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Abstract: The energy eigenvalues of the ground state helium atom and lowest two excited states
corresponding to the configurations 1s2s embedded in the plasma environment using Hulthén,
Debye–Hückel and exponential cosine screened Coulomb model potentials are investigated within
the variational Monte Carlo method, starting with the ultracompact trial wave functions in the form
of generalized Hylleraas–Kinoshita functions and Guevara–Harris–Turbiner functions. The Lagrange
mesh method calculations of energy are reported for the He atom in the ground and excited 1S and 3S
states, which are in excellent agreement with the variational Monte Carlo results. Interesting relative
ordering of eigenvalues are reported corresponding to the different screened Coulomb potentials
in the He ground and excited electronic states, which are rationalized in terms of the comparison
theorem of quantum mechanics.

Keywords: helium atom; screened Coulomb potential; variational Monte Carlo method; Lagrange
mesh method; comparison theorem

1. Introduction

The theoretical studies of atomic systems in dense plasmas at different temperatures
play a very important role in some physical situations and have gained considerable
interest in recent years [1–8]. The dilute plasma environment is represented by the screened
Coulomb potentials given by the Debye–Hückel model (DHM) or screened Coulomb
potential (SCP) [9], which provides a suitable treatment of nonideality in plasma via the
screening effect under the low-density and high-temperature conditions. A closely related
Hulthén potential is also used as a model potential for the dilute plasma environment
in which the atoms are embedded. On the other hand, the dense quantum plasmas
environment is represented by using the modified Debye–Hückel model (MDHM) [10] or
exponential cosine screened Coulomb potential (ECSCP). Due to its oscillatory nature, the
MDHM potential represents a stronger screening effect than the DHM potential.

Considerable attention has been given to the screened Coulomb potentials and exponen-
tial cosine screened Coulomb potential in field theory, nuclear, and plasma physics [11–17].
Accurate B-spline configuration interaction (BSCI) method was recently employed to study
the spectral/structural data of the helium atom with exponential cosine screened Coulomb
potentials [18]. Roy [19] discussed the critical parameter for the spherically confined H
atom embedded within a diverse set of screened Coulomb potentials. Ghoshal and Ho [20]
investigated the two-electron system in the field of generalized screened potential within the
framework of highly correlated and extensive wave functions in Ritz’s variational principle,
where they were able to determine accurate ground state energies and wave functions of
the two-electron system for different values of the screening parameter. Nasser, Zeama, and
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Abdel-Hady [21] made a comparative study of the atomic Rényi and Shannon entropies
with different wave function within the ECSCP for the 1s2-state of the helium isoelectronic
series in the Hylleraas-space with few variational parameters. Several other interesting
studies on the few electron atoms embedded inside the different plasma potentials have
been presented in the literature [22–24]. Very recently a comprehensive compilation of
accurate energy values and other structural parameters for the He-like atoms has been
published [25,26] using the Hylleraas wave functions.

The purpose of this paper is twofold. Firstly, we report the energy values correspond-
ing to the ground state and two low-lying excited electronic states of the He-like atoms
embedded in three different plasma environments using the variational Monte Carlo (VMC)
method [27–31] and the Lagrange mesh method (LMM) [32]. The second purpose of this
work concerns with the application of the comparison theorem of quantum mechanics.
According to the comparison theorem, if a set of spherical potentials V1(r), V2(r), V3(r)
satisfy the condition V1(r) < V2(r) < V3(r) at all radial distances, then their eigenvalues obey
E1 < E2 < E3 for all n`-states. For nonrelativistic Hamiltonians bounded from below, this
theorem follows directly from the variational characterization of the eigenspectrum [33].
Generalized comparison theorems have been proposed [34–38] that allow the two potential
curves to cross over in a controlled fashion while maintaining a definite ordering of the
respective eigenvalues. Refined comparison theorems applicable to the relativistic Dirac
Hamiltonian, which is not bounded from below, have also been established [39–41]. We
refer to the works on the generalized comparison theorem [42] and the refined comparison
theorem [43], which covers the current research trends in this area. In this work, we used
the comparison theorem in order to rationalize the relative ordering of eigenspectra of the
He atom under a set of different plasma screened Coulomb potentials for the ground and a
few low-lying excited states. To the best of our knowledge, a comprehensive numerical
test of the comparison theorem using the VMC and the LMM computations including the
excited states, as reported in this work, has not been attempted earlier.

The outline of this paper follows. In Section 2, we define the three different screened
Coulomb model potentials that are introduced above. In Section 3, an outline of the
variational Monte Carlo (VMC) method employed in this work is presented. This is
followed by the computational details and the choice of the trial wave functions for the low-
lying excited states of He, described in Sections 4 and 5, respectively. A brief description of
the Lagrange mesh method employed in this work is presented in Section 6. Our results
are presented and discussed in Section 7. Finally, the main conclusions of this work are
listed in Section 8.

2. Plasma Model Potentials

The collective effects of correlated many-particle interactions lead to screened Coulomb
interactions in hot dense plasma conditions, which are commonly represented by the DHM
or SCP and given by

VDH(r) = −
Ze2

r
exp(−µr), (1)

where µ = 1
λD

represents the Debye screening parameter that determines the electronic
interaction in the Debye plasma. It depends on the temperature and density of the plasma
in the following form [44]:

µ =
1

λD
=
√

4πe2Ne/KTe, (2)

where λD is called Debye screening length, K is the Boltzmann constant, Te is the electron
temperature, e is the electronic charge, Z is the atomic number, and Ne is the plasma–
electron density. The Hulthén [45] potential is given by

VHu_µ(r) = −Ze2 µe−µr

1− e−µr . (3)
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A useful form of Hulthén potential in which the screening parameter µ in Equation (3)
is simply multiplied by a factor of 2 can be defined as

VHu_2µ(r) = −Ze2 2µe−2µr

1− e−2µr . (4)

It was shown that the study of effective screened potential in dense quantum plasmas
can be represented by using MDHM [10] or ECSCP, which is given by

VMDH(r) = −
Ze2

r
exp(−µr) cos(µr). (5)

Usually, in quantum plasmas, µ is related to the quantum wave number of the electron,
which is related to the electron plasma frequency. Furthermore, the definitions of µ in
the two model potentials are different. In the present paper, we are considering µ as a
parameter so that the physical difference of µ between these model potentials [14,19,46] is
not discussed.

3. Variational Monte Carlo Method

Quantum Monte Carlo methods have already been used for quantum mechanical
systems. There are several quantum Monte Carlo techniques such as VMC, diffusion Monte
Carlo and Green’s function Monte Carlo methods. In this paper, we concentrate on the
VMC method, which is used to approximate the eigenstate of the Hamiltonian Ĥ of a
quantum mechanical system by some trial wave function ψT(R) whose form is chosen from
the analysis of the quantum mechanical system under study. Therefore, the expectation
value of the Hamiltonian Ĥ is written as [46]

Ĥ = EVMC =

∫
ψ∗T(R)ĤψT(R)dR∫
ψ∗T(R)ψT(R)dR

=

∫
dRψ2

T(R)EL(R)∫
dRψ2

T(R)
=
∫

dR ρ(R)EL(R) (6)

where EL(R) = (HψT(R))/ψT(R) is the local energy depending on the 3N coordinates

R of the N electrons, and ρ(R) =
ψ2

T(R)∫
dRψ2

T(R)
is the normalized probability density. The

variational energy can be calculated as the average value of EL(R) on a sample of M points
Rk, sampled from the probability density ρ(R) as follows:

EVMC ≈ EL =
1
M

M

∑
k=1

EL(Rk). (7)

In practice, the points Rk are sampled using the Metropolis–Hastings algorithm [27,28].
When evaluating the energy of the system it is important to calculate the standard

deviation of this energy, given by [47]

σ =

√〈
E2

L
〉
− 〈EL〉2

N(M− 1)
.

Since EL will be exact when an exact trial wave function is used, then the standard
deviation of the local energy will be zero for this case. Thus, in the Monte Carlo method,
the minimum of EL should coincide with a minimum in the standard deviation.

4. Theoretical Details

The nonrelativistic Hamiltonian in Hylleraas coordinates [47] for the two electron
systems, under effective SCP in dense plasmas is given, in atomic units, by

H1 = −1
2

2

∑
i
∇2

i − 2
[

exp(−µr1)

r1
+

exp(−µr2)

r2

]
+

exp(−µr12)

r12
(8)



Computation 2021, 9, 138 4 of 11

where r1 and r2 are the radius vectors of the twoelectrons relative to the nucleus, and
r12 = |r1 − r2| is their relative distance.

Moreover, the nonrelativistic Hamiltonian in the effective ECSCP is given by

H2 = −1
2

2

∑
i
∇2

i − 2
[

exp(−µr1)

r1
cos(µr1) +

exp(−µr2)

r2
cos(µr2)

]
+

exp(−µr12)

r12
cos(µr12) (9)

The ground state of the helium atom is a spin singlet two-electron atom. Our calcula-
tions for this two-electron system depend on using an ultracompact accurate symmetric
function, a nontrivial seven-parameter function, which is constructed by Turbiner et al. [48]
as follows:

Ψ = (1 + P12)[φ(r1, r2)χA] (10)

with space wave function:

φ(r1, r2) = (1− ar1 + br12)e
−α1zr1−β1zr2+γr12

1+cr12
1+dr12 (11)

where a, b, c, d, α1, β1, γ are z-dependent parameters and P12 is a permutation operator.
This function leads for helium atom (Z = 2) to a certain improvement of the variational
energy and the electron–nuclear cusp and at the same time, the electron–electron cusp. The
function χA represents the antisymmetric spin wave function with (α) spin up and (β)
spin down as follows:

χA = α(1)β(2)− α(2)β(1) (12)

This function allows us to obtain the same relative accuracy in both cusp parameters
and electronic correlation energy. The function appears as a uniform, locally accurate
approximation of the exact ground state eigenfunction. It provides the same relative
accuracies in energies and several expectation values together with both cusp parameters.

5. Trial Wave Functions for the Low-Lying Excited States of the Helium Atom

The study of the low-lying excited states of the helium atom has received consider-
able attention in theoretical investigations. Therefore, for the lowest two excited states,
corresponding to the configurations 1s2s, we used the following trial wave functions:

1. For the lowest ortho (space-antisymmetric) state 23S, corresponding to the configura-
tion 1s2s, we considered the following simple trial wave function

Ψ23S(r1, r2) = N[(ψ1s(r1)ψ2s(r2)− ψ1s(r2)ψ2s(r1))χs] f (r12). (13)

2. The state 21S is a para (space-symmetric) state corresponding to the configuration
1s2s and its trial wave function is, then, taken of the form

Ψ21S(r1, r2) = N[(ψ1s(r1)ψ2s(r2) + ψ1s(r2)ψ2s(r1))χA] f (r12). (14)

In these equations, z0 and zi are variational parameters and N is the normalization
constant. For spin functions, χA represents the singlet antisymmetric spin wave function
with (α) spin up and (β) spin down as described in Equation (12).

The function f (r12) is the Jastrow correlation function given by [49]

f (r12) = e
r12

α2(1+β2r12) , (15)

where α2 and β2 are variational parameters.
For the relationship of the electron–electron interaction, one obtains the cusp conditions

1
Ψ

∂Ψ
∂rij

∣∣∣
rij=0

= 1
2 for unlike spins

1
Ψ

∂Ψ
∂rij

∣∣∣
rij=0

= 1
4 for like spins

.
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6. Lagrange Mesh Method

The Lagrange mesh method (LMM) [50–52] is a numerical procedure wherein the
Schrödinger equation is placed into a nonuniform heterogeneous lattice defined by zeroes
of classical orthogonal polynomials, using a basis of Laguerre functions and the associated
Gauss quadratures. An exhaustive compilation of accurate energies using the LMM for
the He-like atoms can be found in [53]. The wave function is expressed in terms of the
perimetric coordinates [54,55]. We employed the lattice parameters [56] Nx = Ny = 50,
Nz = 40, and the scaling parameters hx = hy = 0.3, hz = 0.4. We used the suitably
modified PERILAG code [50] in order to implement the screened Coulomb potentials
given by Equations (1), (3) and (5). This code was recently employed [57,58] to carry out
accurate calculations of energy for the ground and excited electronic states of He-like atoms
embedded inside different plasma model potentials.

7. Results and Discussion

The numerical method used in our calculations, the VMC method, is based on a
combination of the well-known variational method and the Monte Carlo technique of
calculating the multidimensional integrals. By a suitable choice of the trial wave function,
it is then possible to obtain minimum energy eigenvalues in agreement with the exact
values for the ground as well as the excited states of the given atom. Accordingly, we
investigated the effect of the plasma environment by using the SCP and the ECSCP models
on the energy eigenvalues of the helium atom. The calculations are performed using a
set of 108 Monte Carlo integration points to assess the accuracy with standard deviation
of the order 10−5. All our results are obtained in atomic units, i.e., (} = e = me = 1). For
the value of the ground state energy of the He atom that corresponds to Debye screening
length λD = ∞ with screening parameter µ = 0.0 and expresses the case of pure Coulomb
potential, we obtained the value −2.902662 a.u., which nearly coincides with the value
−2.9027 reported in [48].

Table 1 shows the ground state energies of the helium atom under effective SCP
in dense quantum plasma with the He+ threshold energies and ionization potential
[EHe+ − EHe] of He. The results show good agreement with the most accurate previ-
ous results, where the z parameter equals 2, and it is equivalent to the atomic nuclear
charge for screening parameter µ < 0.5 (λD > 2, Debye screening length). For µ > 0.5, the
parameter z starts to decrease slightly around the value 2; at µ = 0.5, z ≈ 1.9 and at µ = 1,
z ≈ 1.78.

In Table 2, we present the ground state energies of the helium atom under effective
ECSCP in dense quantum plasma. The He+ threshold energies and ionization potential
[EHe+ − EHe] of He are also given.

In Table 3, we present the results of our calculations of the ground state energies of the
helium atom under Hulthén potential in dense quantum plasma with the He+ threshold
energies and ionization potential [EHe+ − EHe] of He. For the one electron atoms, the
energy ordering of Eµ

Hulthen < Eµ
SCP < Eµ

ECSCP, has been a well-known consequence of
the comparison theorem [34]. More recently, based on a detailed mathematical analysis, a
similar ordering has been conjectured for the He-like atoms [57]. For the ground state He,
the proposed conjecture has been validated numerically [25,56]. The energy data presented
in Tables 1–3 is employed in Figure 1, where we display the variation of Eµ

SCP, Eµ
ECSCP, and

Eµ
Hulthen as a function of µ. The adherence to the energy ordering Eµ

Hulthen < Eµ
SCP < Eµ

ECSCP
is numerically validated for the He atom in its ground state.

Another interesting ordering of energy levels for the one electron atoms is given by
Eµ

Hulthen < Eµ
SCP < E2µ

Hulthen < Eµ
ECSCP, where E2µ

Hulthen denotes the energy of the Hulthén
potential at the screening parameter of 2µ, as defined in Equation (4). As a natural extension
of the conjecture [56], this energy ordering is now tested numerically for the He atom in
the ground and a few excited states.
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Table 1. Ground state energies of the helium atom under effective SCP in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

µ −EHe −EHe+ −[EHe+ − EHe]

0
2.902662 2.000000 0.902662
2.9037244 2.0000004 0.9037244

2.9033716 - -

0.01
2.872771 1.980070 0.892701
2.8738394 1.9800754 0.8937644

0.02
2.843117 1.960268 0.882849
2.8441814 1.9602984 0.8838834

0.04 2.784473 1.920408 0.864065

0.05
2.755475 1.901848 0.853627
2.7565494 1.9018454 0.8547044

0.1
2.613758 1.807262 0.806496
2.6148534 1.8072664 0.8075874

2.6145116 - -

0.2
2.345674 1.628183 0.717491
2.3470064 1.6282324 0.7187744

2.3466616 - -

0.4
1.864564 1.306890 0.557674
1.8684514 1.3072344 0.5612174

0.5
1.652445 1.162981 0.489464
1.6554014 1.1636784 0.4917234

1.6550416 - -

1
0.803519 0.585547 0.217972
0.8182144 0.5924684 0.2257464

0.8170416 - -

Table 2. Ground state energies of the helium atom under effective ECSCP in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

µ −EHe −EHe+ −[EHe+ −EHe]

0
2.902662 2.000000 0.902662
2.9037245 2.0000005 0.9037245

2.9033716 - -

0.01
2.872533 1.979987 0.892546
2.8737255 1.9799885 0.8937375

0.02
2.842163 1.959989 0.882174
2.8437305 1.9599915 0.8837395

0.04 2.780706 1.919235 0.861471

0.05
2.749620 1.900052 0.849568
2.7538165 1.9000485 0.8537685

0.1
2.590905 1.800491 0.790414
2.6044365 1.8004575] 0.8039785

2.6040916 - -

0.2
2.259199 1.603504 0.655695
2.3091115 1.6035275 0.7055875

0.4 1.770741 1.225043 0.545698

0.5
1.444394 1.046606 0.397788
1.4769585 1.0470605 0.4298985

1.4765316 - -

1
0.402097 0.296429 0.105668
0.4052615 0.3107145 0.0945475

In Table 4, we list the VMC estimates of Eµ
Hulthen, Eµ

SCP, E2µ
Hulthen, and Eµ

ECSCP for
µ = 0− 1.0 corresponding to the ground state He. The LMM estimates are given below the
VMC estimates in each case. The two sets of values are found to be in good agreement with
each other. The LMC estimates are uniformly below the VMC results. The latter values
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can in principle be improved further following a more accurate choice of the trial wave
function. In Table 4, we present the results of our calculations of ground state energy for
He corresponding to the Hulthen (µ), SCP, Hulthen (2µ), and ECSCP potentials, given
by Equations (1), (2), (4) and (5), respectively, over a representative set of µ values. In
each case, we include the estimates obtained from the LMM and the VMC calculations.
A numerical validation of the energy ordering Eµ

Hulthen < Eµ
SCP < E2µ

Hulthen < Eµ
ECSCP for

the ground state He atom is evident from the data in Table 4. It is clear from the present
calculations that the inclusion of E2µ

Hulthen makes the bounds to Eµ
SCP tighter than given by

the ordering without E2µ
Hulthen.

Table 3. Ground state energies of the helium atom under Hulthén potential in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

µ −EHe −EHe+ −[EHe+ − EHe]

0 2.902662 2.000000 0.902662
0.01 2.887679 1.989821 0.897858
0.02 2.872731 1.979252 0.893479
0.04 2.842973 1.960275 0.882698
0.05 2.828137 1.949522 0.878615
0.1 2.754565 1.900474 0.854091
0.2 2.610298 1.804300 0.805998
0.4 2.333143 1.619535 0.713608
0.5 2.200208 1.530918 0.669290
1 1.592340 1.124164 0.468176

Computation 2021, 9, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 1. Groundstate energy of the helium atom in SCP, ECSCP, and Hulthén potentials for differ-
ent values of the screening parameter μ . 

8. Conclusions 
In our opinion, the present study is a useful contribution to understanding the 

ground and a few low-lying excited states of two electron atoms under the influence of 
three commonly used model potentials describing the plasma environment. The com-
putations are carried out using accurate numerical algorithms based on the VMC and the 
Lagrange mesh methods. A comprehensive set of numerical results including the ground 
state of Helium (1s2) is presented, which describe the screening of charges in a plasma 
where both positive and negative charges are present, and where their motion is thermal. 
Furthermore, we carried out an investigation to determine the effect of Debye plasma 
and dense quantum plasmas on the low-lying excited states of helium atom using trial 
wave functions for the lowest two excited states, corresponding to the configuration 1s2s 
. The energy ordering of HulthenE μ , SCPE μ , ECSCPE μ , and 2

HulthenE μ  derived from the com-
parison theorem of quantum mechanics for the hydrogen-like atoms is successfully 
tested numerically for the He atom in the ground and a few low-lying excited states, 
which vindicates the proposed conjecture [57] for the first time for the ground  as well as 
the  excited states, thus implying the general validity of the comparison theorem in the 
presence of electron repulsion interaction. 

Author Contributions: S.B.D. and K.D.S.: visualization, supervision, investigation, computations, 
formal analysis, writing—original draft, review and editing, software, visualization, supervision. 
M.A.S.: writing—review and editing, formal analysis, computations. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not Applicable. 

Informed Consent Statement: Not Applicable. 

Data Availability Statement: No supporting data reported. 

Acknowledgments: K.D.S. thanks the Indian National Science Academy, New Delhi, for the award 
of a senior scientist status. He is also grateful to Daniel Baye for a copy of the PERILAG code. We 
thank the anonymous reviewers for their helpful suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 1. Groundstate energy of the helium atom in SCP, ECSCP, and Hulthén potentials for different
values of the screening parameter µ.

In Tables 5 and 6, we present the results of our calculations of Eµ
Hulthen, Eµ

SCP, Eµ
ECSCP,

and E2µ
Hulthen corresponding to the (1s2s) excited states of 1S and 3S. As observed in the case of

the ground state He in Table 4, the VMC and the LMM estimates are in good agreement with
each other and the comparison theorembased ordering Eµ

Hulthen < Eµ
SCP < E2µ

Hulthen < Eµ
ECSCP

is also obeyed in the excited states. To the best of our knowledge, Tables 4–6 present for the
first time numerical validation of the conjecture Eµ

Hulthen < Eµ
SCP < E2µ

Hulthen < Eµ
ECSCP for

the ground and excited states of the He atom.
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Table 4. Comparison between (a) LMM and (b) VMC for the ground state energies of the helium
atom under Eµ

Hulthen, Eµ
SCP, E2µ

Hulthen, and Eµ
ECSCP.

µ Hulthen (µ) SCP Hulthén (2µ) ECSCP

0
−2.903724377 (a) −2.903724377 (a) −2.903724377 (a)

−2.902662 (b) −2.902662 (b) −2.902662 (b)

0.01
−2.888743509 (a) −2.873838795 (a) −2.873800905 (a) −2.873725125 (a)

−2.887679 (b) −2.872771 (b) −2.872731 (b) −2.872533 (b)

0.02
−2.873800905 (a) −2.844180576 (a) −2.84403049 (a) −2.843730329 (a)

−2.872731 (b) −2.843117 (b) −2.842973 (b) −2.842163 (b)

0.04
−2.84403049 (a) −2.785537653 (a) −2.783771455 (a)

−2.842973 (b) −2.784473 (b) −2.780706 (b)

0.05
−2.829202681 (a) −2.756548811 (a) −2.755637701 (a) −2.753815807 (a)

−2.828137 (b) −2.755475 (b) −2.754565 (b) −2.749620 (b)

0.1
−2.755637701 (a) −2.614852947 (a) −2.611379351 (a) −2.604435567 (a)

−2.754565 (b) −2.613758 (b) −2.610298 (b) −2.590905 (b)

0.2
−2.611379351 (a) −2.347006184 (a) −2.334370372 (a) −2.309114171 (a)

−2.610298 (b) −2.345674 (b) −2.333143 (b) −2.259199 (b)

0.4
−2.334370372 (a) −1.868450546 (a) −1.742851883 (a)

−2.333143 (b) −1.864564 (b) −1.770741 (b)

0.5
−2.201638137 (a) −1.655401315 (a) −1.596227498 (a) −1.47695782 (a)

−2.200208 (b) −1.652445 (b) −1.592340 (b) −1.444394 (b)

1
−1.596227498 (a) −0.818214183 (a) −0.405261234 (a)

−1.592340 (b) −0.803519 (b) −0.402097 (b)

Table 5. Comparison between (a) LMM and (b) VMC for (1s2s) excited states of 1S energies of the
helium atom under Eµ

Hulthen, Eµ
SCP, E2µ

Hulthen, and Eµ
ECSCP.

µ Hulthen (µ) SCP Hulthén (2µ) ECSCP

0
−2.14596983 (a) −2.14596983 (a) −2.14596983 (a)

−2.145788 (b) −2.145788 (b) −2.145788 (b)

0.01
−2.131029234 (a) −2.116300015 (a) −2.116194799 (a) −2.11598439 (a)

−2.129545 (b) −2.115372 (b) −2.114716 (b) −2.113992 (b)

0.02
−2.116194799 (a) −2.08725862 (a) −2.086857072 (a) −2.08605418 (a)

−2.114716 (b) −2.086387 (b) −2.085402 (b) −2.085065 (b)

0.03
−2.101470743 (a) −2.058823511 (a) −2.05796091 (a) −2.05623611 (a)

−2.100005 (b) −2.058013 (b) −2.057528 (b) −2.055263 (b)

0.04
−2.086857072 (a) −2.030971244 (a) −2.029506384 (a) −2.026576457 (a)

−2.085402 (b) −2.028217 (b) −2.028095 (b) −2.025621 (b)

0.05
−2.072353792 (a) −2.003680728 (a) −2.001493594 (a) −1.99711615 (a)

−2.070909 (b) −2.000982 (b) −2.000105 (b) −1.994182 (b)

0.06
−2.05796091 (a) −1.976932817 (a) −1.967891767 (a)

−2.056528 (b) −1.974287 (b) −1.964984 (b)

0.08
−2.029506384 (a) −1.924996108 (a) −1.910280654 (a)

−2.028095 (b) −1.922452 (b) −1.907431 (b)

0.1
−2.001493594 (a) −1.875036337 (a) −1.868060722 (a) −1.853980921 (a)

−2.000105 (b) −1.872588 (b) −1.866782 (b) −1.851209 (b)

0.2
−1.868060722 (a) −1.651488956 (a) −1.634414579 (a) −1.601389925 (a)

−1.866782 (b) −1.649457 (b) −1.633359 (b) −1.599132 (b)

0.4
−1.634414579 (a) −1.304102639 (a) −1.275179743 (a) −1.219166537 (a)

−1.633359 (b) −1.302586 (b) −1.274386 (b) −1.217393 (b)

0.5
−1.534021688 (a) −1.158970629 (a) −1.119597793 (a) −1.041082207 (a)

−1.533064 (b) −1.157579 (b) −1.118824 (b) −1.039325 (b)

0.8
−1.275179743 (a) −0.787833216 (a) −0.563849944 (a)

−1.274386 (b) −0.786741 (b) −0.562433 (b)

1
−1.119597793 (a) −0.586621163 (a) −0.304567693 (a)

−1.118824 (b) −0.585698 (b) −0.303396 (b)
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Table 6. Comparison between (a) LMM and (b) VMC for (1s2s) excited states of 3S energies of the
helium atom under Eµ

Hulthen, Eµ
SCP, E2µ

Hulthen, and Eµ
ECSCP.

µ Hulthen (µ) SCP Hulthén (2µ) ECSCP

0
−2.175228899 (a) −2.175228899 (a) −2.175228899 (a)

−2.168892 (b) −2.168892 (b) −2.168892 (b)

0.01
−2.160277331 (a) −2.145513403 (a) −2.14542119 (a) −2.145236778 (a)

−2.158999 (b) −2.144725 (b) −2.143899 (b) −2.142392 (b)

0.02
−2.14542119 (a) −2.11635153 (a) −2.115996636 (a) −2.115287001 (a)

−2.143899 (b) −2.115424 (b) −2.114533 (b) −2.112255 (b)

0.03
−2.130660957 (a) −2.08772446 (a) −2.086955753 (a) −2.085418757 (a)

−2.129201 (b) −2.086901 (b) −2.085513 −2.082449 (b)

0.04
−2.115996636 (a) −2.059614751 (a) −2.058298598 (a) −2.05566674 (a)

−2.114533 (b) −2.058829 (b) −2.056876 (b) −2.052696 (b)

0.05
−2.101428233 (a) −2.032006504 (a) −2.030025255 (a) −2.026062181 (a)

−2.099977 (b) −2.029274 (b) −2.028622 (b) −2.023112 (b)

0.06
−2.086955753 (a) −2.004885122 (a) −1.996633374 (a)

−2.085513 (b) −2.002199 (b) −1.993701 (b)

0.08
−2.058298598 (a) −1.952049995 (a) −1.938404392 (a)

−2.056876 (b) −1.949456 (b) −1.935519 (b)

0.1
−2.030025255 (a) −1.901012328 (a) −1.894420022 (a) −1.88116494 (a)

−2.028622 (b) −1.898506 (b) −1.893113 (b) −1.878328 (b)

0.2
−1.894420022 (a) −1.670095721 (a) −1.652094063 (a) −1.615667068 (a)

−1.893113 (b) −1.667977 (b) −1.650979 (b) −1.613269 (b)

0.4
−1.652094063 (a) −1.307190384 (a) −1.276412172 (a) −1.219400057 (a)

−1.650979 (b) −1.305633 (b) −1.275605 (b) −1.217612 (b)

0.5
−1.54542779 (a) −1.160139744 (a) −1.120174566 (a) −1.041273569 (a)

−1.544411 (b) −1.158742 (b) −1.119406 (b) −1.039521 (b)

0.8
−1.276412172 (a) −0.7882615 (a) −0.564149249 (a)

−1.275605 (b) −0.7871699 (b) −0.5627306 (b)

1
−1.120174566 (a) −0.587027809 (a) −0.305119077 (a)

−1.119406 (b) −0.5861029 (b) −0.3039526 (b)

From the Hamiltonian form of the two-body interactions, the overall potential strength
decreases when going from pure Coulomb potentials to SCP and to ECSCP. Physically, we
expect for screened potentials that the energy levels increase as µ increases. Furthermore,
due to stronger screening effects, for a given µ, the ECSCP values should lie above the
corresponding SCP data. Figure 1 represents this situation.

8. Conclusions

In our opinion, the present study is a useful contribution to understanding the ground
and a few low-lying excited states of two electron atoms under the influence of three
commonly used model potentials describing the plasma environment. The computations
are carried out using accurate numerical algorithms based on the VMC and the Lagrange
mesh methods. A comprehensive set of numerical results including the ground state of
Helium (1s2) is presented, which describe the screening of charges in a plasma where both
positive and negative charges are present, and where their motion is thermal. Furthermore,
we carried out an investigation to determine the effect of Debye plasma and dense quan-
tum plasmas on the low-lying excited states of helium atom using trial wave functions
for the lowest two excited states, corresponding to the configuration 1s2s. The energy
ordering of Eµ

Hulthen, Eµ
SCP, Eµ

ECSCP, and E2µ
Hulthen derived from the comparison theorem

of quantum mechanics for the hydrogen-like atoms is successfully tested numerically
for the He atom in the ground and a few low-lying excited states, which vindicates the
proposed conjecture [57] for the first time for the ground as well as the excited states,
thus implying the general validity of the comparison theorem in the presence of electron
repulsion interaction.
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