi|, we have E′ ≤ E
and thus cTE′ ≤ cTE ≤W and E′ ≤ E+, so KCb

M(v′) is satisfied.

Lemma 5. The kinetic constraints KCb
M and KCb are contracting-sign-invariant in the absence of

positive lower bounds on enzyme concentrations (i.e., when E− = 0).

We will call 0-star domain a subset SD of Rr which has the property that the whole
open segment joining 0 to any element of SD is included in SD: v ∈ SD, 0 < λ < 1 ⇒
λv ∈ SD. Any cone is a 0-star domain.

Theorem 3. If C = Cx(v) (or C = ∃xCx(v)) is contracting-sign-invariant, then CFCC is a
0-star domain and there exists a neighborhood N = ]−δ,+δ[r of 0 for a certain δ > 0 such that
CFCC ∩N is a finite disjoint union of N-truncated open polyhedral cones, which are the intersection
with N of open faces of the flux topes FC≤η. In addition, results (88) regarding EFVs and EFMs
hold in N, i.e., for sufficiently small fluxes. The same holds for CFPC with the flux topes FP≤η if 0
is an interior point of FP, and in this case results (89) regarding EFVs and EFPs hold in N.

Proof of Theorem 3. The property of being a 0-star domain is a direct consequence of the
definition: if a contracting-sign-invariant constraint is satisfied by a vector v, it is satisfied
by λv for all 0 < λ < 1. From the proof of Theorem 1, it follows that if a nonzero vector
v ∈ FC≤η verifies a given contracting-sign-invariant constraint, then any vector v′ of the
minimal open face of FC≤η containing v (thus having the same sign as v) and belonging to
]−δv,+δv[

r with δv = mini∈supp(v)|vi| (contracting condition) also verifies the constraint.
The result is obtained by taking for δ the minimum of the δv’s on all open faces of the
FC≤η’s (whose number is smaller than the number of possible signs, i.e., 3r). The proof
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is still valid for FP but the result is meaningful only if N is included in FP, i.e., if 0 is an
interior point of FP, which means that the inhomogeneous linear constraints defining FP,
given by Gv ≥ h, verify h < 0.

Theorem 3 tells us that the result of Theorem 1 for sign-invariant constraints regarding
the geometrical structure of the solution space applies identically for contracting-sign-
invariant constraints locally in a neighborhood of 0, i.e., when considering only pathways
with sufficiently small amounts of fluxes. This applies in particular to those kinetic con-
straints described in Lemma 5.

3.2. Sign-Monotone Constraints

We now consider a property of compatibility of a constraint with signs that is stronger
than sign-invariance. A constraint Cx(v) (resp., ∃xCx(v)), is said to be sign-monotone if,
when satisfied by a vector, it is satisfied by any other vector with a smaller or equal sign
(for the partial order on signs):

Cx(v), sign(v′) ≤ sign(v)⇒ Cx(v′) (92)

∃xCx(v), sign(v′) ≤ sign(v)⇒ ∃xCx(v′). (93)

It follows from these definitions that, if the Cx(v)’s are sign-monotone for all x, then
∃xCx(v) is sign-monotone and that any sign-monotone constraint is sign-invariant. Note
that, in any given closed orthant, thus in any flux tope, sign(v′) ≤ sign(v) is equivalent to
supp(v′) ⊆ supp(v) and thus being sign-monotone for a constraint means being support-
monotone in each flux tope. Note also that if a sign-monotone constraint has a solution,
then the null vector 0 is a solution.

Example 10. It then follows from definitions (41), (42) or (43) that the thermodynamic constraint
TCM(v) or TCM(v) is sign-monotone. This is thus also the case for TC(v) and TC(v) Equation (60)
and for TCb(v) and TCb(v) Equation (61).

The argument given previously to establish that the kinetic constraint KCM(v) Equation (80) is
sign-invariant proves in fact that it is sign-monotone. This sign-monotone property holds thus also for
KC(v) Equation (76) and for KCb(v) Equation (77) in the absence of bounds on enzyme concentrations.

The regulatory constraint RCBc(v) Equation (50) is not generally sign-monotone: consider
for example Bc reduced to a positive literal. Actually, RCBc(v) is sign-monotone if and only if Bc in
DNF contains no positive literal, which is a very special case, requiring only certain fluxes to be zero
but unable to express that a given flux is nonzero (in this particular case, it is support-monotone,
which is stronger than sign-monotone).

Lemma 6. All thermodynamic constraints are sign-monotone. Only those kinetic constraints KCM
and KC are sign-monotone, as well as KCb in the absence of bounds on enzyme concentrations.
The regulatory constraint RCBc is not sign-monotone, except if Bc in DNF contains only negative
literals (i.e., assigns only zero fluxes, but no nonzero fluxes), in which case it is support-monotone.

The structure of the solution space of a sign-monotone constraint follows directly from
its definition.

Lemma 7. The set SolC of vectors in Rr satisfying the sign-monotone constraint C = Cx(v) (resp.,
C = ∃xCx(v)) is a union of closed orthants.

Actually, if v satisfies C, then Osign(v) = {x ∈ Rr | sign(x) ≤ sign(v)} is included
in SolC and thus SolC =

⋃
{v|C(v)}Osign(v). Obviously, we can keep only those v’s for

which sign(v) is maximal, in order to avoid any inclusion between the closed orthants.
This result can be compared to Lemmas 1, 3 and first part of Proposition 5, which are
obviously more precise but it shows that the mathematical structure of the solution space
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of these thermodynamic and kinetic constraints is mainly the only consequence of their
sign-monotonicity.

Theorem 4. Consider indifferently a sign-monotone constraint Cx(v) or ∃xCx(v) (e.g., if Cx(v)
is sign-monotone for any x), and let us name it C and the associated constrained flux cone subset
CFCC (resp., the associated constrained flux polyhedron subset CFPC). Then, CFCC (resp., CFPC)
is a finite union of polyhedral cones (resp., polyhedra), which are faces of the flux topes FC≤η (resp.,
FP≤η) for all η maximal sign vectors in sign(FC) (resp., sign(FP)) and we obtain

EFVs(CFCC) = EFMs(CFCC) = EFVs(FC) ∩ SolC = EFMs(FC) ∩ SolC (94)

EFPs(CFPC) = EFPs(FP) ∩ SolC EFVs(CFPC) = EFVs(CFP) ∩ SolC. (95)

Proof of Theorem 4. The (non-disjoint) decomposition of the solution space into faces of
the flux topes FC≤η (resp., FP≤η) follows from Lemma 7 or directly from the fact that all
vectors of the conical hull cone(v1, . . . , vn) = {β1v1 + . . . + βnvn | β1, . . . , βn ≥ 0} and of
the convex hull conv(v1, . . . , vn) = {α1v1 + . . . + αnvn | α1, . . . , αn ≥ 0, α1 + . . . + αn = 1}
of given vectors v1, . . . , vn in a flux tope, thus in a closed orthant (so the sum is conformal),
have their supports included in supp(v1) ∪ . . . ∪ supp(vn), which is the support of any
vector v in cone+(v1, . . . , vn) or conv+(v1, . . . , vn), thus their signs being less than or equal
to the sign of v, and from the fact that a face of a polyhedron is the Minkowski sum
of the convex hull of its vertices and the conical hull of its extreme vectors. Thus, if a
vector v of a flux tope FC≤η (resp., FP≤η) belongs to the solution space, the minimal
face of FC≤η (resp., FP≤η) containing v is completely included in it. As a sign-monotone
constraint is sign-invariant, the results of Theorem 1 apply and provide formulas for EFVs
and EFPs. Thus remains only the case of EFMs. Now, if an elementary flux mode v of
the solution space were not support-minimal in FC, a nonzero vector v′ would exist in
FC with supp(v′) ⊂ supp(v). Moreover, we could choose λ ∈ R such that v′′ = v− λv′

is nonzero, belongs to FC and verifies supp(v′′) ⊂ supp(v) and sign(v′′) ≤ sign(v). From
the sign-monotonicity property of the constraint, v′′ would also satisfy the constraint and
would thus belong to the solution space, which would contradict the fact that v is an
elementary flux mode in this space. Therefore, v is an elementary flux mode in FC and we
get the result for EFMs.

Of course, in the decomposition of CFCC(x) or CFCC (resp., CFPC(x) or CFPC) as a
union of certain faces of the FC≤η’s (resp., FP≤η’s), we can only keep those faces which
are maximal. Theorem 4 applies in particular to all thermodynamic constraints, to those
kinetic constraints and to those very few regulatory constraints described in Lemma 6.
In particular, we directly obtain (except of course the reference to tsM) Proposition 2 for
thermodynamic constraints TC and TCb, as well as the structure of the solution space as
a union of flux cones (resp., flux polyhedra) for kinetic constraints KC and KCb (in the
absence of bounds on enzyme concentrations) and the characterization of elementary fluxes
and elementary flux modes given by Proposition 5, which proves that these results depend
only on the fact that these constraints are sign-monotone.

Note that the knowledge of EFVs, equal to EFMs, of CFCC (resp., and of EFPs of CFPC)
is not good enough to reconstruct the structure of the solution space CFCC (resp., CFPC)
as a union of polyhedral cones (resp., polyhedra). For this, it is necessary to know the
(non-disjoint) decomposition {Ei} of these EFVs (resp., and EFPs) as extreme vectors (resp.,
and extreme points) of the faces Fi of the flux topes FC≤η (resp., FP≤η) that constitute the
solution space. The Ei’s are exactly the maximal subsets of EFVs (resp., and EFPs) whose
conformal conical hull (resp., conformal convex hull) is entirely contained in the solution
space: cone⊕(Ei) ⊆ CFCC (resp., and conv⊕(Ei) ⊆ CFPC). By analogy with LTCS, we will
call each such Ei a largest C-consistent set of EFVs or EFMs (resp., and of EFPs), noted
LCSC.
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In order to deal with enzymatic capacity constraints, we generalize the sign-monotonicity
criterion exactly in the same way we generalized the sign-invariance criterion. A constraint,
Cx(v) (resp., ∃xCx(v)), is said to be contracting-sign-monotone if, when satisfied by one
vector, it is satisfied by any vector with a smaller or equal sign which is not greater (on
each component) than the vector itself, i.e., by any vector that belongs to the rectangle
parallelepiped defined by the null vector and the given vector:

Cx(v), sign(v′) ≤ sign(v), ∀i|v′i| ≤ |vi| ⇒ Cx(v′) (96)

∃xCx(v), sign(v′) ≤ sign(v), ∀i|v′i| ≤ |vi| ⇒ ∃xCx(v′). (97)

Obviously a sign-monotone constraint is contracting-sign-monotone and, if the Cx(v)’s
are contracting-sign-monotone for all x, then ∃xCx(v) is contracting-sign-monotone. Fur-
thermore, any contracting-sign-monotone constraint is contracting-sign-invariant.

Example 11. The argument given in Example 9 to establish that the kinetic constraints KCb
M(v)

Equation (81) and KCb(v) Equation (77) are contracting-sign-invariant in the absence of positive
lower bounds on enzyme concentrations (i.e., when E− = 0), proves in fact that they are contracting-
sign-monotone.

Lemma 8. The kinetic constraints KCb
M and KCb are contracting-sign-monotone in the absence of

positive lower bounds on enzyme concentrations (i.e., when E− = 0).

Theorem 5. If C = Cx(v) (or C = ∃xCx(v)) is contracting-sign-monotone, then CFCC is a
0-star domain and there exists a neighborhood N = ]−δ,+δ[r of 0 for a certain δ > 0 such that
CFCC ∩ N is a finite union of N-truncated polyhedral cones, which are the intersection with N of
faces of the flux topes FC≤η. In addition, results (94) regarding EFVs and EFMs hold in N, i.e.,
for sufficiently small fluxes. The same holds for CFPC with flux topes FP≤η if 0 is an interior point
of FP, and in this case results (95) regarding EFVs and EFPs hold in N.

Proof of Theorem 5. The proof becomes identical to that of Theorem 3 by using the proof
of Theorem 4.

Theorem 5 tells us that the result of Theorem 4 for sign-monotone constraints regarding
the geometrical structure of the solution space and the determination of elementary fluxes
and elementary flux modes applies identically for contracting-sign-monotone constraints
locally in a neighborhood of 0, i.e., when considering only pathways with sufficiently
small amounts of fluxes. It applies in particular to those kinetic constraints described in
Lemma 8, providing the result for the structure of CFCKCb

M
and CFCKCb quoted in the last

part of Proposition 5.
Finally, Proposition 11 extends straightforwardly to the case where we have to

deal with both one sign-monotone constraint and one sign-invariant constraint. As a
sign-monotone constraint is sign-invariant the conjunction of the two constraints is sign-
invariant and Theorem 1 applies.

Theorem 6. The space of flux vectors in FC (resp., FP) satisfying both a sign-monotone constraint
and a sign-invariant constraint is a finite disjoint union of open polyhedral cones (resp., open
polyhedra) which are certain open faces of the flux topes of FC (resp., FP). The elementary
flux vectors (resp., elementary flux points and vectors) are those of FC (resp., FP) that satisfy
both constraints.

Note that, in the case of FC, Theorem 2 applies also to determine elementary flux
modes and support-wise non-strictly-decomposable vectors.
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3.3. Consequences on the Computation of Elementary Fluxes

From the results above, we will see that the computation of elementary fluxes in
the presence of a sign-monotone constraint can be efficiently performed with the Double
Description (DD) method.

First let us briefly remember the principle of the DD method [11]. This is an algorithm
that takes as input the implicit description of a pointed convex polyhedral cone C as its
representation matrix, i.e., a finite set of homogeneous linear inequalities defining C as the
intersection of the corresponding vector half-spaces, and produces as output the explicit
description of C as a (minimal) generating matrix, i.e., the set of extreme rays of C. More
generally, it can deal in the same way with a pointed convex polyhedron P producing, from
a finite set of linear inequalities defining P as the intersection of the corresponding affine
half-spaces, the explicit description of P as two generating matrices providing respectively
the vertices of P and the extreme rays of CP. As the first are obtained as the extreme rays of
the pointed cone obtained from P by adding one dimension to the space and considering
the conical hull of P from an origin of this extended vector space, it is enough to explain
how the DD method works on pointed convex polyhedral cones. The DD method is
an incremental algorithm that processes one by one each of the n homogeneous linear
inequalities defining C. At each step i, 1 ≤ i ≤ n, it builds the intermediate extreme rays of
the intermediate current cone Ci defined by the i first linear inequalities from the knowledge
of the extreme rays of Ci−1 built at previous steps and of the ith linear inequality. At the
end, for i = n, Cn = C and the extreme rays are thus obtained. The ith linear inequality
defines a half-space H+

i with a vector hyperplane Hi as a frontier. All the extreme rays
of Ci−1 that are on the right side of Hi, i.e., belong to H+

i , are extreme rays of Ci and thus
kept; all those that are on the wrong side do not belong to Ci and will be discarded; the
new extreme rays at step i appear from the intersection of Ci−1 with Hi and are obtained as
the intersection with Hi of the 2-faces of Ci−1 defined by two adjacent extreme rays, one on
each side of Hi. We therefore just need to keep and update at each step this list of pairs
of adjacent extreme rays and, when the ith linear inequality is processed, each such pair
with elements on both sides of Hi determines with Hi an extreme ray for Ci. The key fact is
that each new extreme ray built at step i is the conical sum of two extreme rays existing at
step i− 1 and, as we will proceed by flux tope, i.e., in a given closed r-orthant, this sum
is conformal and the support of this new extreme ray is the union of the supports of two
previously existing extreme rays. Moreover, similarly, this new extreme ray, if involved
in the next steps as a member of a relevant pair of adjacent rays, in order to build a new
extreme ray, will have its support included in the support of the latter one. Finally, all we
need to do is initialize C1. For a flux cone FC defined by Equation (6), what has been shown
as the most efficient initialization is to start from a basis of the nullspace of S (the authors
of [43] proposed a method to compute EFMs directly as linear combinations of the vectors
of a basis of this nullspace but it turned out to be less efficient than DD), and this basis (of
size r−m by assuming S of full rank) can be chosen so that r−m of the r linear inequalities
are satisfied (we consider here the worst case corresponding to the highest number of such
inequalities, i.e., rI = r, which happens in particular if each reversible reaction is split into
two irreversible ones). There thus remain m linear inequalities to satisfy, i.e., there are
n = m steps in the DD algorithm.

Let us now consider a sign-monotone constraint C. From Theorem 4, the EFVs
(identical to EFMs) of the constrained flux cone subset CFCC are simply those of FC, i.e., of
all its flux topes FC≤η successively, that satisfy constraint C (and the same is true for EFPs
of CFPC). Therefore, we just have to build the extreme rays of each FC≤η by using the DD
algorithm as presented above and filter those that satisfy C. Obviously a filtering at the end,
once all extreme rays built, will not at all improve the efficiency. However, by exploiting
the key fact that any newly built extreme ray at a certain step, if used in other next steps to
build other new extreme rays will have necessarily its support included in each support
of the latter ones, and exploiting the sign-monotonicity of C, we can conclude that, each
time a newly built extreme ray does not satisfy the constraint C, it can be immediately
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discarded because not only it has no use at the step of its discovery but also no use at
the future steps as all extreme rays, in the building of which it could be involved, would
have a larger support and thus would thus not satisfy C either. Thus, the computation of
elementary fluxes or elementary flux modes in the presence of a sign-monotone constraint
can be fully integrated into the incremental DD algorithm, the filtering of the extreme rays
satisfying the constraint being achieved at each step when they are newly created. The
extra-cost is having to check all intermediate extreme rays built for satisfiability by C (for
most constraints, this can be practically instantaneous) and the gain is that all intermediate
extreme rays for which this checking gives a negative answer are discarded.

Proposition 13. Given a sign-monotone constraint C, the EFVs (or EFMs) of the constrained
flux cone subset CFCC are obtained by the DD algorithm as the extreme rays of each flux tope
FC≤η by filtering out at each step all those newly built extreme rays that do not satisfy C.

This result applies in particular to thermodynamic constraints TC and TCb [44,45] and
to kinetic constraints KC and KCb (in the absence of bounds on enzyme concentrations).
Actually, for TC (or KC which is identical from Proposition 5), Proposition 3 demonstrated
that the criterion for an extreme ray to be thermodynamically satisfiable is to belong to a
given fixed open half-space delimited by a vector hyperplane. Checking this satisfiability
thus boils down to computing the scalar product of the extreme ray with a fixed vector
(normal to the hyperplane and oriented towards the half-space) and verifying it is positive.
In this case, as it has been shown, it is much simpler to integrate this thermodynamic
constraint as one supplementary (n + 1)th homogeneous linear inequality and we can
choose for example that it is processed first by the DD algorithm. However, as it has been
already pointed out, providing the list of the extreme flux vectors of CFCC does not provide
its structure in terms of a union of polyhedral cones. For this, we have to identify all the
LCSC’s, i.e., the maximal subsets of those extreme flux vectors whose conformal conical
hull is entirely contained in CFCC. For each flux tope FC≤η, this amounts to computing all
maximal upper bounds for sets of signs of those extreme rays built from this flux tope such
that any vector of this tope with a sign equal to such an upper bound satisfies constraint C,
as the vectors of the strict conical hull of a subset of extreme rays have as a common sign
the upper bound for the signs of these extreme rays. To each such upper bound identified
is associated the LCSC made up of all the extreme rays whose signs are smaller than, or
equal to, this upper bound.

For sign-invariant constraints, and thus for regulatory constraints, no such incremental
filtering is possible as a newly built intermediate extreme ray may have a sign that does not
satisfy the constraint but may participate at some later stage in the construction of other
new extreme rays (with necessarily larger supports) whose sign will satisfy the constraint.
Thus, such an extreme ray cannot be discarded. In addition, we saw in any case there is no
longer identity between those EFMs of FC that satisfy the constraint, the EFMs of CFCC
and the support-wise non-strictly-decomposable vectors in CFCC and, as only the last two
are biologically relevant, computing only the first ones would be of limited interest.

4. Conclusions

The analysis of metabolic networks in a steady state takes classically into account
only stoichiometric and reactions irreversibility constraints. In this context, well-known
pathways have been introduced, such as elementary flux modes EFMs, expressing the
property of minimality, or elementary flux vectors EFVs, expressing the property of non-
decomposability (which coincide in this standard framework), that are biologically relevant
in their own and from which all pathways, whose structure is a convex polyhedral flux
cone FC, can be reconstructed. However, first, the computation of these EFMs or EFVs
is hampered by the combinatorial explosion of their number in genome-scale metabolic
models, and, second, most of them are biologically irrelevant, because other important
biological constraints are not taken into account. With the objective of both enumerating
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only biologically feasible EFMs or EFVs (without filtering them afterwards) and, as there
are considerably fewer of them, improving the scalability of this computation, we took
into consideration in this paper on one side thermodynamic and, more generally, kinetic
constraints and on the other side regulatory constraints, and we tackled the problem of
revisiting in this new extended framework the concept of EFMs and EFVs and, more
largely, of characterizing the geometry of the solution space. Actually, we considered a
more general conceptual framework for constraints, namely their property to be compatible
with vector signs (i.e., with vector supports separately in each closed r-orthant), because
most properties of the geometrical structure of the solution space happen to depend only
on this very general sign-compatibility of constraints. This is how we demonstrated, for
constraints which are sign-monotone (i.e., once satisfied by a certain vector are satisfied
by any vector with smaller or equal sign), which is the case of thermodynamic constraints
and of kinetic constraints in the absence of bounds on enzyme concentrations, that the
solution space is a union of convex polyhedral cones, which are certain faces of the flux
topes of FC, and that the EFMs, which still coincide with the EFVs, are simply those of FC
that satisfy the constraint. In addition, we showed that their computation can be efficiently
integrated into the classical double description algorithm, as each newly built intermediate
extreme ray that does not satisfy the constraint can be filtered out at each incremental
step. For the specific case of thermodynamic constraints or of kinetic constraints in the
absence of bounds on enzyme concentrations, we demonstrated that their solution spaces
are identical and, when there are also no bounds on metabolite concentrations, made up
of those maximal faces of the flux topes of FC which are entirely contained in a fixed
open vector half-space and thus that the EFMs are simply those of FC belonging to this
half-space and thus computable by adding one single homogeneous linear inequality to
the initial (stoichiometric and reactions irreversibility) ones. The situation is more complex,
and challenging from a computational perspective, for constraints which are only sign-
invariant (i.e., once satisfied by a certain vector are satisfied by any vector with the same
sign), which is the case of regulatory constraints. We showed that in fact sign-invariant
constraints are constraints that are support-invariant in each closed r-orthant separately
and that support-invariant constraints coincide with regulatory (Boolean) constraints,
therefore regulatory constraints are prototypical of sign-invariant constraints. For such
sign-invariant constraints, we demonstrated that the solution space is a finite disjoint union
of semi-open convex polyhedral cones, obtained from certain faces of the flux topes of FC
by removing certain of their own faces of lesser dimension, and that the EFVs are simply
those of FC (equal to the EFMs of FC) that satisfy the constraint. However, these cannot be
efficiently computed by the double description algorithm because they cannot be filtered
out during the incremental process. In addition it is no longer true that EFVs identify
with EFMs, as it exists in general minimal solutions that are decomposable, and that EFMs
identify with support-wise non-strictly-decomposable vectors (a new property that we
introduced and which is the proper one to express non-decomposability in this general
framework, in terms of support non-decomposability), as there are in general such support-
wise non-strictly-decomposable solutions that are not minimal: there are usually strict
inclusions between these three sets and we provided again a complete characterization of
the two latter ones. Finally, we extended all these results to the case where inhomogeneous
linear constraints (expressing for example capacity constraints or bounds on fluxes) exist,
dealing thus with a convex flux polyhedron FP instead of a flux cone FC. Basically, most
of the results regarding the geometrical structure of the solution space in the presence of
the above biological constraints remain the same with cones replaced by polyhedra.

Future work will be carried out along two paths. First, the present theoretical work
will be extended to minimal cut sets (MCSs). Such MCSs are defined as minimal (for set
inclusion) sets of reactions whose deletion will block the operation of given objectives or
target reactions (as, e.g., those producing some toxic or undesirable product), i.e., removal
of an MCS (that is, the knockout of its reactions) implies a zero flux for the target reactions
in a steady state. MCSs are important for computing intervention strategies, e.g., for
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metabolic engineering. It is obvious from this definition that, for a metabolic network
modeled in a steady state by a flux cone FC, the MCSs are the minimal hitting sets of
the set of target EFMs (identical to EFVs of the given metabolic network (i.e., the set
of EFMs that comprise at least one of the target reactions), where a hitting set of the
target EFMs is a set (of reactions) that has a nonempty intersection with each one of these
EFMs. Moreover, this generalizes to a metabolic network modeled by a flux polyhedron
FP by using EFPs. This gives an indirect method for computing MCSs [46,47] from the
preliminary computation of EFVs (or EFPs) that can be applied in the presence of biological
constraints by using the results obtained in this paper. However, it is known that there is
also a method for computing MCSs directly as the EFVs of a dual network [48,49], obtained
basically by transposing the stoichiometric matrix of the original matrix (thus in some
sense, exchanging reactions and metabolites). We will therefore study how to define this
dual operation properly for metabolic networks in the presence of biological constraints
in order to preserve this result (or most of it). Second, the algorithms described in this
paper will be implemented and testing conducted on metabolic networks described in the
literature for which biological (thermodynamic, kinetic or regulatory) data are known. As
it has been shown, the computation of elementary flux vectors (or elementary flux points)
boils down to filtering those of extreme rays (or vertices) in each flux tope which satisfy
the biological constraints. Moreover, for sign-monotone constraints as thermodynamic
constraints or kinetic constraints in the absence of bounds on enzyme concentrations,
this filtering can be easily integrated at each step of the incremental double description
method, so it is natural to rely first on this method which benefits from very efficient
implementations. In the absence of bounds on metabolite concentrations, the advantage
is obvious as it is just necessary to add one step (i.e., one homogeneous linear constraint
to deal with) in the DD algorithm. It has nevertheless been shown that at most 50% of
the EFVs can be ruled out that way, which is clearly insufficient to scale up to GSMMs.
Adding bounds on metabolite concentrations has already proved capable of ruling out a
higher percentage of EFVs. This is achieved by checking the extreme rays at each step of
the DD algorithm thanks to a call to a linear programming solver and it will be interesting
to compare its efficiency with the method given by Proposition 4 which does not need
using an LP solver but has the disadvantage of requiring reasoning in a higher dimension.
As the structure of the solution space cannot be deduced from merely the knowledge of
the EFVs but requires the identification of the largest consistent (w.r.t. the constraints) sets
of EFVs, efficient computation of these LCSC’s will be studied. We can reasonably think
that scaling up will be obtained only by dealing with all biological constraints together.
However, as it has been shown, handling regulatory constraints poses serious problems as
these constraints are not sign-monotone and thus filtering of the EFVs that satisfy them
cannot be integrated incrementally into the DD algorithm. In addition the structure of
the solution space as union of semi-open polyhedral cones (or semi-open polyhedra) is
more complex and pathways of interest for biologists, such as elementary flux modes or
support-wise non-strictly-decomposable vectors, no longer coincide with EFVs and require
more complex computations to be identified. Algorithms will be carefully studied for
maximal efficiency and novel ways of using the DD method or the use of other methods
recently proposed such as local reverse search or satisfiability based methods [42,50] will
be investigated
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