
computation

Article

Conditional Variational Autoencoder for Learned
Image Reconstruction

Chen Zhang 1, Riccardo Barbano 2 and Bangti Jin 2,*

����������
�������

Citation: Zhang, C.; Barbano, R.; Jin,

B. Conditional Variational

Autoencoder for Learned Image

Reconstruction. Computation 2021, 9,

114. https://doi.org/10.3390/

computation9110114

Academic Editors: Qin Li, Li Wang

and Leonardo Andrés Zepeda Núñez

Received: 28 September 2021

Accepted: 23 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Huawei Noah’s Ark Lab, Huawei Technologies R&D UK, Floor 5, Gridiron Building, 1 Pancras Square,
London N1C 4AG, UK; chenzhang10@huawei.com

2 Department of Computer Science, University College London, London WC1E 6BT, UK;
riccardo.barbano.19@ucl.ac.uk

* Correspondence: b.jin@ucl.ac.uk or bangti.jin@gmail.com

Abstract: Learned image reconstruction techniques using deep neural networks have recently
gained popularity and have delivered promising empirical results. However, most approaches focus
on one single recovery for each observation, and thus neglect information uncertainty. In this work,
we develop a novel computational framework that approximates the posterior distribution of the un-
known image at each query observation. The proposed framework is very flexible: it handles implicit
noise models and priors, it incorporates the data formation process (i.e., the forward operator), and
the learned reconstructive properties are transferable between different datasets. Once the network is
trained using the conditional variational autoencoder loss, it provides a computationally efficient sam-
pler for the approximate posterior distribution via feed-forward propagation, and the summarizing
statistics of the generated samples are used for both point-estimation and uncertainty quantification.
We illustrate the proposed framework with extensive numerical experiments on positron emission
tomography (with both moderate and low-count levels) showing that the framework generates
high-quality samples when compared with state-of-the-art methods.

Keywords: conditional variational autoencoder; uncertainty quantification; deep learning;
image reconstruction

1. Introduction

Machine learning techniques, predominantly those using deep neural networks
(DNNs), have received attention in recent years and delivered state-of-the-art reconstruc-
tion performance on many classical imaging tasks, including image denoising [1], image
deblurring [2], and super-resolution [3], as well as on challenging applications such as low-
dose and sparse-data computed tomography [4,5] and under-sampled magnetic resonance
imaging [6], just to name a few.

Most existing works on DNN-based image reconstruction aim at providing a one-point
estimate of the unknown image of interest for a given (noisy) observation; this implies
that we regard DNNs as deterministic machineries. Nonetheless, the stochastic nature of
practical imaging problems (e.g., a noisy observation process, or imprecise prior knowledge)
implies that there actually exists an ensemble of plausible reconstructions, which are still
consistent with the given data (although to various extents). This observation has motivated
the need to develop a fully probabilistic treatment of the reconstruction task in order to
assess the reliability of one specific reconstructed image so as to inform downstream
decision making [7]. Unfortunately, information uncertainty/reliability is not directly
available from most existing DNN-based image reconstruction techniques, and hence there
is an imperative need to develop uncertainty quantification (UQ) frameworks that are
capable of efficiently delivering uncertainty information along with the reconstruction [8].

The Bayesian framework provides a systematic yet very flexible way to address many
UQ tasks by modelling the data and the unknown image probabilistically (i.e., as random
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variables); this has been popular for UQ in imaging inverse problems [9,10]. Further-
more, recent advances in Bayesian inference leverage powerful deep generative modelling
tools such as the Wasserstein generative adversarial networks (GANs) [11] and variational
autoencoders (VAEs) [12]. Deep generative models output one sample of the unknown
image via feed-forward propagation, which is computationally feasible and can also be
performed in parallel for multiple samples. These techniques hold enormous potential for
the quantification of uncertainty in image reconstruction; nonetheless, developing rigor-
ous data-driven image reconstruction techniques within a Bayesian framework remains
challenging.

The first challenge stems from the high complexity of the posterior distribution of the
unknown image (conditioned on a given observation). The “conventional” Bayesian setting
often involves an explicit likelihood and the construction of a prior. In fact, in Bayesian
inversion, both likelihood and prior are given explicitly (or hierarchically). The likelihood
is derived from the statistical model of an observation process, under the assumption that
both the noise statistics and the underlying physical principles of the imaging modality are
well-calibrated. Nonetheless, deriving precise likelihoods can be highly nontrivial (e.g.,
due to a complex corruption process). Moreover, how to stipulate statistically meaningful
yet explicit priors is a long-standing open problem in image reconstruction. In the context
of learning-based approaches, one can only implicitly extract prior information in a “data-
driven” way using deep neural networks from a set of training pairs instead of an explicit
posterior distribution (e.g., up to a normalising constant), leading to an approximate
posterior, which is “intrinsically implicit”. Furthermore, the UQ task is substantially
complicated by the high-dimensionality of the reconstructed image, which renders the
many conventional sampling type techniques not directly applicable.

The second challenge is related to the presence of physical laws. In many practical
imaging applications, the data formation process itself is highly complex. To make matters
even worse, the forward operator itself can be implicitly defined, for instance, via a system
of differential equations in many medical imaging modalities such as the second-order
elliptic differential equation in electrical impedance tomography [13], or the radiative
transfer equation in diffuse optical tomography [14]. The forward maps often describe
the fundamental physical laws and can be regarded as “established” prior knowledge.
Therefore, it is useful to directly inform DNNs with the underlying physical laws (instead
of having the DNNs learn them from the given training data); how to best use the physical
laws represents an important issue in architectural design, which is currently being actively
researched.

In this work (a preliminary version of the paper appeared as the arXiv preprint [15]),
we develop a novel computational framework for uncertainty-aware learned image recon-
struction with the use of a conditional variational autoencoder (cVAE) [16], implemented
via algorithmic unrolling [17]. The framework recurrently refines the (stochastic) recon-
struction that benefits directly from the physical laws as well as from the samples of a
low-dimensional random variable, which is conditionally dependent on the observation.
Furthermore, minimising the cVAE objective is equivalent to optimising an upper bound of
an expected Kullback–Leibler (KL) divergence (see Proposition 1 for a precise statement),
and the output samples (i.e., the plausible reconstructions) are actually drawn from an
approximate posterior distribution of the unknown image. In sum, the proposed frame-
work has the following features: (i) it serves as an efficient sampler from an approximate
posterior in the sense of (generalised) variational inference [18]; (ii) it is scalable due to its
encoder-decoder structure, more specifically due to the low-dimensionality of the latent
variable. Note that the low-dimensional latent variable in cVAE is introduced in order to
inject stochasticity into the reconstructions, while the heavy-duty reconstruction task is
still carried out by the unrolling construction. Thus, the approach does not suffer from the
over-smoothing effect typically observed for VAEs.

This work is performed within the context of uncertainty quantification for learned
image reconstruction techniques. There are mainly two different types of uncertainties:
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aleatoric [7,19] and epistemic [7,20] uncertainties. See the review in [8] for UQ in medical
image analysis, and the review in [21] for the UQ of DL techniques in general. We focus on
aleatoric uncertainty associated with the reconstructed image. This arises from the intrinsic
stochasticity with the given data, and it is irreducible even if one can collect more data. It
differs from epistemic uncertainty, which is often a by-product of a Bayesian treatment
for neural networks, that is, the Bayesian neural networks (BNNs) [20,22–25]). BNNs
model the uncertainty within network weights, which are then inferred with approximate
inference techniques [18,26,27]. The corresponding uncertainty arises from the fact that
there is an ensemble of weight configurations that can explain the given training data
equally well since there are generally far more network parameters than the available
training data (also known as overparameterisation).

The rest of the paper is organised as follows. In Section 2, we describe the related
works. In Section 3, we describe the problem formulation. Section 4 provides back-
ground information on the conditional variational autoencoder and describes our proposed
framework, including the network architecture and the training and inference phases.
In Section 5, we showcase our framework on an established medical imaging modality—
positron emission tomography (PET) [28]—for which uncertainty quantification has long
been desired yet is still very challenging to achieve [29–31], and confirm that the generated
samples are indeed of high quality in terms of both point estimation and uncertainty quan-
tification when compared with several state-of-the-art benchmarks. Finally, in Section 6,
we conclude the paper with additional discussions.

2. Related Works

This work lies at the interface of the following three topics: learned image reconstruc-
tion, uncertainty quantification using generative models, and approximate inference. In
this section, we briefly review related works.

Learned reconstruction techniques have received a lot of attention recently. Most of
them are learned in a supervised manner [32]. One prominent idea is algorithmic unrolling,
i.e., to unfold classical iterative optimization schemes and to replace certain components
of the schemes with neural networks, whose parameters are then learned from training
data. This construction brings good interpretability into the function of the algorithms, and
allows for the incorporation of physical models, thus often delivering high-performance
results without resorting to very large training datasets. This was first performed in [33],
which unrolls the iterative shrinkage thresholding algorithm for sparse coding. In the
context of inverse problems, an early work is [34]. Currently, there is a large body of
works on unrolling; see [17] for a recent overview. These approaches focus mostly on point
estimates and ignore the associated uncertainties. This work employs the unrolling idea
to construct the backbone network, but also endows the reconstructions with uncertainty
estimates using the low-dimensional latent space.

Over the last decade, there has been impressive progress on the UQ of DNNs, espe-
cially Bayesian neural networks [7,20,22,23,27] (see [21] for an overview). Nonetheless,
high-dimensional inference tasks such as image reconstruction remains largely under-
explored due to the associated computational cost [8]; thus, the UQ of learned image
reconstruction techniques is just emerging. For epistemic uncertainty, the most common
technique used in image reconstruction is the Monte Carlo dropout [20] due to its low
computational cost, although it may sacrifice the accuracy [24]. One may further separate
the sources of uncertainties into aleatoric and epistemic ones [25], if desired. This work
addresses aleatoric uncertainty with a reconstructed image by approximating an implicitly
defined posterior distribution, which differs markedly from existing works on epistemic
uncertainty.

In the machine learning community, there is a myriad of different ways to approximate
a target distribution using an approximate inference scheme, e.g., variational inference [35],
variational Gaussian [36,37], expectation propagation [26,29], and Laplace approxima-
tion [38]. This work provides one way to approximate the distribution using cVAE. Note
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that to rigorously justify the distribution modelled by DNNs for aleatoric uncertainty,
proper Bayesian interpretations of the loss function used in the training of DNNs (in con-
nection with the target posterior distribution) are needed. The cVAE approach adopted
in the present work does admit the interpretation as generalised variational inference (cf.
Proposition 1). Very recently, a graph version of cVAE was employed for synthesizing
cortical morphological changes in [39]. Of course, cVAE represents only one way of con-
structing the approach. Other approaches, e.g., the generative adversarial networks [11],
also show potential by suitably adapting the corresponding loss function and equipping it
with a Bayesian interpretation. For example, the interesting work performed in [40] con-
structs a sampler by approximating the transport map with DNNs. However, a thorough
comparison of these different approaches with the use of deep generative models for the
UQ of learned reconstruction remains missing.

3. Preliminaries

In this section we describe the problem setting and the variational autoencoder (VAE)
framework.

3.1. Problem Formulation

First, we specify the setting of this work, i.e., finite-dimensional linear inverse prob-
lems. Let x ∈ Rn be the unknown image of interest, and y ∈ Rm be the observational data.
The linear forward operator A : Rn → Rm maps the unknown x to the data y. In practice,
the observation y is a noisy version of the exact data Ax:

y = η(Ax),

where η(·) denotes a general corruption process by (possibly unknown type) noise, e.g.,
Gaussian, Poisson, and Salt and Pepper, Cauchy, uniform, or the mixtures thereof. The
image reconstruction task is to recover the unknown ground-truth x from the given noisy
observation y. In the Bayesian framework, the corruption process η(·) is encoded by a
conditional distribution p∗(y|x), and the unknown image x of interest is a random variable
with a prior distribution p∗(x). In the proposed framework, we only require (i) samples
from the joint distribution p∗(x, y) := p∗(y|x)p∗(x) (which is proportional to the posterior
distribution p∗(x|y), up to a normalizing constant p(y) =

∫
Rn p∗(x, y)dx), and (ii) the

action of the maps A and A∗ (the adjoint of A). These two conditions hold for many
practical imaging problems.

Note that DNN-based image reconstruction techniques employ paired training data
{(xi, yi)}N

i=1 from the underlying joint distribution p∗(x, y), and also the associated forward
operators, which may differ for each data pair. Thus, the training data tuple takes the form
of (xi, yi,Ai), which is ideally an exhaustive representation of the image reconstruction
problem. In particular, a closed-form expression of the posterior distribution p∗(x|y) is
not needed, hence the term “implicit” posterior distribution. In practice, one can collect
measurements corresponding to samples of x drawn from the prior p∗(x) (i.e., physically
derived data) without explicitly knowing the corruption process η(·). However, in many
medical imaging applications, a dataset of ordered ground-truth images and observational
data pairs is often expensive to acquire at large volumes, if not impossible at all. Note
that the dimension of (xi, yi,Ai) can also vary from one sample to another, e.g., due to
the discretization of different resolution levels. The explicit presence of the operator A
is a noticeable difference from standard supervised learning in machine learning. The
main goal of learned image reconstruction with aleatoric UQ is to provide a computational
framework that gives an approximation to the posterior distribution p∗(x|y) or the joint
distribution p∗(x, y) by suitably training on the given dataset {(xi, yi,Ai)}N

i=1.
Below, we use the notation h(·) to denote a DNN, and the subscript to distinguish

between DNNs. Furthermore, we abuse the subscript for a distribution and a DNN to
reparameterise the corresponding random variable. For instance, pθ(x) is a distribution of
x and hθ(·) is a DNN to reparameterise x, both with the parameter vector θ.
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3.2. Variational Inference and Variational Autoencoders

Now we describe the basic technique, variational inference (VI), and the building
blocks of the proposed framework: variational autoencoders (VAEs).

First, we describe the idea of VI for posterior approximation. Let pθ(x|y) be an
intractable target distribution of interest, where the vector θ in pθ(x|y) contains the hyper-
parameters of both prior pθ(x) and likelihood pθ(y|x), such as the prior belief strength
(also known as the regularisation parameter) and noise precision. The intractability of the
distribution pθ(x|y) often arises from the high-dimensionality of the parameter space (i.e.,
n is large) and the non-Gaussian nature of the distribution (e.g., due to the complex data
formation process).

To approximate the target distribution pθ(x|y), we employ variational inference (VI),
which is a popular approximate inference technique in machine learning [18,35]. It selects
the best approximation qφ(x|y) from a candidate family Q (parameterised by the vector
φ, commonly known as the variational parameters) by minimising a suitable divergence
measure for probability distributions. The family Q is often taken to be an independent
Gaussian distribution, which is fully characterised by the mean and (diagonal) covariance.
This is commonly known as the mean field approximation. In VI, the most popular
choice for the probability metric is the Kullback–Leibler (KL) divergence [41]. The KL
divergence DKL(qφ(x|y)||pθ(x|y)) of the approximate posterior qφ(x|y) from the target
posterior pθ(x|y) is defined by the following formula:

DKL(qφ(x|y)||pθ(x|y)) =
∫

qφ(x|y) log
qφ(x|y)
pθ(x|y)dx.

It follows directly from Jensen’s inequality that it is always non-negative and zero if and
only if qφ(x|y) = pθ(x|y) almost everywhere. Since the target pθ(x|y) is often only known
up to a normalising constant, the problem

min
qφ∈Q

DKL(qφ(x|y)||pθ(x|y))

is often cast into an equivalent evidence lower bound (ELBO) maximisation

max
φ

{
L(φ; θ, y) = Eqφ(x|y)[log pθ(y|x)]− DKL(qφ(x|y)||pθ(x))

}
, (1)

where the notation Eq[·] denotes taking expectation with respect to the distribution q. In
the ELBO, the first term enforces data consistency, whereas the second term represents a
penalty, which is relative to the prior distribution pθ(x).

Solving the optimization problem (1) requires evaluating the gradient of the loss
L with respect to the variational parameters φ (i.e., ∇φEqφ(x)[ fθ(x)]) for a deterministic
function fθ , parameterised by θ. The challenge lies in the fact that the integral Eqφ(x)[ fθ(x)]
is often not analytically tractable and can only be evaluated by means of the Monte Carlo
methods. The reparameterisation trick [12,42] is useful for overcoming the challenges in
directly back-propagating the gradients (with respect to φ) through the random variable x.
It provides an unbiased estimate of the gradient of the ELBO with respect to the variational
parameters φ. In fact, we assume that the conditional sampling of x depends on y and
an easy-to-sample auxiliary variable ε distributed according to p(ε) (e.g., a Gaussian
distribution):

x = gφ(y, ε), with ε ∼ p(ε),
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where gφ(·) is a deterministic function (in our case, a DNN). By estimating θ from the
given data y while simultaneously optimising the variational parameter φ, one obtains the
following Monte Carlo estimator of the loss in (1):

L(θ, φ) =
1
L

L

∑
`=1

[log pθ(yi|x(i,`))]− DKL(qφ(x|yi)||pθ(x)),

where {x(i,`)}L
`=1 are L samples generated with yi, and using the variational encoder

qφ(x|y): {ε`}L
`=1 are sampled from p(ε) and x(i,`) = gφ(yi, z`). The KL term can often

be evaluated in closed form since both factors therein are often taken to be Gaussian,
otherwise it can also be approximated using the Monte Carlo. Note that in the preceding
construction, we allowed the observation data y to vary with the unknown image x in order
to accommodate the training data {(xi, yi)}N

i=1. This differs from the standard approximate
inference schemes, and it is often referred to as amortized variational inference.

In generative modelling, the considerations above give rise to a formalism very similar
to the popular variational autoencoders (VAEs) [12,43], with x assuming the role of a latent
variable, and y being the data to be modelled probabilistically; see the remark below for
more details on the difference.

VAE is an unsupervised deep generative framework that learns stochastic mapping
between the observed y-space and a latent x-space. The model learns a joint distribution
pθ(y, x) that factorises as pθ(y, x) = pθ(x)pθ(y|x) with a stochastic decoder pθ(y|x) and a
prior distribution over a low-dimensional latent space pθ(x). A stochastic encoder qφ(x|y)
(also known as a parametric inference model) approximates the intractable posterior
pθ(x|y). The framework compresses the observed data into a constrained latent distribution
(via the encoder) and reconstructs it faithfully (via the decoder). This process is carried out
by two neural networks, an encoding network hφ(·) with the parameter φ (i.e., the weights
and the biases of the network), also called the variational parameters, and a decoding
network hθ(·) with the parameter θ.

In practice, VAEs do not often use the encoding network to model the parameterisation
function gφ(·) in an end-to-end way. Instead, VAEs take the observation y and outputs
the coefficients to reparameterise the image x. For example, for a multivariate Gaussian
qφ(x|y), the decoding network can output the mean µ and the Cholesky factor L of the
covariance Σ = LL>:

(µ, L) = hφ(y), qφ(x|y) = N (x|µ, Σ).

We can generate samples from qφ(x|y) by sampling ε from the standard Gaussian p(ε) =
N (ε|0, I), followed by an affine transformation x = µ + Lε.

VAE allows for the simultaneous performance of VI (with respect to φ) and the model
selection (with respect to θ), and the resulting VAE objective is given by the following
equation:

max
φ,θ

{
LVAE(θ, φ; y) = Eqφ(x|y)[log pθ(y|x)]− DKL(qφ(x|y)||pθ(x))

}
.

In practice, one may employ an identity variance Gaussian, with the mean being the
decoder’s output as the likelihood pθ(y|x), and a standard Gaussian distribution as the
prior distribution pθ(x).

Remark 1. Note that the original formalism of VAE [12] is slightly different from the above. We
briefly recall its derivation for the convenience of the readers. Given a dataset {yi}N

i=1 from an
unknown probability function p(z) and a multivariate latent encoding vector z, the objective of
VAE is to model the data y as a distribution pθ(y), i.e.,

pθ(y) =
∫

pθ(y|z)pθ(z)dz,
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where θ represents the network parameters. Thus, in VAE, if we assume that pθ(y|z) is a Gaussian
distribution, then pθ(y) is a mixture of Gaussians. To solve for θ in a learning paradigm, one
constructs an approximation qφ(z|y) ≈ pθ(z|y) by means of VI with variational parameters φ.
Repeating the preceding discussion on VI directly yields the following standard VAE loss:

L(θ, φ) = Eqφ(z|y) log pθ(y|z)− DKL(qφ(z|y)||pθ(z)).

The problem is then reduced to an autoencoder formalism: the conditional likelihood distribution
pθ(y|z) is the probabilistic decoder, and the approximation qφ(z|y) serves as the probabilistic
encoder. Hence, the goal of VAE is to represent the given unlabelled data {yi}N

i=1 and to generate
new data (from the latent variable z), which differs markedly from the task in learned image
reconstruction, for which the image (represented as latent variable) is of the main objects of interest
(and often of very high dimensionality, larger than that of y). Additionally, the problem of modelling
pθ(y|z) and pθ(z) in the VAE framework is usually unidentifiable, in the sense that there may exist
many different (pθ(y|z), pθ(z)) pairs that admit the same marginal distribution pθ(y) [44]. Thus,
the associated modelled approximate posterior qφ(z|y) is not unique.

4. Proposed Framework

We develop a computational UQ framework that learns a map from the observation y
to a distribution, denoted by pφ(x|y), which approximates the true posterior distribution
p∗(x|y). The map is modelled with a recurrent network, and a probabilistic encoder therein
allows for diverse reconstruction samples, and hence facilitating the quantification of the
associated aleatoric uncertainty.

4.1. Conditional VAE as Approximate Inference

Note that a direct application of VAEs to image reconstruction is problematic: VAEs
are unsupervised generative machineries and would only use noisy observations y, but not
the ground-truth image x during the training process. To circumvent the issue, we employ
the cVAE loss [16,45], a conditional variant of VAE:

max
φ,θ

{
LcVAE(θ, φ; x, y) = Eqθ(z|x,y)[log pφ2(x|y, z)]− DKL(qθ(z|x, y)||pφ1(z|y))

}
. (2)

In cVAEs, there are three distributions: a teacher encoder qθ(z|x, y), a student encoder
pφ1(z|y), and a conditional decoder pφ2(x|y, z). The vector φ = (φ1, φ2) assembles the
parameters of pφ1(z|y) and pφ2(x|y, z). The approximate posterior pφ(x|y) obtained by
cVAE is given by the following:

pφ(x|y) =
∫

pφ2(x|y, z)pφ1(z|y)dz.

The cVAE loss admits the following approximate inference interpretation in a generalised
sense. Note that J∗ is a functional of the variational distribution pφ(x|y) and other auxiliary
distributions involving z.

Proposition 1. Minimising the loss LcVAE(θ, φ; x, y) in (2) that is expected on the training data
distribution p∗(x, y) is equivalent to optimising an upper bound of the expected KL divergence:

J∗(pφ(x|y)) = Ep∗(y)[DKL(p∗(x|y)||pφ(x|y))].
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Proof. By the definition of the KL divergence and the Fubini theorem,

J∗(pφ(x|y)) = Ep∗(y)[DKL(p∗(x|y)||pφ(x|y))]

=
∫

p∗(y)
∫

p∗(x|y) log
p∗(x|y)
pφ(x|y)dxdy

=
∫

p∗(x, y)[log p∗(x|y)− log pφ(x|y)]d(x, y)

= Ep∗(x,y)[log p∗(x|y)] +Ep∗(x,y)[− log pφ(x|y)]. (3)

Next, we derive a lower bound for the log pφ(x|y) of the conditional distribution pφ(x|y)
using the standard procedure. Since pφ(x, z|y) = pφ(z|x, y)pφ(x|y), we have the following:

pφ(x|y) =
pφ(x, z|y)
pφ(z|x, y)

,

and consequently, for any distribution q(z|x, y), there holds the subsequent equation:

log pφ(x|y) =
∫

q(z|x, y) log pφ(x|y)dz =
∫

q(z|x, y) log
pφ(x|y)pφ(z|x, y)

pφ(z|x, y)
dz

=
∫

q(z|x, y) log
pφ(x, z|y)
pφ(z|x, y)

dz =
∫

q(z|x, y) log
pφ(x, z|y)
q(z|x, y)

q(z|x, y)
pφ(z|x, y)

dz

=
∫

q(z|x, y) log
pφ(x, z|y)
q(z|x, y)

dz +
∫

q(z|x, y) log
q(z|x, y)
pφ(z|x, y)

dz.

By the non-negativity of the KL divergence, the second term is non-positive, and then
using the splitting pφ(x, z|y) = pφ2(x|y, z)pφ1(z|y), we can deduce the following:

log pφ(x|y) ≥
∫

q(z|x, y) log
pφ(x, z|y)
q(z|x, y)

dz =
∫

q(z|x, y) log
pφ1(z|y)pφ2(x|y, z)

q(z|x, y)
dz

=
∫

q(z|x, y) log
pφ1(z|y)
q(z|x, y)

dz +
∫

q(z|x, y) log pφ2(x|y, z)dz

= −KL(q(z|x, y)||pφ1(z|y)) +Ez∼q(z|x,y)[log pφ2(x|y, z)],

i.e.,
− log pφ(x|y) ≤ DKL(q(z|x, y)||pφ1(z|y)) +Ez∼q(z|x,y)[− log pφ2(x|y, z)]. (4)

Taking expectation of (4) with respect to p∗(x, y), and then substituting it into identity (3)
yields the following equation:

J∗(p(x|y)) ≤ Ep∗(x,y)[log p∗(x|y)] +Ep∗(x,y)[DKL(q(z|x, y)||pφ1(z|y))]
+Ep∗(x,y)[Ez∼q(z|x,y)[− log pφ2(x|y, z)]].

Since the term Ep∗(x,y)[log p∗(x|y)] is independent of the variational distribution pφ(x|y)
and other auxiliary distributions involving z, minimising the cVAE loss in (2) that is
expected on the training data distribution p∗(x, y) is equivalent to minimising an upper
bound of J∗(pφ(x|y)). This shows the desired assertion.

In view of Proposition 1, cVAEs can indeed learn an optimal map from the observation
y to an approximate posterior distribution pφ(x|y) in the sense of minimising the expected
loss of the KL divergence. This interpretation underpins the validity of the procedure for
quantifying aleatoric uncertainty. The minimiser is indeed an approximation to the target
posterior distribution p∗(x|y), constructed by a generalised variational inference principle.

Example 1. We briefly validate Proposition 1, which states that the cVAE framework can approxi-
mate the ground-truth distribution p∗(x|y) in the sense of generalised variational inference. Note
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that it is notoriously challenging to numerically verify the accuracy of any approximate inference
scheme for high-dimensional distributions. Nonetheless, in the low-dimensional case, the target
distribution can be efficiently sampled through a Markov chain Monte Carlo [46]. To illustrate
this, we take the ground-truth distribution p∗(x|y) to be a two-dimensional multi-modal distribu-
tion, which consists of the mixture of seven Gaussians, as shown in Figure 1a, and approximate
it by cVAE (with teacher encoder, student encoder, and decoder modelled by different three-layer
neural networks, and with ReLu as the nonlinear activation function). We clearly observe from
Figure 1b that the approximation pφ(x|y) is fairly accurate and can capture the multi-modality of
the distribution well, thereby verifying Proposition 1.

(a) (b)

Figure 1. Validation of the cVAE for a toy two-dimensional distribution and Gaussian mixture with
eight components. (a) Ground-truth; (b) cVAE approximation.

We model the conditional encoder pφ2(x|y, z) by a mean-field Gaussian, with a covari-
ance βI, where β > 0 is a hyperparameter. The DNN hφ2 with parameter φ2 only outputs
the mean of pφ2(x|y, z), and on a mini-batch {(xi, yi)}M

i=1, the objective function L̂cVAE(φ, θ)
is given by:

L̂cVAE(φ, θ) = − 1
2M

M

∑
i=1

1
L

L

∑
`=1
‖xi − x̂(i,`)‖2 − β

M

M

∑
i=1

DKL(qθ(z|xi, yi)||pφ1(z|yi)),

where x̂(i,`) is the mean of the distribution pφ2(x|yi, zi,`), and {zi,`}L
`=1 are L samples drawn

from the distribution qθ(z|xi, yi), with the default choice L = 1. Note that for special
choices of qθ(z|x, y) and pφ1(z|y), the KL divergence term may be evaluated analytically
and can be used, if available. The gradient of the loss L̂L

cVAE(φ, θ) is then evaluated by the
reparameterisation trick.

Remark 2. In VAEs, the approximate posterior of the image x (i.e., the latent variable) is modelled
by qφ(x|y), whereas in cVAEs, it is modelled by pφ(x|y) =

∫
pφ2(x|y, z)pφ1(z|y)dz. In both

VAEs and cVAEs, the stochasticity of x comes from z: in VAEs, z is not dependent on the observation
y, whereas in cVAEs, z is dependent on y. Since the distribution of z in cVAEs is learned, it can be
more flexible than that in VAEs. Thus, even if pφ2(x|y, z) is chosen to be a simple distribution (e.g.,
Gaussian distributions), pφ1(x|y) can still model a broad family of distributions for a continuous
unobservable x due to the presence of pφ1(z|y), in a manner similar to the scale mixture of Gaussians.
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4.2. cVAE for Learned Reconstruction

Probabilistic modelling consists of a learning principle given by a loss function with a
proper probabilistic interpretation, and a graphical model describing probabilistic depen-
dency between variables. In the proposed framework, we employ a cVAE-type loss:

max
φ,θ

{
L(θ, φ; x, y,A) = Eqθ(z|x,y,A)[log pφ(x|y, z,A)]− DKL(qθ(z|x, y,A)||pφ(z|y))

}
. (5)

Its difference from the standard cVAE loss in (2) is that (5) also includes the forward mapA
(and its adjointA∗) as part of the training data. Here,Amay have different realisations (e.g.,
corresponding to different levels of discretization) with varying dimensions. Nonetheless,
it is viewed as a deterministic variable. The modelled approximate posterior distribution
pφ(x|y) is then given by the following formula:

pφ(x|y) =
∫

pφ(x|y, z,A)pφ(z|y)dz.

The graphical model is given in Figure 2a. The learning algorithm learns a conditional
sampler, in a manner similar to a random number generator (RNG) for a given probability
distribution. Note that for an RNG, different runs lead to different samples; but with a fixed
random seed, the path is the same for different runs. The auxiliary (low-dimensional) latent
variable z (conditionally dependent on the observation y) is an analogue of the random
seed in the RNG, and is introduced into the deterministic recurrent process (modelled by a
network) to diversify the reconstruction samples. In particular, for a fixed z, the recursion
process inputs the sample initialization x0 and applies a recurrent refining step based on
suitable sample quality measures and the information encoded in the variable z.

yA

x z

(a)

Recurrent 
Unit

xk-1

ak-1

z

y

A

E

R

xk

ak

Recurrent

(b)

Figure 2. The graphical model and recurrent network of cVAE. (a) Graphical model. Shaded and
non-shaded nodes denote observations and hidden variables, respectively; solid and dotted arrows
denote probabilistic dependencies and explicit incorporations, respectively. (b) Recurrent network
hφ2 . Shaded and non-shaded circles denote variables for updating and fixed ones, respectively;
shaded rectangles denote functional input. For each fixed z, only the values of shaded objects change.

Three DNNs are employed to model the distributions in L(θ, φ; x, y,A) and to carry
out the conditional sampling process, including one for the recursive process (i.e., recurrent
unit modelled by a neural network) and two for probabilistic encoders (i.e., teacher and
student encoders). The observation y and forward map A constitute their inputs: y is fed
into the two probabilistic encoders and each recurrence of the recurrent unit; A is fed into
each recurrence of the recurrent unit and the teacher encoder. Subsequently, we explain
how the three networks work separately.
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The recurrent component is the (deep) network hφ2(·); see Figure 2b. The network
begins with an initial guess x0 (default: back-projected data A∗y) and outputs xK after
K iterations as the mean of pφ(x|y, z,A), following the established idea of algorithmic
unrolling [17,34], which mimics the iterations from standard optimization algorithms (e.g.,
(proximal) gradient descent, alternating direction method of multipliers (ADMM), and
primal-dual hybrid gradient). At the k-th recursion, the network hφ2 takes one sample
xk−1 to refine and outputs an improved sample xk. To incorporate the forward map A
and the observation y, we employ a functional E(A, y, xk−1). In the lens of variational
regularisation [47], E(A, y, xk−1) measures how well xk−1 can explain the data y. To indicate
how well xk−1 fulfils the prior knowledge (e.g., sparsity and smoothness), we use the
penalty R(xk−1) as part of the input. For the sample quality measure E(A, y, xk−1) and the
penalty R(xk−1), we use ||y−A(xk−1)||2 (or its gradient), and ||xk−1||22 or |xk−1|TV (total
variation semi-norm), respectively. Besides the latest iterate xk−1 and the quality measures
E and R, the network hφ2(·) also takes a memory variable ak−1 and an auxiliary variable
z. The memory variable ak−1 plays the role of momentum in gradient-type methods and
is to retain long-term information between recursions. The overall procedure resembles
an unrolled momentum accelerated gradient descent. The auxiliary random variable z
is low-dimensional and injects randomness into the iteration procedure. Since both xk−1

and xk belong to the image space Rn, we adopt CNNs without pooling layers to model
the recurrent unit hφ2 . Different inputs of hφ2(·) are concatenated along the channel axis,
and the outputs of hφ2(·)—that is, the updated δxk with xk = xk−1 + δxk and the updated
memory ak—are also concatenated.

Remark 3. At each step, the recurrent unit (neural network hφ2 ) reuses the observation data y and
the map A for refinement, and the overall procedure differs from the deterministic mapping that
serves as a post-processing step of back-projection. The latter is an end-to-end mapping that takes
the back-projected data and outputs a refinement, but the proposed approach employs the current
sample and quality measures and then decides the refinement strategy.

The framework employs two encoders of z: a teacher encoder qθ(z|x, y,A) and a
student encoder pφ1(z|y); see Figure 3. The student encoder pφ1(z|y) takes the observation
y, and encodes the observation-based knowledge so as to inform the recurrent unit hφ2 .
Given one sample z from pφ1(z|y), the network hφ2 gives one refining increment, and the
distribution of z contributes to the diversity of the unknown image x. To help train the
student encoder pφ1(z|y), we provide the teacher encoder qθ(z|x, y,A) with the ground-
truth x and the forward map A. The teacher encoder qθ(z|x, y,A) is discarded once the
training is finished. The encoders pφ1(z|y) and qθ(z|x, y,A) are modelled by two DNNs
hφ1(·) and hθ(·), respectively, which reparameterise the auxiliary variable z. Since z is
low-dimensional, CNNs with reduced mean layers and 1× 1 convolutional layers can
guarantee the flexibility dimension of the input y. To input the ground-truth data x and y
into hθ(·), we use the forward map A and concatenate A(x) with y along the channel axis.
This construction is very flexible with the dimension problem and allows for the training
of (xi, yi) of varying sizes (and the corresponding Ai).
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(a) (b)

Figure 3. Probabilistic encoders in the framework. Shaded nodes denote the random variable.
(a) Teacher encoder qθ(z|x, y,A). (b) Student encoder pφ1 (z|y).

Now we can state the complete algorithms for the training and inference of the cVAE
framework for uncertainty-aware learned image reconstruction in Algorithms 1 and 2,
respectively. Here, M denotes the mini-batch size, T the maximum number of training
batches, K the number of recurrences of hφ2 for one sample, and (φ̂, θ̂) the output of the
training procedure (i.e., the learned parameters). There are many possible choices for the
stochastic optimizer in line 11 of Algorithm 1 (e.g., ADAM [48], and SGD). We shall employ
ADAM [48] in our experiment. The final sample from the recurrent process is regarded as
the mean of the conditional distribution pφ(x|y, z,A). Thus, given the initial x0, the iteration
with different realisations of z leads to diverse samples of the unknown image x. Since
each sample is the mean of pφ(x|y, z,A) rather than a direct sample from the approximate
posterior pφ(x|y), the summarizing statistics also have to be transformed; see (6). Note
that the posterior variance contains two components: one is due to the background (i.e.,
βI), and the other is due to the sample variance (i.e., 1

S ∑S
i=1 xixt

i − Êpφ(x|y)[x]Êpφ(x|y)[x]t),
as shown in the following result.

Algorithm 1 Training procedure.

1: Input: Training data {(xi, yi,Ai)}N
i=1, β, T, K, M;

2: for t = 1, 2, . . . , T do
3: Randomly select a mini-batch training data {(xi, yi,Ai)}M

i=1;
4: Sample {zi}M

i=1 from {qθ(z|xi, yi)}M
i=1;

5: Initialize {x̂i}M
i=1 with {A∗i (yi)}M

i=1, and {ai}M
i=1 with zeros;

6: for k = 1, 2, . . . , K do
7: Update {x̂i}M

i=1 and {ai}M
i=1 with {hφ2(x̂i, E(Ai, yi, x̂i), R(x̂i), ai, zi)}M

i=1;
8: end for
9: Evaluate the KL divergence {DKL(qθ(z|xi, yi)||pφ1(z|yi))}M

i=1;
10: Compute the objective function L̂(φ, θ);
11: Update the parameters (φ, θ);
12: end for
13: Output: (φ̂, θ̂)
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Algorithm 2 Inference procedure.

1: Input: Test data (A, y), S, K, φ̂ = (φ̂1, φ̂2);
2: for s = 1, 2, . . . , S do
3: Sample zs from pφ1(z|y);
4: Initialise x̂s with A∗(y) and a with zeros;
5: for k = 1, 2, . . . , K do
6: Update x̂s and a with hφ2(x̂s, E(A, y, x̂s), R(x̂s), a, zs);
7: end for
8: end for
9: Output: {x̂s}S

s=1;
10: Evaluate (Êp(x|y)[x], Ĉovp(x|y)[x]) by Equation (6)

Proposition 2. Let pφ(x|y, z,A) = N (x|xK(z), βI) and the approximate posterior pφ(x|y) =∫
pφ2(x|y, z,A)pφ1(z|y)dz be a mixture of Gaussian distributions, with z being the mixture

variable. Then, given samples {zi}S
i=1 of z from pφ(z|y), and the corresponding xK(z) denoted by

{xi}S
i=1, the mean Epφ(x|y)[x] and the covariance Covpφ(x|y)[x] of pφ(x|y) can be estimated by:

Êpφ(x|y)[x] =
1
S

S

∑
i=1

xi,

Ĉovpφ(x|y)[x] = βI +
1
S

S

∑
i=1

xixt
i − Êpφ(x|y)[x]Êpφ(x|y)[x]

t.

(6)

Proof. For the mean Epφ(x|y)[x], by dentition, there holds the following:

Epφ(x|y)[x] =
∫

x
xpφ(x|y)dx =

∫
x

x
∫

z
pφ2(x|y, z,A)pφ1(z|y)dzdx

=
∫

z

∫
x

xpφ2(x|y, z,A)dxpφ1(z|y)dz =
∫

z
xK(z)pφ1(z|y)dz.

Thus, 1
S ∑S

i=1 xi is an unbiased estimator of Epφ(x|y)[x]. Similarly, for the covariance
Covpφ(x|y)[x], by the standard bias variance decomposition,

Covpφ(x|y)[x] =
∫

xxT pφ(x|y)dx−Epφ(x|y)[x]Epφ(x|y)[x]
T .

Now, the first term on the right hand side, there holds the following:∫
xxT pφ(x|y)dx =

∫
x

xxT
∫

z
pφ2(x|y, z,A)pφ1(z|y)dzdx

=
∫

z

∫
x

xxT pφ2(x|y, z,A)dxpφ1(z|y)dz

=
∫

z
(Covpφ2 (x|y,z,A)[x] +Epφ2 (x|y,z,A)[x]Epφ2 (x|y,z,A)[x]

T)pφ1(z|y)dz

= βI +
∫

z
Epφ2 (x|y,z,A)[x]Epφ2 (x|y,z,A)[x]

T pφ1(z|y)dz.

Consequently, βI + 1
S ∑S

i=1 xixt
i − Êpφ(x|y)[x]Êpφ(x|y)[x]t is an unbiased estimator of the

covariance Covpφ(x|y)[x].

5. Numerical Experiments and Discussions

Now we showcase the proposed cVAE framework for learned reconstruction with
quantified aleatoric uncertainty with numerical experiments on positron emission tomog-
raphy (PET). PET is a pillar of modern diagnostic imaging, allowing for non-invasive,
sensitive, and specific detection of functional changes in a number of diseases. Most con-
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ventional PET reconstruction algorithms rely on penalized maximum likelihood estimates,
using a hand crafted prior (e.g., total variation and anatomical); see the work of [28] for an
overview of classical reconstruction techniques. More recently, learning-based approaches
have been proposed. While these techniques have been successful, they still lack the
capability to provide uncertainty estimates; see the work of [29–31,37] for several recent
studies on UQ in PET reconstruction, although none of them is based on deep learning.

For the experiments below, we employ a three-layer CNN as the recurrent unit hφ2

and fix K = 10 iterations for each sampling step, cf. Figure 4 for a schematic illustration;
VGG style encoders are then used for both hφ1 and hθ , cf. Figure 5. We train the network
on a synthetic dataset consisting of elliptical phantoms and test it on the public medical
imaging dataset BrainWeb [49] (available from https://brainweb.bic.mni.mcgill.ca/, last
accessed on 10 January 2020). Throughout, the training pair (x, y) ∈ R128×128 ×R30×183,
and the forward map is the Radon transform, which is normalised. Different peak values
of x are used to indicate the count level: 1× 104 and 1× 102 for respectively moderate and
low count levels. The observation y is generated by corrupting the sinogramAx by Poisson
noise entrywise, i.e., yi ∼ Pois((Ax)i), where Pois(·) denotes the Poisson random variable.
The hyper-parameter β is tuned in a trial-and-error manner and fixed at β = 5× 10−3

below. The experiments are conducted on a desktop with two Nvidia GeForce 1080 Ti GPUs
and Intel i7-7700K CPU 4.20GHz×8. It is trained for T = 1× 105 batches, each of which
contains 10 randomly generated (x, y) pairs on-the-fly. The training almost converges after
2× 104 batches, and it takes around 11 hours to go over all T = 1× 105 batches. The
summarizing statistics reported below are computed from 1000 samples for each observa-
tion y generated by the trained network. The implementation uses the following public
deep learning frameworks: Tensorflow (https://www.tensorflow.org/, [50]), Tensorflow
Probability (https://www.tensorflow.org/probability, [51]), DeepMind Sonnet (github.
com/deepmind/sonnet), and ODL (github.com/odlgroup/odl), all last accessed on 10 Jan-
uary 2020; the source code will be made available at github.com/chenzxyz/cvae accessed
on 10 January 2020.

xk−1 z ERak−1

input

3× 3× 32

conv relu

3× 3× 32

conv relu

3× 3× (5 + 1)
conv

relu

ak

output

δxk

Figure 4. The layer configuration of the recurrent unit hφ2 : 3× 3× 32 denotes a convolutional layer with a kernel size of
3× 3 and 32 output channels. In the third convolutional layer, 5 + 1 denotes 5 channels for memory ak and 1 channel for the
update δk.

https://brainweb.bic.mni.mcgill.ca/
https://www.tensorflow.org/
https://www.tensorflow.org/probability
github.com/deepmind/sonnet
github.com/deepmind/sonnet
github.com/odlgroup/odl
github.com/chenzxyz/cvae
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Figure 5. The layer configurations of the teacher (top) and student (bottom) encoder: (3× 3× 32)× 3 denotes 3 convolutional
layers respectively followed by a ReLU layer with a kernel size of 3× 3 and 32 output channels. In the figure, the number
2 under the brown layer denotes average pooling layer with a stride size of 2, while 1 × 1 × (2 × 6) denotes a 1 × 1
convolutional layer with 12 output channels, i.e., 6 for mean µ and 6 for log (diagonal) variance log Σ.

First, we compare the proposed cVAE approach with conventional and deep learning-
based methods on all 181 phantoms in the BrainWeb dataset. It is compared with the
following three benchmark methods: maximum likelihood EM (MLEM) [52], total variation
(TV) [53] with non-negativity constraint, and learned gradient descent (LGD) [54]. MLEM
and TV are two established reconstruction methods in the PET community, and LGD is
an unrolled iterative method inspired by classical variational regularisation and exploit
DNNs for iterative refinement. For MLEM, we use the odl inbuilt solver mlem, and for TV,
we use the primal dual hybrid gradient method (implemented by odl.solvers.phgd). The
regularisation parameter α for total variation prior is fixed at α = 2× 10−1 and α = 2 for
the moderate and low count levels, respectively, which is determined in a trial-and-error
manner. The comparative results are summarised in Table 1, shown with two of the most
popular image quality metrics, i.e., SSIM and PSNR, averaged over all 181 phantoms in
the BrainWeb dataset. The results clearly show that cVAE can deliver state-of-the-art point
estimates in terms of PSNR and SSIM, especially in the practically very important low-
count case. Compared with these deterministic benchmark methods, cVAE can additionally
provide information on uncertainty.

Table 1. Comparisons between cVAE mean and benchmark methods on 181 BrainWeb phantoms at two
count levels: 1× 104 (MC) and 1× 102 (LC). The numbers in the table denote the SSIM/PSNR values.

MLEM TV LGD cVAE

MC 0.74/23.20 0.85/28.76 0.92/29.07 0.91/28.01

LC 0.64/21.55 0.62/22.58 0.59/21.68 0.64/23.10

Next, we compare cVAE with a probabilistic approach [19], which reports state-of-
the-art performance for aleatoric uncertainty (see [55] for theoretical interpretations). It
employs (non-Bayesian) neural network ensembles to estimate predictive uncertainty,
where each network in the ensemble learns similar values close to the training data, and
different ones in regions of the space far from the training data. For the comparison, we
train a mixture with three multivariate Gaussians (GM3) without adversarial samples,
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where the training of each component of the mixture is to fit a mean network and a
variance network of the outputs using a Gaussian log-likelihood [56]. To stabilize the
training procedure, we first train the mean network, and then train the variance network.
Alternatively, one can train the mean network as a warm up and then train the mean and
variance networks simultaneously, but it usually leads to worse results, and thus we do
not present the corresponding results. The comparative quantitative results are given in
Table 2, which present the PSNR and SSIM results for ten phantoms from the Brainweb
dataset in order to shed fine-grained insights into the performance of the methods over
different phantoms. It is observed that in the low count case, cVAE can provide better
point estimates in terms of both SSIM and PSNR, which concurs with Figure 6; however,
in the moderate count case, GM3 can sometimes deliver better results. In terms of the
variance map, the results of GM3 contain more structural patterns and resemble the error
map more closely.

x† x̂cvae x̂cvae − x† Var(xcvae)

x̂gm3 x̂gm3 − x† Var(xgm3)

x† x̂cvae x̂cvae − x† Var(xcvae)

x̂gm3 x̂gm3 − x† Var(xgm3)

Figure 6. The reconstructions of two phantoms (i.e., 10 for the top two rows and 90 for the bottom
two rows) from BrainWeb with peak value 1× 102 by cVAE and GM3, respectively, in terms of the
mean x̂, the pointwise error x̂− x†, and the posterior variance Var(x).
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Table 2. PSNR and SSIM values for the reconstructions by the trained cVAE and GM3 on ten
phantoms, with peak values 1× 104 (MC) and 1× 102 (LC). The column index refers to the Python
style index of the phantom in the BrainWeb dataset. The PSNR and SSIM values are shown as
cVAE/GM3.

10 20 30 50 70

PNSR MC 27.66/28.05 27.14/27.48 27.25/27.43 27.25/27.50 25.65/26.77
LC 22.60/21.86 22.09/21.35 22.30/21.09 22.14/20.69 20.87/19.32

SSIM MC 0.89/0.89 0.89/0.89 0.91/0.91 0.88/0.88 0.88/0.89
LC 0.65/0.62 0.65/0.61 0.69/0.62 0.54/0.50 0.46/0.45

90 100 110 130 150

PSNR MC 24.98/26.83 26.91/27.74 27.81/28.43 27.96/29.33 30.86/32.57
LC 20.52/19.02 21.39/19.74 22.22/20.61 22.48/21.32 25.78/23.67

SSIM MC 0.88/0.91 0.90/0.91 0.92/0.92 0.94/0.94 0.96/0.96
LC 0.60/0.53 0.62/0.55 0.61/0.57 0.60/0.57 0.73/0.67

To shed more insights into the variance by cVAE and the benchmark GM3, we show
the cross-section plots with 0.95 Highest Posterior Density (HPD) in Figure 7 for both
moderate and low count levels. According to Proposition 2, the estimated covariance
by cVAE contains two distinct sources, i.e., the sample variance and the variance β of
the conditional Gaussians pφ(x|y, z,A) = N (x|xK(z), βI). The latter is uniform across
the pixels and acts as a background. We show the HPDs of cVAE with full variance
(unbiased variance estimated by Ĉovpφ(x|y)[x]) and the variance without the β factor (i.e.,

Ĉovpφ(x|y)[x]− βI). It is observed that the latter contains more structures in the credible
intervals. Furthermore, the overall shape and magnitude of the HPDs by cVAE with the
full variance and GM3 are fairly close to each other. It is noteworthy that in the cold regions
(i.e., zero count), cVAE can provide almost zero variance upon subtracting the background
variance, and it is able to indicate the contrast of variance to highlight the pixels, whereas
the variances by GM3 are also relatively high. The comparison between the cross-section
plots for low and moderate count cases (i.e., high and low noise levels) on the same ground-
truth phantom indicates that cVAE does provide higher uncertainty for a higher noise level,
which is intuitively consistent with the underlying statistical background.

Lastly, we evaluate all the methods on the phantoms with an artificially added tumour
by changing the pixel values to the peak values in order to examine their capability of
recovering novel features that are not presented in the training data. We (randomly) choose
two phantoms from the BrainWeb dataset (Python style index: 10 and 110). A small tumour
with a radius of 2 and a large tumour with a radius of 5 are added into the 10th and 110th
phantoms, respectively. The corresponding reconstructions are shown in Figures 8 and 9,
respectively. It is observed that the tumours can be clearly reconstructed by the cVAE
means for both count levels, except for the small tumour at low count levels. In the latter
case, none of the methods can reasonably reconstruct the tumour since the data are very
noisy in terms of low signal strength. The results by cVAE, LGD, and GM3 are comparable,
at least visually. The ability to reconstruct tumours further indicates that cVAE does not
miss out on important features that are not present in the training data, indicating a certain
degree of robustness of the cVAE framework, so long as the signal is sufficiently strong,
since many deep learning-based methods tend to miss the tumour due to the bias induced
by tumour-free training data [57].
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MC, Phantom 90

LC, Phantom 90

cVAE-FV cVAE-WB GM3-FV

Figure 7. The comparison between cVAE with full variance (cVAE-FV), cVAE without background
variance (cVAE-WB), and GM3 with full variance (GM3-FV), for BrainWeb phantom 90 (size:
128× 128) with the two peak values 1× 104 (MC) and 1× 102 (LC). Within each block, from left to
right: sample mean and 0.95 credible interval of the 11th (top) and 101st (bottom) horizontal slice.
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x† xmlem xtv xldg

x̂cvae Var(xcvae) x̂gm3 Var(xgm3)

x† xmlem xtv xldg

x̂cvae Var(xcvae) x̂gm3 Var(xgm3)

Figure 8. Reconstructions for one BrainWeb phantom (No. 10) with tumour, obtained by benchmark
methods (MLEM, TV, LGD, GM3) and cVAE. For each phantom, the top two rows are for the low
count level and the bottom two rows are for the moderate count level.
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x† xmlem xtv xldg

x̂cvae Var(xcvae) x̂gm3 Var(xgm3)

x† xmlem xtv xldg

x̂cvae Var(xcvae) x̂gm3 Var(xgm3)

Figure 9. Reconstructions for one BrainWeb phantom (No. 110) with tumor, obtained by benchmark
methods (MLEM, TV, LGD, GM3) and cVAE. For each phantom, the top two rows are for the low
count level and the bottom two rows for the moderate count level.

6. Conclusions

In this work, we have developed a general and flexible probabilistic computational
framework for the uncertainty quantification of inverse problems in a purely data-driven
setting. The approach is based on the conditional variational autoencoder loss and employs
the deep neural network as a recurrent unit to repeatedly refine the samples using the
observation and forward map, seeded by a probabilistic encoder conditioned on the obser-
vation. The efficiency of the framework is underpinned by the encoding of observations
in a low-dimensional latent space. The significant potentials of the framework have been
demonstrated on a PET image reconstruction with both moderate and low count levels, and
the approach shows competitive performance when compared with several deterministic
and probabilistic benchmark methods, especially within the low count regime.

There are several avenues for further study. First, the framework is flexible and gen-
eral, and it is of much interest to evaluate its potentials on other computationally expensive
imaging modalities (e.g., MRI, CT, and PET-MRI), especially in the under sampling and
low-dose regime, for which there is a great demand on uncertainty quantification due to



Computation 2021, 9, 114 21 of 23

the lack of sufficient information. Such studies will also provide important insights into the
statistical features of the framework. Second, it is of much interest to analyse the theoretical
properties of the cVAE loss as an upper bound of the expected KL divergence (e.g., approxi-
mation error and asymptotic convergence). This line of research has long been outstanding
in approximate inference and often provides theoretical guarantees for the overall inference
procedure and guidelines for constructing efficient approximations. Third and last, it
is imperative to develop scalable benchmarks for the uncertainty quantification of high-
dimensional inverse problems. Several deep learning-based uncertainty quantification
techniques have been proposed in the machine learning literature, but mostly on different
types of uncertainties or without explicitly elucidating the sources of uncertainties (see
the work of [25] for a preliminary study in medical imaging). A careful calibration of the
obtained uncertainties is essential towards practical deployment, as recently highlighted in
the review presented in [8].
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