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Abstract: The study of biofilm formation is undoubtedly important due to micro-organisms forming
a protected mode from the host defense mechanism, which may result in alteration in the host gene
transcription and growth rate. A mathematical model of the nonlinear advection–diffusion–reaction
equation has been studied for biofilm formation. In this paper, we present two novel non-standard
finite difference schemes to obtain an approximate solution to the mathematical model of biofilm
formation. One explicit non-standard finite difference scheme is proposed for biomass density
equation and one property-conserving scheme for a coupled substrate–biomass system of equations.
The nonlinear term in the mathematical model has been handled efficiently. The proposed schemes
maintain dynamical consistency (positivity, boundedness, merging of colonies, biofilm annihilation),
which is revealed through experimental observation. In order to verify the accuracy and effectiveness
of our proposed schemes, we compare our results with those obtained from standard finite difference
schemes and earlier known results in the literature. The proposed schemes (NSFD1 and NSFD2)
show good performance. The NSFD2 scheme reveals that the processes of biofilm formation and
nutritive substrate growth are intricately linked.

Keywords: biofilm; non-standard finite difference; advection–diffusion–reaction; positivity

1. Introduction

The word biofilm refers to aggregation of smaller organisms existing on a changing
interface embedded in a polymeric matrix adhered to abiotic or biotic surfaces. Bacteria
in biofilms grow in a protected environment, which improves their ability to survive in
harsh conditions [1]. In general, preventing the formation of harmful biofilms is difficult
due to their adaptability to growing in harsh conditions. Furthermore, one must recognize
the difficulty of biofilm removal, as the bacteria that create the biofilm are more resistant
to antimicrobial treatments and the host’s immune response. The formation of biofilm
by bacteria is due to a coordinated mechanism called Quorum Sensing (QS) [1]. Biofilm
formation takes place in connecting steps, which are as follows [2]:

1. Formation of conditioning surface;
2. The adhesion of bacteria to the conditioning surface;
3. Bacterial growth at the surface;
4. Biofilm formation begins after a quorum of bacteria has been reached;
5. Expansion of the biofilm to a fully-developed state—see Figure 1.

A biofilm may occur on a wide range of surfaces, including tissues, glass, plastic, metal,
wood, soil particles and food items. Factors that promote biofilm development include con-
ditioning film, hydrodynamics, horizontal gene transfer, the substratum effect and quorum
sensing. The importance of understanding biofilm formation cannot be over-emphasized
due to its relevance in biology, medicine and other scientific research. To this end, many
research works with the main objective of understanding biofilm formations have been
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conducted, among which are the works of Rittmann and McCarty [3] and Wanner and Gu-
jer [4]. Nilsson et al. [5] probed the effect of changes in acylated homoserine lactone (AHL)
concentration and investigated the possibility of biofilm formation using a mathematical
model. Their model consists of a set of coupled ordinary differential equations (ODEs) in
which the bacterial growth is modelled using the well-known logistic equation:

dηbc
dt

= h(Cbc)N(t)− 4πr2
bcN(t)2/3γ2/3

dηb f

dt
= ∆bc − β4πr2

bcN(t)2/3γ2/3(Cb f − Cw),
(1)

where ηbc is the AHL inside a single bacterium cell, ηb f is the AHL in the biofilm, Cbc repre-
sents the concentration of AHL in the cell, Cb f stands for the concentration of AHL in the

biofilm, and Cw is the concentration of AHL in the water phase. N(t) =
K

1 +
( K

No
− 1
)
e−ρt

is the number of bacteria, rbc denotes the radius of a single bacterium, γ determines how
densely the bacteria are packed, K is the number of bacteria in the stationary phase, No
stands for the initial number of bacteria at t = 0, ρ is the intrinsic growth rate and β is the
permeability parameter characteristic of the surface of the biofilm.

Figure 1. Biofilm formation.

Readers are referred to the work of Nilsson et al. [5] for a full understanding of their
study. The study concluded that the autoinduction of AHL and biofilm formation are highly
interconnected. Many known mathematical models in the literature are represented in
terms of partial differential equations (PDEs) with a nonlinear density-dependent diffusion
reaction describing biofilm growth. Eberl et al. [6] presented a mathematical model of
biofilm formation, which comprises two coupled partial differential equations, namely the
biomass system and substrate nutrients, given by

∂u(x)
∂t

= Γ1∇2u(x)− Γ3
v(x)u(x)
Γ4 + u(x)

,

∂v(x)
∂t

= Γ2∇ · D(v(x))∇v(x)− rv(x) + Γ5
v(x)u(x)
Γ4 + u(x)

,

D(v(x)) =
δv(x)λ

(1− v(x))µ ,

where λ > 0, µ > 0, Ω× [0, T], Ω ∈ Rd (d = 1, 2, 3).

(2)

We note that∇ and∇2 are the usual gradient and Laplacian operators and that u and v are
the substrate nutrient and normalized density of biomass. The non-negative parameters in
Equation (2), namely Γ1, Γ2, Γ3, Γ4, Γ5 and r, are the substrate diffusion coefficient, biomass
diffusion coefficient, maximum specific consumption rate, monod half saturation constant,
maximum specific growth rate and biomass decay rate, respectively. The diffusion coeffi-
cient D(v) is clearly written in terms of the biomass density. The term Γ2∇ ·D(v)∇v makes
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the system of equations highly non-linear. The diffusion term in the substrate equation
is represented as Γ1∇2u. The reaction rate terms written in Michaelis–Menten form are

Γ3
vu

Γ4 + u
and Γ5

vu
Γ4 + u

. x represents the vector of spatial variables x and y.

From the current literature, providing an exact solution to Equation (2) is still a daunt-
ing task. However, the analytical investigation of the existence, uniqueness and long term
behaviour of the solution has been established; see the work of Efendiev et al. [7]. Eberl and
his collaborators [6] constructed a finite difference discretizaton solution for Equation (2).
The major drawback of their numerical scheme is that the scheme is computationally
demanding and time consuming [8]. Eberl and Demaret [9] provided a non-classical finite
difference scheme for the numerical solution to Equation (2) which preserves the condition
of merging of two different colonies. The scheme preserves the non-negativity of the
solution as established in [7]. Morales-Hernandez et al. [10] considered a limiting case,
Γ1 = Γ3 = Γ5 = 0 of Equation (2), which results in

∂v
∂t

= Γ2∇ · D(v)∇v + rv, (3)

where D(v) is defined as in Equation (2). The authors provided a recursive positivity-
preserving finite difference scheme with bounded approximation. The M-matrix theorem
was the cornerstone upon which the non-negativity of the solution was established. We
note here the use of the stabilized bi-conjugate gradient method to obtain their solution.
In addition, Moralez et al. [11] published a corrigendum to their work to shed more light
on the subject matter. In a similar study, Sun et al. [12] designed a new non-standard
finite difference scheme for Equation (3). The method shows reasonable behaviour and
preserves the properties of the equation. However, the author mentioned the inconsistency
of the method. Macias-Diaz et al. [8] solved Equation (3) using another explicit finite
difference scheme. The non-standard finite difference scheme was employed by the authors
to preserve the positivity of the solution. One major drawback of their method is the
implicit implementation of their algorithm, which requires Newton’s method because of
the presence of the nonlinear term. Sun et al. [13] investigated Equation (2) in its full
form using a non-standard finite difference scheme and a classical upwind forward Euler
finite difference scheme. They discussed the preservation of positivity and boundedness
of the non-standard scheme. In addition, the authors considered four different cases of
the problem: a mixed biological density constriction framework, mixed biological density
developing framework, complex coupling system in which the density of the biological
evolution process is increased at the first stage and then decreases and a mixed biological
framework with discontinuous initial conditions and Dirichlet boundary conditions [13].

Balsa-Canto et al. [14] used the time discretization Crank Nicolson finite difference
scheme with the Newton algorithm to study similar PDEs, as shown in Equation (2). The
scheme is computationally fast, and the results obtained are in agreement with experimental
results. Afsar-Ali et al. [15] employed the semi-implicit finite volume method to obtain
a numerical solution to Equation (2) in a non-orthogonal grid; this is possible after the
transformation of the governing equation to a non-curvilinear system. In other related
studies, Duddu et al. [16] used the extended finite element method to computationally
investigate the growth of biofilm. Bol et al. [17] theoretically investigated 3D biofilm
detachment using the finite element method. We refer readers to the following studies for
more work in this direction: Macias-Diaz et al. [18], Liao et al. [19] and Eberl [20] proposed
another mathematical model which comprises four coupled partial differential equations
and is an extension of Equation (2). Macias-Diaz [21] studied the modified mathematical
model by constructing a positivity-preserving linear finite difference scheme, in contrast to
the non-linear finite-difference scheme proposed by Eberl [20].

In another study, Fredrick et al. [22] used a mathematical model to study the relation-
ship between quorum sensing extracellular polymeric substance production and biofilm
formation. The emerging equation is a reaction–diffusion equation, and the absence of
an analytical solution led to the computational investigation of the model. Appadu [23]
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investigated the performance of the unconditionally positive finite difference scheme for
a linear advection–diffusion–reaction equation under various advection, diffusion and
reaction regimes. Recently, Jornet [24] proposed a mathematical model of biofilm formation
on a medical implant using a new growth model rather than the logistic growth model; the
resulting differential equation is the Allen–Cahn partial differential equation.

The novelty of this work is the design of a novel structure-preserving (positivity,
boundedness, merging of colonies, biofilm annihilation) finite-difference scheme to approx-
imate the full and limiting cases of Equation (2), which describes the growth/decay of a
microbial colony. We compare the performance of our scheme against earlier known work
in the literature and with the classical finite difference scheme.

2. Organization of the Paper

The structure of this paper is briefly outlined here. In Section 3, we describe in detail
the mathematical model governing the nutritive substrate of the non-linear diffusion–
reaction equation in bio-film formations. Furthermore, the substantiate conditions of the
existence and uniqueness of the solution are provided to shed more light. Section 4 contains
an analysis of the mathematical model and discretization of our domain. In Section 5,
we present two novel finite difference techniques for the biomass-independent equation
and show the preservation of positivity and boundedness. We graphically examine the
performance of our proposed scheme and provide a discussion in Section 6. In Section 7,
we present a property-preserving finite difference scheme for a coupled substrate–biomass
equation. The performance of the scheme is subjected to examination in Section 8. Finally,
our conclusion and the significance of the present study are elaborated in Section 9.

3. Mathematical Model

The processes that govern mass transport, biofilm accumulation and organic con-
stituent biotransformation are inextricably linked. Consider a spatially structured bacterial
biofilm with a density-dependent diffusion–reaction equation given by (2); i.e.,

∂u(x)
∂t

= Γ1∇2u(x)− Γ3
v(x)u(x)
Γ4 + u(x)

, Ω× [0, T], Ω ∈ Rd (d = 1, 2, 3),

∂v(x)
∂t

= Γ2∇ · D(v(x))∇v(x)− rv(x) + Γ5
v(x)u(x)
Γ4 + u(x)

,

D(v(x)) =
δv(x)λ

(1− v(x))µ , λ > 0, µ > 0.

with boundary and initial condition{
u(x, t) = 1, v(x, t) = 0, ∀ x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), v(x, 0) = v0(x).

(4)

The boundary condition can either be homogeneous Dirichlet or homogeneous Neu-
mann [8]. All variables and parameters are defined in Equation (2). The following results
guarantee the existence and uniqueness of non-negativity and boundedness of solutions
for Equations (2) and (3).

Theorem 1. If the initial data u0 and v0 satisfy the conditions

• u0 ∈ L∞(Ω) ∩ J1(Ω) and 0 ≤ u0(x) ≤ 1 for every x ∈ Ω
• v0 ∈ L∞(Ω) and G

(
v0
)
∈ J1

0
(
Ω
)

• v0
(
x
)
≥ 0 for every x ∈ Ω and ||v0||L∞(Ω) < 1,

where

G(v) =
∫ v

0

sλ

(1− s)µ ds, 0 ≤ v < 1, (5)

then Equation (2) has a unique solution subject to suitable conditions in Equation (4) obeying the
following properties:
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• u, v ∈ L∞(Ω×R+
)
∩ C

(
L2(Ω), [0, ∞)

)
• u, G(v) ∈ L∞(J1(Ω)×R+

)
∩ C

(
L2(Ω), [0, ∞)

)
• 0 ≤ u(x, t), v(x, t) ≤ 1 for every (x, t) ∈ Ω×R+ and ||v||L∞(Ω×R+) < 1.

Remark 1. Theorem 1 was established using several mathematical propositions, corollaries and
assumptions such as continuity, triangle inequality, Gronwall inequality and the boundedness
property. We refer the reader to the work of Efendiev et al. [7] for the rigorous proof of Theorem 1.

A plausible numerical solution for Equation (2) must satisfy the following experimen-
tal conditions:

• Existence of a sharp front of biomass at the fluid to solid transition;
• Biomass spreading is more important when a particular maximum density is reached

and biomass density cannot exceed a certain maximum;
• Reaction process dynamics facilitate biomass production, and partial heterogeneities

in a biofilm come from environmental conditions;
• Biomass movement should be in agreement with hydrodynamics and nutrient trans-

fer/consumption models.

4. Model Analysis

We consider two problems from Equation (2), which are

1. The biomass-independent equation with three cases (Problem 1);
2. The coupled substrate–biomass system of equations with two cases (Problem 2).

Problem 2 is explained in Section 7.

The biomass-independent diffusion–reaction equation is given by (see [8])

∂v
∂t

= ∇ · D(v)∇v + rv, t ∈ R+, v = v(x, y, t). (6)

with the initial condition
v(x, y, 0) = φ(x, y), (7)

where φ(x, y) is a given function defined and bounded between [0, 1]. Boundary condi-
tions are either homogeneous Dirichlet or homogeneous Neumann. From experimental
observation, if the homogeneous Neumann conditions are specified somewhere on the
boundary data, the solution v reaches its maximum density 1 almost everywhere at finite
time t. If the boundary conditions are of Dirichlet type, then v = 0 everywhere; v remains
non-negative and lies below the maximum density 1 for all t > 0.

Re-writing Equation (6) in an alternative way gives

∂v
∂t

= D′(v)
((

∂v
∂x

)2

+

(
∂v
∂y

)2)
+ D(v)

(
∂2v
∂x2 +

∂2v
∂y2

)
+ rv. (8)

We first describe the finite-difference approximation for each term in Equation (8)
before coupling them together.

Before considering the derivation of our novel scheme, our numerical discretization
and estimation tools are given below.

Let a, b, c and d be real numbers such that a < b and c < d. An open rectangle domain
can be defined as Ω = (a, b)× (c, d) in R2. We consider a bounded domain interval of
0 ≤ x, y ≤ 1. Hence, regular equal grid spacings in the spatial domain [a, b], [c, d] and time
domain [0, T] are

a = x1 < x2 < x3 < x4 < · · · < xN+1 = b,

c = y1 < y2 < y3 < y4 < · · · < xM+1 = d,

and

0 = t1 < t2 < t3 < t4 < · · · < tW+1 = T.

(9)
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With the above spatial variables, the intervals along x and y axes are divided into
(N + 1) and (M + 1) nodes, respectively, while the time interval [0, T] can be divided into
(W + 1) grid points. We define our grid points (xi, yj, tn) as

xi = (i− 1)hx, i = 1, 2, 3, ..., N + 1 with hx =
b− a

N
,

yj = (j− 1)hy, j = 1, 2, 3, ..., M + 1 with hy =
d− c

M
,

tn = (n− 1)k, n = 1, 2, 3, ..., W + 1 with k =
T
W

,

(10)

and (N − 1)hx = (M− 1)hy = 1, (W − 1)k = T. For convenience, throughout this work,
we take hx = hy = h.
Since an analytical solution is not obtainable, we use dynamical consistency as well as the
rate of convergence in order to gauge the numerical performance of our schemes. The rate
of convergence formula is computed using [25]

RT =

ln
(

Ek
E k

2

)
ln(2)

, (11)

where Ek =
∣∣∣∣vk − v2k

∣∣∣∣ and E k
2
=
∣∣∣∣v k

2
− vk

∣∣∣∣ are discrete maximum norm errors. We
would like to mention that all numerical simulations were conducted with the MATLAB
computing platform on an Intel Core-i5 PC with 5 GB RAM.

5. Schemes to Solve Problem 1

In numerical analysis, it is well known that the classical finite difference scheme suffers
from numerical oscillations and is not appropriate for the numerical solution of some dif-
ferential equations; see [26–28]. To compensate for this abnormality, the non-standard finite
difference (NSFD) scheme was proposed by Mickens [29]. In line with the work of Anguelov
and Lubuma [30], the basic rules in the construction of a NSFD schemes are a follows:

• Linear or non-linear terms are modelled non-locally on the computational grid—e.g.,
u3

n ≈ 3un+1(un)2 − 2(un)3;
• Non-classical denominator functions are useds;
• The difference equation should have the same order as the original differential equa-

tion. In general, when the order of the difference equation is larger than the order of
the differential equation, spurious solutions will appear [31];

• The discrete approximation should preserve some important properties of the corre-
sponding differential equation. Properties such as boundedness and positivity should
be preserved.

5.1. NSFD1

We start with the first derivative of diffusion function D′(v); this term is one of the
difficulties of Equation (8), so an efficient way of handling it that makes the equation stable,
convergent and free from oscillation should be sought.
To this end, we propose the operator

D′(v) ≈
D
(
vn

i+1,j
)
− D

(
vn

i−1,j
)

vn
i+1,j − vn

i−1,j
or

D
(
vn

i,j+1
)
− D

(
vn

i,j−1
)

vn
i,j+1 − vn

i,j−1
. (12)

We use the classical approximation for the diffusion D(v)

D(v) ≈
D
(
vn

i+1,j
)
+ D

(
vn

i−1,j
)

2
or

D
(
vn

i,j+1
)
+ D

(
vn

i,j−1
)

2
. (13)
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The unsteady term
∂v
∂t

which captures the time dynamics of biomass formation is
approximated using the ideas of the standard finite difference method:

∂v
∂t
≈

vn+1
i,j − vn

i,j

φ(k)
, (14)

where φ(k) = k.

The diffusion terms
∂2v
∂x2 and

∂2v
∂y2 are discretized using a non-standard approximation

given by

∂2v
∂x2 ≈

vn
i+1,j − 2vn+1

i,j + vn
i−1,j

(hx)2 and
∂2v
∂y2 ≈

vn
i,j+1 − 2vn+1

i,j + vn
i,j−1

(hy)2 . (15)

We discretize the non-linear first order derivative
(

∂v
∂x

)2

and
(

∂v
∂y

)2

using the central

difference approximations(
∂v
∂x

)2

≈
(vn

i+1,j − vn
i−1,j

2hx

)2

and
(

∂v
∂y

)2

≈
(vn

i,j+1 − vn
i,j−1

2hy

)2

. (16)

The reaction term rv is approximated non-locally (see Appadu et al. [32] and Agbavon
et al. [33]) as

rv ≈ r
(
2vn

i,j − vn+1
i,j
)
. (17)

To this end, we have our proposed scheme written as

vn+1
i,j − vn

i,j

k
=

D
(
vn

i+1,j
)
− D

(
vn

i−1,j
)

vn
i+1,j − vn

i−1,j

(vn
i+1,j − vn

i−1,j

2hx

)2

+
D
(
vn

i+1,j
)
+ D

(
vn

i−1,j
)

2

(vn
i+1,j − 2vn+1

i,j + vn
i−1,j

(hx)2

)

+
D
(
vn

i,j+1
)
− D

(
vn

i,j−1
)

vn
i,j+1 − vn

i,j−1

(vn
i,j+1 − vn

i,j−1

2hy

)2

+
D
(
vn

i,j+1
)
+ D

(
vn

i,j−1
)

2

(vn
i,j+1 − 2vn+1

i,j + vn
i,j−1

(hy)2

)
+ r
(
2vn

i,j − vn+1
i,j
)
.

(18)

After some simplification, rearrangement and re-adjustment, we obtain the NSFD1
scheme as

vn+1
i,j =

0.25RD
(
vn

i+1,j
)(

3vn
i+1,j + vn

i−1,j
)
+ 0.25RD

(
vn

i−1,j
)(

vn
i+1,j + 3vn

i−1,j
)
+ (1 + 2kr)vn

i,j

1 + R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

+
0.25RD

(
vn

i,j+1
)(

3vn
i,j+1 + vn

i,j−1
)
+ 0.25RD

(
vn

i,j−1
)(

vn
i,j+1 + 3vn

i,j−1
)

1 + R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

,

(19)

where R =
φ(k)
h2 .

We impose suitable discrete boundary (homogeneous Dirichlet or homogeneous
Neumann) conditions on the edges. The condition takes the form{

vn
1,j = αvn

2,j, vn
M+1,j = βvn

M,j, 1 ≤ j ≤ M + 1,
vn

i,1 = γvn
i,2, vn

i,N+1 = ζvn
i,N , 1 ≤ i ≤ N + 1.

(20)

We note here that α, β, γ and ζ are the boundary points of (xM, a), (xM, b), (c, yN) and
(d, yN), respectively.
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In line with experimental results, if we impose the homogeneous Dirichlet condition,
then α = β = γ = ζ = 0. Otherwise, for the homogeneous Neumann condition, we have
α = β = γ = ζ = 1. Our next task is to show the preservation of continuous model properties
evinced by the experimental results for the finite-difference scheme given by Equation (19).

Remark 2 (Positivity). The NSFD1 scheme is strictly positive since the numerator and denomina-
tor consist of positive terms only provided the initial condition is greater than zero.

Boundedness

We show that the numerical scheme of Equation (19) admits 0 < vn+1
i,j < 1 as long as

0 < vn
i,j < 1 for all i and j. Hence,(

vn+1
i,j − 1

)[
1 + R

(
D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ R
(

D
(
vn

i,j−1
)
+ D

(
vn

i,j+1
))

+ kr
]
= (1 + 2kr)vn

i,j +

1
4

RD
(
vn

i+1,j
)(

3vn
i+1,j + vn

i−1,j
)
+

1
4

RD
(
vn

i−1,j
)(

vn
i+1,j + 3vn

i−1,j
)
+

1
4

RD
(
vn

i,j+1
)(

3vn
i,j+1 + vn

i,j−1
)
+

1
4

RD
(
vn

i,j−1
)(

vn
i,j+1 + 3vn

i,j−1
)
− 1− R

(
D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))
− R

(
D
(
vn

i,j−1
)
+ D

(
vn

i,j+1
))
− kr

≤ −RD
(
vn

i+1,j
)(

1−
3vn

i+1,j + vn
i−1,j

4

)
− RD

(
vn

i−1,j
)(

1−
vn

i+1,j + 3vn
i−1,j

4

)
−

RD
(
vn

i,j+1
)(

1−
3vn

i,j+1 + vn
i,j−1

4

)
− RD

(
vn

i,j−1
)(

1−
vn

i,j+1 + 3vn
i,j−1

4

)
+ krvn

i,j

= −k
[

1
h2

{
D
(
vn

i+1,j
)(

1−
3vn

i+1,j + vn
i−1,j

4

)
+ D

(
vn

i−1,j
)(

1−
vn

i+1,j + 3vn
i−1,j

4

)
+

D
(
vn

i,j+1
)(

1−
3vn

i,j+1 + vn
i,j−1

4

)
+ D

(
vn

i,j−1
)(

1−
vn

i,j+1 + 3vn
i,j−1

4

)}
− rvn

i,j

]
.

(21)

Defining a new variable ξ and η as

ξ = D
(
vn

i+1,j
)(

1−
3vn

i+1,j + vn
i−1,j

4

)
+ D

(
vn

i−1,j
)(

1−
vn

i+1,j + 3vn
i−1,j

4

)
+ D

(
vn

i,j+1
)(

1−
3vn

i,j+1 + vn
i,j−1

4

)
+ D

(
vn

i,j−1
)(

1−
vn

i,j+1 + 3vn
i,j−1

4

)
and η =

1
(hx)2 =

1
(hy)2 =

1
h2

(22)

Proposition 1 (Boundedness of the scheme).

• If rvn
i,j < ξη, any random time-step k will always ensure vn+1

i,j < 1 if vn
i,j < 1.

• If rvn
i,j > ξη and k ≤

1− vn
i,j

rvn
i,j − ξη

hold, then the numerical solution satisfies vn+1
i,j < 1

whenever vn
i,j < 1.

Proof. If the condition vn+1
i,j < 1, then

0.25RD
(
vn

i+1,j
)(

3vn
i+1,j + vn

i−1,j
)
+ 0.25RD

(
vn

i−1,j
)(

vn
i+1,j + 3vn

i−1,j
)
+ (1 + 2kr)vn

i,j

1 + R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

+
0.25RD

(
vn

i,j+1
)(

3vn
i,j+1 + vn

i,j−1
)
+ 0.25RD

(
vn

i,j−1
)(

vn
i,j+1 + 3vn

i,j−1
)

1 + R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

< 1

(23)
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Equation (23) implies the following expression:

k
(
rvn

i,j − ξη
)
< 1− vn

i,j.

Thus, if rvn
i,j < ξη and vn

i,j < 1, in addition, the inequality expression k
(
rvn

i,j − ξη
)
<

1− vn
i,j always holds, an arbitrarily time-step k will always ensure vn+1

i,j < 1.

If vn
i,j < 1 and rvn

i,j > ξη, we simply have that k ≤
1− vn

i,j

rvn
i,j − ξη

, which supports the

second propositional statement.

Remark 3 (Stability). We would like to mention that positivity and boundedness guarantee the
stability of the NSFD1 scheme; see [33].

5.2. Classical Scheme

In order to compare the performances of our novel scheme, we consider the classical
scheme and the earlier known discretization of the same problem. The classical scheme for
Equation (6) takes the form (see [12])

vn+1
i,j − vn

i,j

k
=

D
(
vn

i+1,j
)
− D

(
vn

i,j
)

vn
i+1,j − vn

i,j

(vn
i+1,j − vn

i,j

hx

)2

+ D
(
vn

i,j
)vn

i+1,j − 2vn
i,j + vn

i−1,j

(hx)2 +

D
(
vn

i,j+1
)
− D

(
vn

i,j
)

vn
i,j+1 − vn

i,j

(vn
i,j+1 − vn

i,j

hy

)2

+ D
(
vn

i,j
)vn

i,j+1 − 2vn
i,j + vn

i,j−1

(hy)2 + rvn
i,j ,

(24)

which simplifies to

vn+1
i,j = (1 + kr)vn

i,j + R
(

D
(
vn

i+1,j
)
− D

(
vn

i,j
))(

vn
i+1,j − vn

i,j
)
+ RD

(
vn

i,j
)
(vn

i+1,j − 2vn
i,j + vn

i−1,j) +

R
(

D
(
vn

i,j+1
)
− D

(
vn

i,j
))
(vn

i,j+1 − vn
i,j) + RD

(
vn

i,j
)
(vn

i,j+1 − 2vn
i,j + vn

i,j−1).
(25)

5.3. EPPS Scheme

The explicit positivity-preserving scheme of Sun et al. [13] (EPPS) was constructed by
taking the average of forward and backward discretizations for the derivative D′(v) of the
non-linear diffusion term as

D′(v) ≈
D
(
vn

i±1,j
)
− D

(
vn

i,j
)

vn
i±1,j − vn

i,j
or

D
(
vn

i,j±1
)
− D

(
vn

i,j
)

vn
i,j±1 − vn

i,j
. (26)

The non-linear first-order derivatives of
(

∂v
∂x

)2

and
(

∂v
∂y

)2

are discretized using the

classical approach as well as a non-standard in time as(
∂v
∂x

)2

≈
(vn

i±1,j − vn
i,j

hx

)(vn
i±1,j − vn+1

i,j

hx

)
and

(
∂v
∂y

)2

≈
(vn

i,j±1 − vn
i,j

hy

)(vn
i,j±1 − vn+1

i,j

2hy

)
. (27)

The EPPS is given as



Computation 2021, 9, 123 10 of 27

vn+1
i,j − vn

i,j

k
=

1
2

[D
(
vn

i+1,j
)
− D

(
vn

i,j
)

vn
i+1,j − vn

i,j

(vn
i+1,j − vn

i,j

hx

)(vn
i+1,j − vn+1

i,j

hx

)
+

D
(
vn

i−1,j
)
− D

(
vn

i,j
)

vn
i−1,j − vn

i,j

(vn
i−1,j − vn

i,j

hx

)(vn
i−1,j − vn+1

i,j

hx

)]

+
1
2

[D
(
vn

i,j+1
)
− D

(
vn

i,j
)

vn
i,j+1 − vn

i,j

(vn
i,j+1 − vn

i,j

hy

)(vn
i,j+1 − vn+1

i,j

hy

)
+

D
(
vn

i,j−1
)
− D

(
vn

i,j
)

vn
i,j−1 − vn

i,j

(vn
i,j−1 − vn

i,j

hy

)(vn
i,j−1 − vn+1

i,j

hy

)]

+ D
(
vn

i,j
)(vn

i+1,j − 2vn+1
i,j + vn

i−1,j

(hx)2

)
+ D

(
vn

i,j
)(vn

i,j+1 − 2vn+1
i,j + vn

i,j−1

(hy)2

)
+ rvn

i,j.

(28)

By simplifying and putting all mathematical terms in order, a single expression for
the EPPS scheme is

vn+1
i,j =

0.5R
(

D
(
vn

i+1,j
)
+ D

(
vn

i,j
))

vn
i+1,j + 0.5R

(
D
(
vn

i,j
)
+ D

(
vn

i−1,j
))

vn
i−1,j + (1 + rk)vn

i,j

1 + R
(
0.5
(

D
(
vn

i+1,j
)
+ D

(
vn

i−1,j
))

+ 2D
(
vn

i,j
)
+ 0.5

(
D
(
vn

i,j+1

)
+ D

(
vn

i,j−1

))) +

0.5R
(

D
(
vn

i,j+1
)
+ D

(
vn

i,j
))

vn
i,j+1 + 0.5R

(
D
(
vn

i,j
)
+ D

(
vn

i,j−1
))

vn
i,j−1

1 + R
(
0.5
(

D
(
vn

i+1,j
)
+ D

(
vn

i−1,j
))

+ 2D
(
vn

i,j
)
+ 0.5

(
D
(
vn

i,j+1

)
+ D

(
vn

i,j−1

))) .

(29)

The performances of our proposed scheme, classical and earlier known schemes are
tested in Section 6.

6. Numerical Results of Problem 1

In this section, we present three examples respectively for the biomass independent
equation, which are used to shed light on the performance of our scheme.

Experiment 1. Let Ω ⊂ R2, be defined as Ω = [(a, b)× (c, d)]. For the sake of experimental
validation, we take a = c = 0 and b = d = 1. We consider an initial profile with density function
of the form

v(x, y, 0) =
5

∑
p=1

Cpe−wp ||X−Xp ||2 , for all X ∈ Ω, (30)

where C1 = 0.025, C2 = 0.03, C3 = 0.035, C4 = 0.02, C5 = 0.025, w1 = 25, w2 = 50,
w3 = 125, w4 = 100, w5 = 50, X1 = (0.25, 0.30), X2 = (0.50, 0.25), X3 = (0.70, 0.65),
X4 = (0.40, 0.80), X5 = (0.50, 0.55). We set λ = µ = 4.0, δ = 0.0001 and r = 0.40. The
homogeneous Neumann conditions are considered on the boundary point of Ω.

Experiment 2. Let Ω ⊂ R2 be defined by Ω = [(a, b) × (c, d)]. For the sake of the biomass
equation, we take a = c = 0 and b = d = 1. We consider an initial profile with Gaussian function
of the form

v(x, y, 0) =
6

∑
p=1

Cpe−wp ||X−Xp ||2 , for all X ∈ Ω. (31)

Here C1 = 0.50, C2 = 0.65, C3 = 0.55, C4 = 0.60, C5 = 0.40, C6 = 0.45, w1 = 100,
w2 = 50, w3 = 30, w4 = 80, w5 = 90, w6 = 100, X1 = (0.25, 0.30), X2 = (0.50, 0.25),
X3 = (0.70, 0.65), X4 = (0.40, 0.80), X5 = (0.50, 0.55), X6 = (0.80, 0.30). We set λ = 2.0,
µ = 2.0, δ = 1× 10−4. The homogeneous Neumann conditions are considered on the four bound-
ary points of Ω.
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Experiment 3. Let Ω ⊂ R2, which is defined as Ω = [(a, b)× (c, d)]. For the sake of experimental
observation, we take a = c = 0 and b = d = 1. We consider an initial profile with Gaussian
function of the form

v(x, y, 0) =
5

∑
p=1

Cpe−wp ||X−Xp ||2 , for all X ∈ Ω. (32)

We choose C1 = 0.68, C2 = 0.65, C3 = 0.80, C4 = 0.78, C5 = 0.82, w1 = 60, w2 = 50,
w3 = 30, w4 = 35, w5 = 20, X1 = (0.20, 0.20), X2 = (0.80, 0.80), X3 = (0.20, 0.80),
X4 = (0.80, 0.20), X5 = (0.50, 0.50). We set λ = 4.0, µ = 4.0, δ = 1× 10−4 and r = 0.30.

Results of Numerical Experiment 1
Based on Figures 2–4 we observe that the three methods give quite similar results at
times t = 2, 4, 6 and 8. The only difference is that the classical scheme suffers blow up
at time t = 10. The building up of colonies occurs from time t = 0 to t = 8, and then
the merging of colonies occurs at t = 10.

Results of Numerical Experiment 2
All the three methods give almost the same profile at times 5, 10 and 20. One observa-
tion from these numerical simulations is that the biofilm colonies are annihilated as we
progress in time, and this is due to rate of reaction being negative (in this case, r = −0.17).
We obtained the plot of the numerical solution using NSFD1 vs. x vs. y in Figure 5. We
have omitted graphical results using the two other methods (EPSS and Classical schemes)
due to similar results and the limitation of the number of pages for this manuscript. The
profiles obtained are similar to those reported by Maciaz-Diaz et al. [8].

Results of Numerical Experiment 3
Experiment 3 is a typical example in which the biofilm builds up with time. We
display the results of the numerical solution vs. x vs. y using NSFD1 and classical
schemes in Figures 6 and 7. We obtained similar results with all the three methods at
times t = 1 and 2. However, at t = 4, we observe a blow up when the classical scheme
is used, and we still find a positive definite and bounded solution at t = 4 when we
use NSFD1. The results from the NSFD1 scheme presented here agree with those from
the EPPS scheme.
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Results of experiment 1
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Figure 2. 3D plots of numerical solution vs. x vs. y using NSFD1 scheme at times t = 0, 2, 4, 6, 8 and 10. We used spatial
step sizes hx = hy = 0.02 and time step k = 0.0004.
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Figure 3. 3D plots of numerical solution vs. x vs. y using classical scheme at times t = 0, 2, 4, 6, 8 and 10. We used spatial
step sizes hx = hy = 0.02 and time step k = 0.0004.
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Figure 4. 3D plots of numerical solution vs. x vs. y using EPSS scheme at times t = 0, 2, 4, 6, 8 and 10. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.0004.
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Results of experiment 2
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Figure 5. 3D plots of numerical solution vs. x vs. y using NSFD1 scheme at times t = 0, 5, 10 and 20. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.01.
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Results of experiment 3
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Figure 6. 3D plots of numerical solution vs. x vs. y using NSFD1 scheme at times t = 0, 1, 2 and 4. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.0001.
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Figure 7. 3D plots of numerical solution vs. x vs. y using classical scheme at times t = 0, 1, 2 and 4. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.0001.

7. Coupled Substrate–Biomass System

The coupled substrate and biomass system of equations is given by

∂u
∂t

= Γ1

(
∂2u
∂x2 +

∂2u
∂y2

)
− Γ3

uv
Γ4 + u

and

∂v
∂t

= Γ2D(v)
(

∂2v
∂x2 +

∂2v
∂y2

)
+ Γ2D′(v)

((
∂v
∂x

)2

+

(
∂v
∂y

)2)
− rv + Γ5

uv
Γ4 + u

,

(33)

with initial and boundary conditions{
u(x, t) = 1, v(x, t) = 0, ∀ x ∈ ∂Ω, t ≥ 0,
u(x, t) = u0(x), v(x, t) = v0(x).

(34)

where we define D(v) =
vλ

(1− v)µ .

We begin by showing the discretization of each term comprising Equation (33)

∂u
∂t
≈

un+1
i,j − un

i,j

k
and

∂v
∂t
≈

vn+1
i,j − vn

i,j

k
. (35)
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We use the following approximations:

∂2u
∂x2 ≈

un
i+1,j − 2un+1

i,j + un
i−1,j

(hx)2 and
∂2u
∂y2 ≈

un
i,j+1 − 2un+1

i,j + un
i,j−1

(hy)2 . (36)

The Michaelis–Menten form of the reaction in the substrate concentration equation is
discretized using classical and non-classical approximations as

Γ3
uv

Γ4 + u
≈ Γ3

un+1
i,j vn

i,j

Γ4 + un
i,j

. (37)

The substrate concentration in a discretized form thus becomes

un+1
i,j − un

i,j

φ(k)
= Γ1

(un
i+1,j − 2un+1

i,j + un
i−1,j

(hx)2 +
un

i,j+1 − 2un+1
i,j + un

i,j−1

(hy)2

)
− Γ3

un+1
i,j vn

i,j

Γ4 + un
i,j

(38)

After some mathematical manipulation, we have

un+1
i,j =

un
i,j + RΓ1(un

i+1,j + un
i−1,j) + RΓ1(un

i,j+1 + un
i,j−1)

1 + 4Γ1R + kΓ3
vn

i,j

Γ4 + un
i,j

. (39)

We use the earlier approximation of Equations (12), (13) and (16) for the biomass
quantity v. The reactions take the form

rv ≈ rvn+1
i,j and Γ5

uv
Γ4 + u

≈ Γ5
un

i,jv
n
i,j

Γ4 + un
i,j

. (40)

In a concise form, we obtain

vn+1
i,j =

0.25Γ2R
(

D
(
vn

i+1,j
)(

3vn
i+1,j + vn

i−1,j
)
+
(
vn

i−1,j
)(

vn
i+1,j + 3vn

i−1,j
))

+ vn
i,j + kΓ5

un
i,jv

n
i,j

Γ4 + un
i,j

1 + Γ2R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ Γ2R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

+

0.25Γ2R
(

D
(
vn

i,j+1
)(

3vn
i,j+1 + vn

i,j−1
)
+ D

(
vn

i,j−1
)(

vn
i,j+1 + 3vn

i,j−1
))

1 + Γ2R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ Γ2R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

.

(41)

The coupled nutritive substrate–biomass discretization (NSFD2) is

un+1
i,j =

un
i,j + RΓ1(un

i+1,j + un
i−1,j) + RΓ1(un

i,j+1 + un
i,j−1)

1 + 4Γ1R + kΓ3
vn

i,j

Γ4 + un
i,j

.

vn+1
i,j =

0.25Γ2R
(

D
(
vn

i+1,j
)(

3vn
i+1,j + vn

i−1,j
)
+ D

(
vn

i−1,j
)(

vn
i+1,j + 3vn

i−1,j
))

+ vn
i,j

1 + Γ2R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ Γ2R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

+

kΓ5
un

i,jv
n
i,j

Γ4 + un
i,j

+ 0.25Γ2R
(

D
(
vn

i,j+1
)(

3vn
i,j+1 + vn

i,j−1
)
+ D

(
vn

i,j−1
)(

vn
i,j+1 + 3vn

i,j−1
))

1 + Γ2R
(

D
(
vn

i−1,j
)
+ D

(
vn

i+1,j
))

+ Γ2R
(

D
(
vn

i,j−1

)
+ D

(
vn

i,j+1

))
+ kr

.

(42)



Computation 2021, 9, 123 19 of 27

Suitable discrete boundary (homogeneous Dirichlet or Neumann) conditions on the edges
are imposed. The conditions take the forms

un
1,j = (un

2,j)
α un

M+1,j = (un
M,j)

β, 1 ≤ j ≤ M + 1,
un

i,1 = (un
i,2)

γ un
i,N+1 = (un

i,N)
ζ , 1 ≤ i ≤ N + 1,

vn
1,j = αvn

2,j, vn
M+1,j = βvn

M,j, 1 ≤ j ≤ M + 1,
vn

i,1 = γvn
i,2, vn

i,N+1 = ζvn
i,N , 1 ≤ i ≤ N + 1.

(43)

The homogeneous Neumann boundary condition is enforced if the constants α = β = γ =
ζ = 1; otherwise, the homogeneous Dirichlet is used when α = β = γ = ζ = 0. We now
seek to show the conservation of physical properties by the schemes in Equation (42).

Remark 4 (Positivity). The schemes from Equation (42) are strictly positive since all the terms in
the numerator and denominator contain positive terms only.

Boundedness

We show that, for the numerical scheme of Equation (42),

0 < un
i,j < 1 =⇒ 0 < un+1

i,j < 1 and 0 < vn
i,j < 1 =⇒ 0 < vn+1

i,j < 1.

for all i and j.

Proof. Since un
i,j < 1, then max{un

i+1,j, un
i−1,j, un

i,j+1, un
i,j−1} < 1 and 0 < vn

i,j < 1. Hence,

un+1
i,j =

un
i,j + RΓ1(un

i+1,j + un
i−1,j) + RΓ1(un

i,j+1 + un
i,j−1)

1 + 4Γ1R + kΓ3
vn

i,j

Γ4 + un
i,j

≤ 1 + 4RΓ1

1 + 4Γ1R + kΓ3
vn

i,j

Γ4 + un
i,j

,

≤ 1.

(44)

Since kΓ3
vn

i,j

Γ4 + un
i,j

> 0 for the non-negative initial condition vn
i,j. For vn+1

i,j , we consider the

boundedness condition of the NSFD1 scheme.

Proposition 2. [Boundedness of the scheme]

• If k
(

Γ5
un

i,jv
n
i,j

Γ4 + un
i,j
− r
)
< ξη, any random time-step k will always ensure vn+1

i,j < 1 whenever

vn
i,j ∈ [0, 1] and un

i,j ∈ [0, 1].

• If k
(

Γ5
un

i,jv
n
i,j

Γ4 + un
i,j
− r
)

> ξη and k ≤
1− vn

i,j(
r− Γ5

un
i,jv

n
i,j

Γ4 + un
i,j

)
− ξη

hold, then the numerical

solution satisfies vn+1
i,j < 1 whenever vn

i,j < 1.

The proof follows the same procedure as in NSFD1. In order to ascertain the effec-
tiveness of our scheme for Equation (33), we implemented the classical scheme given
as

un+1
i,j − un

i,j

k
= Γ1

(un
i+1,j − 2un

i,j + un
i−1,j

(hx)2 +
un

i,j+1 − 2un
i,j + un

i,j−1

(hy)2

)
− Γ3

un
i,jv

n
i,j

Γ4 + un
i,j

, (45)
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vn+1
i,j − vn

i,j

k
= Γ2

D
(
vn

i+1,j
)
− D

(
vn

i,j
)

vn
i+1,j − vn

i,j

(vn
i+1,j − vn

i,j

hx

)2

+ Γ2
D
(
vn

i,j+1
)
− D

(
vn

i,j
)

vn
i,j+1 − vn

i,j

(vn
i,j+1 − vn

i,j

hy

)2

+

Γ2D
(
vn

i,j
)(vn

i+1,j − 2vn
i,j + vn

i−1,j

(hx)2 +
vn

i,j+1 − 2vn
i,j + vn

i,j−1

(hy)2

)
− rvn

i,j + Γ5
un

i,jv
n
i,j

Γ4 + un
i,j

,

(46)

The classical scheme in compact form takes the form

un+1
i,j = un

i,j + RΓ1(un
i+1,j − 2un

i,j + un
i−1,j) + RΓ1(un

i,j+1 − 2un
i,j + un

i,j−1)− kΓ3
un

i,jv
n
i,j

Γ4 + un
i,j

.

vn+1
i,j = Γ2R

(
D
(
vn

i+1,j
)
− D

(
vn

i,j
))(

vn
i+1,j − vn

i,j
)
+ Γ2R

(
D
(
vn

i,j+1
)
− D

(
vn

i,j
))(

vn
i,j+1 − vn

i,j−1
)
+

(1− kr)vn
i,j + RΓ2D

(
vn

i,j
)
(vn

i+1,j − 2vn
i,j + vn

i−1,j) + RΓ2D
(
vn

i,j
)
(vn

i,j+1 − 2vn
i,j + vn

i,j−1) + kΓ5
un

i,jv
n
i,j

Γ4 + un
i,j

.

(47)

8. Numerical Results of Problem 2

We present two numerical simulations for the coupled substrate–biomass equations
to examine the accuracy and effectiveness of our proposed scheme (NSFD2).

Experiment 4. Let Ω ⊂ R2, which is defined as Ω = [(0, 1)× (0, 1)]. We consider an initial
profile with constant and Gaussian functions of the form

u(x, y, 0) = 1 and v(x, y, 0) =
5

∑
p=1

Cpe−wp ||X−Xp ||2 , for all X ∈ Ω, (48)

for u and v, respectively, where C1 = 0.68, C2 = 0.65, C3 = 0.80, C4 = 0.78, C5 = 0.70,
w1 = 60, w2 = 50, w3 = 30, w4 = 35, w5 = 20, X1 = (0.20, 0.20), X2 = (0.60, 0.20),
X3 = (0.50, 0.50), X4 = (0.30, 0.80), X5 = (0.80, 0.80). We set λ = 4.0, µ = 4.0, Γ1 = 0.0015,
Γ2 = 0.01, Γ3 = 0.65, Γ4 = 0.40, Γ5 = 0.08 and r = 0.40. The homogeneous Dirichlet conditions
are considered on the boundary point of Ω.

Experiment 5. Let Ω ⊂ R2 be defined as Ω = {(0, 1)× (0, 1)}. We consider an initial profile of
the form

u(x, y, 0) = 1 and v(x, y, 0) =
5

∑
p=1

Cpe−wp ||X−Xp ||2 , for all X ∈ Ω. (49)

Where C1 = 0.47, C2 = 0.50, C3 = 0.60, C4 = 0.50, C5 = 0.60, w1 = 200, w2 = 50,
w3 = 280, w4 = 50, w5 = 280, X1 = (0.20, 0.20), X2 = (0.60, 0.20), X3 = (0.50, 0.50),
X4 = (0.30, 0.80), X5 = (0.80, 0.80). We set λ = 4.0, µ = 4.0, Γ1 = 0.0015, Γ2 = 0.0001,
Γ3 = 0.65, Γ4 = 0.40, Γ5 = 0.60 and r = 0.06. The homogeneous Dirichlet conditions are
considered on the boundary point of Ω.

Results of Numerical Experiment 4
Experiment 4 is a classic example where the biomass density decreases with time
while the nutritive substrate increases within the bounded region. This is due to the
fact that the biomass decay rate r exceeds the maximum specific growth rate Γ5. The
classical scheme does not maintain good physical properties of the coupled PDEs for
this attenuation system, as depicted in Figure 8, where a blow up occurs at time t = 3
and 10. On the other hand, NSFD2 maintains dynamical consistency, and realistic
results are displayed using the scheme in Figure 9.

Results of Numerical Experiment 5
The biofilm density appears to be increasing and spreading with the passage of time.
This is due to the fact that the biomass degradation constant r is substantially lower
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than the maximal specific growth rate Γ5. NSFD2 and classical schemes are efficient
and both give bounded solutions; see Figures 10 and 11. However, we observe
that the result of the classical scheme does not look stable when compared to the
NSFD2 scheme.

Results of experiment 4
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Figure 8. 3D plots of numerical solution vs. x vs. y using classical scheme at times t = 0, 3 and 10. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.0004.
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Figure 9. 3D plots of numerical solution vs. x vs. y using NSFD2 scheme at times t = 0, 3 and 10. We used spatial step sizes
hx = hy = 0.02 and time step k = 0.0004.
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Results of experiment 5
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Figure 10. 3D plots of numerical solution vs. x vs. y using NSFD2 scheme at times t = 0, 3 and 7. We used spatial step sizes
hx = hy = 0.02 and time step k = 0.0004.
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Figure 11. 3D plots of numerical solution vs. x vs. y using classical scheme at times t = 0, 3 and 7. We used spatial step
sizes hx = hy = 0.02 and time step k = 0.0004.

9. Conclusions

In this paper, the study of biofilm formation and the coupled substrate–biofilm relation
using some finite difference schemes was investigated. These real-time scenarios were
modelled mathematically using one parabolic PDE and a system of two parabolic PDEs in
Equations (6) and (33), respectively. The use of the finite difference scheme is due to the
difficulty in obtaining an analytical solution, although the existence and uniqueness of
the solution have been established for the equations. To this end, we designed an efficient
non-standard finite difference scheme (NSFD1) for the biofilm formation which preserves
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the conservative properties such as positivity and boundedness. We have efficiently
handled the non-linear diffusion term by introducing a new linearizing operator. The
excellent performance of our proposed scheme (NSFD1) motivated us to construct a novel
structure-preserving scheme (NSFD2) for the coupled substrate–biofilm equation. NSFD2
showed good behaviour with conservation of physical properties. The proposed scheme
demonstrates that the biofilm generation and nutritive substrate development processes
are significantly interconnected. Our proposed schemes competes favourably well with
earlier known results in the literature; see Tables 1–4. In regards to the classical scheme,
a blow up occurred at time t = 10, 4 and 3 for experiments 1, 3 and 4, respectively. In
addition, it is extremely difficult to obtain a stability region, especially when dealing
with coupled systems of PDEs. The technique in this study can be applied to other
areas of mathematical biology and sciences. The results here elaborate the benefits of the
non-standard approximations over the classical approximations in practical applications.
In our future study, a structural finite difference scheme will be proposed to handle
the modified mathematical model to Equation (33) as well as a dynamically consistent
finite difference scheme for the system of advection–diffusion–reaction equations arising
in quorum sensing. In addition, we will investigate the effects of random noise when
incorporated into the equations.

Table 1. Rate of convergence in time using experiment 1 for NSFD1 and classical schemes for h = 0.02
at time t = 8.

k NSFD1 (19) Classical (25)

Ek RT Ek RT

0.0032 1.0149× 10−2 – 2.6820× 10−3 –
0.0016 5.8124× 10−3 0.8041 1.3602× 10−3 0.9794
0.0008 3.1437× 10−3 0.8867 6.8479× 10−4 0.9900
0.0004 1.6404× 10−3 0.9384 3.4355× 10−4 0.9951
0.0002 8.3880× 10−4 0.9676 1.7206× 10−4 0.9976

Table 2. Rate of convergence in time using experiment 2 for NSFD1 and classical schemes for h = 0.02
at time t = 5.

k NSFD1 (19) Classical (25)

Ek RT Ek RT

0.02 1.8664× 10−3 – 5.0464× 10−4 –
0.01 9.1021× 10−4 1.0359 2.5146× 10−4 1.0049

0.005 4.4931× 10−4 1.0184 1.2551× 10−4 1.0025
0.0025 2.2400× 10−4 1.0042 6.2706× 10−5 1.0011

Table 3. Rate of convergence in time using experiment 3 for NSFD1 and classical schemes for h = 0.02
at time t = 1.

k NSFD1 (19) Classical (25)

Ek RT Ek RT

0.0016 1.1687× 10−2 – 1.0057× 10−3 –
0.0008 7.9887× 10−3 0.5488 9.9989× 10−4 0.00848
0.0004 4.7608× 10−3 0.7467 5.0162× 10−4 0.9951
0.0002 2.6166× 10−3 0.8635 2.5121× 10−4 0.9977
0.0001 1.3744× 10−3 0.9288 1.2570× 10−4 0.9989
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Table 4. Comparison of some finite-difference methods used for the mathematical modelling of
biofilm formation to simulate Equation (6).

Properties NSFD1 (19) Classical (25) EPPS (29) Maciaz-Diaz et al. [8]

Positivity Positive Not Positive Positive Positive
Boundedness Bounded Not Bounded Bounded Bounded

Class of
Scheme Explicit Explicit Explicit Explicit

Implementation Linear Linear Linear Non-linear
Construction Easy Easy Moderate Moderate
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