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Abstract: Although the grid convergence index is a widely used for the estimation of discretization
error in computational fluid dynamics, it still has some problems. These problems are mainly rooted
in the usage of the order of a convergence variable within the model which is a fundamental variable
that the model is built upon. To improve the model, a new perspective must be taken. By analyzing
the behavior of the gradient within simulation data, a gradient-based model was created. The per-
formance of this model is tested on its accuracy, precision, and how it will affect a computational
time of a simulation. The testing is conducted on a dataset of 36 simulated variables, simulated using
the method of manufactured solutions, with an average of 26.5 meshes/case. The result shows the
new gradient based method is more accurate and more precise then the grid convergence index(GCI).
This allows for the usage of a coarser mesh for its analysis, thus it has the potential to reduce the
overall computational by at least by 25% and also makes the discretization error analysis more
available for general usage.

Keywords: computational fluid dynamics; verification and validation; discretization error; uncer-
tainty quantification; grid convergence index

1. Introduction

As the usage of computational fluid dynamics (CFD) is getting more common in
the engineering field, it is important to ensure that the result of these CFD simulations is
indeed accurate. As CFD generally works by modeling a governing equation and then
solving it, both of these processes must be done accurately to ensure an overall accurate
simulation. Although it is important that both processes are accurate, the accuracy of
the solver/calculation should be prioritized since the process of checking that a model is
accurate depends on the accuracy of the calculation itself [1,2].

The process of ensuring that a model is well calculated which is also known as the
verification process [3], usually consists of two parts which is the code verification and
solution verification [4]. Code verification is the process to check how accurate the imple-
mentation of the underlying algorithm within the code is [5], and solution verification is a
process to check the influence of the numerical errors within the solution [6]. Since verifica-
tion could be classified as a process to assess the errors in the calculation of a model [7],
it is also possible to separate the two types of verification by the error that it determines.
Code verification is to check if there is any programming error, and solution verification
determines the effect of the numerical error within the solution.

The numerical error in CFD usually consists of discretization error, iterative error,
and round-off error [8]. Among these errors, discretization error, especially spatial dis-
cretization error is the most significant error, and it is difficult to quantify [9]. This error
originates from the change of the governing equation in which is meant to work in a con-
tinuum domain into a discrete domain, allowing a computer could handle the calculation.
It is during this change of domain, which usually includes some simplification, that results
in some information loss, thus resulting in this error.
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Although there are a lot of ways to estimate the spatial discretization error [10],
the most-used method is the grid convergence index (GCI) [11]. This method is robust,
easy to use, and it does not require any change to the CFD code. This method is also recom-
mended by some well-known organizations such as the American Society of Mechanical
Engineers (ASME) [12] and also the American Institute of Aeronautics and Astronautics
(AIAA) [13]. Albeit popular, the usage of GCI should be taken with caution as it does have
some flaws.

The first problem is that the GCI which is based on Richardson Extrapolation [14,15]
assumes asymptotic convergence, in which unless this condition is achieved, the GCI
analysis is questionable [16]. This leads to second problem in which the asymptotic
convergence is indicated by the local order of convergence. This is a problem since the
calculation of the local order of convergence is very sensitive to any external errors [17]
in which even a small error could change the local order of convergence significantly.
Another point which should be known is that the asymptotic convergence is hard to
achieve, especially for low quality/coarse meshes or high Reynolds number turbulence
flow [18]. This usually leads to the requirement of a high density mesh, which significantly
increases the computational load. Apart from that, when the local order of convergence is
high, the GCI result tends to have an unreasonably small value. On the other hand, if the
local order of convergence is small, then the GCI analysis would be reasonable, but the
value itself would become less meaningful.

Although there are several research studies dedicated to improving the GCI for-
mula [19–24], most of them are designed to solve one or two problems which have been
previously mentioned. For example, Xing and Stern [22] only consider the problem of the
unreasonable small value of GCI and about the confidence level of GCI. Another example
is from Eca and Hoekstra [23], which creates a new formulation which is designed to
overcome the GCI sensitivity problem. However, these modifications usually come with a
side effect. As shown by Phillips [25] that if the GCI becomes more conservative it is due
to the formula of having a higher uncertainty, which makes the uncertainty less meaningful.
This shows that it is difficult to obtain both a higher accuracy and high precision for the GCI.

The difficulty of improving the GCI is not only shown by how hard it is to balance
accuracy and precision, but also shown by the gap of years between each publication.
The last publication with an improvement to the GCI itself was done by Phillips [24]
in 2016. The more recent publications are usually more focused on the error transport
equation method [26–28], which is another type of discretization error estimator that is
harder to execute than the GCI.

Within this research, a new perspective on how the GCI should be calculated is pre-
sented with a target to overcome all the previously mentioned problems. This perspective
has the same roots as the GCI which is Richardson Extrapolation. However, instead of
calculating an error estimate to obtain the uncertainty, the uncertainty is obtained by
bounding the possible values of the exact solution judging by the behavior of the gradient.
Using this approach, it is possible to obtain an estimate even by avoiding the usage of local
order convergence which many of the problems are dependent on. The goal of this research
is to evaluate the performance of this model, both of its accuracy and its precision which is
estimated to be both higher than the GCI model.

Being more accurate and precise has several advantages. First, it would allow the use
of a coarser mesh to obtain the same quality of estimation. This alone may speed up the
required simulation time that would be lower. This would be later proven in this study as a
time comparison analysis would also be presented. Another advantage of the coarser mesh
is that within the creation of the mesh itself, a coarser mesh requires less time to create.
As such, more time saving would occur. Second is that there might be a possibility that
this new method might be practically applicable for a more complex simulation or a higher
Reynolds number flow. This would allow for more simulations to have its result verified
and have a higher quality result.
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For the structure of this paper, first the GCI method would be explained. This would
be immediately followed by the explanation of the gradient-based method from the basic
premise, the assumptions used, and the derivation, until the formula is obtained. The next
part would then describe of how to compare the performance of the gradient-based method
to the GCI method especially the metrics and the datasets used for comparison. This would
be followed by a discussion in which the performance of each method would be compared
and discussed in detail. An example would then be presented to show the performance
of the model in real application. Finally, the conclusion would be presented which would
describe the overall performance of the gradient-based method.

2. Discretization Error Estimation

A solution solved in a grid spacing of h is usually expressed by the generalized
Richardson extrapolation (GRE) as shown in Equation (1). As the mesh is refined, the ob-
tainable solution will get closer to a zero error solution with an order of p. However,
this method does assume that the higher order terms (HOT) are small compared to ahp,
thus allowing it to be ignored. This assumption is also called the asymptotic convergence,
since if only the first terms remains, the solution would asymptotically converge to f 0
upon refinement.

fh = f0 + ahp + HOT (1)

GCI = SF
∣∣∣∣ f2 − f1

rp − 1

∣∣∣∣ (2)

f3 − f2

rp
23 − 1

= ( f2 − f1)

(
rp

12

rp
12 − 1

)
(3)

Using the GRE as a basis, Roache [11] proposed the GCI to calculate an uncertainty
of a solution obtained at grid spacing h. This uncertainty is obtained by multiplying the
error estimate of the GRE by a safety factor (SF). The GCI was designed so that the value
of f 0 is between f 1 ± GCI with a 95% confidence interval. The equation is GCI as shown
in Equation (2), in which since there are three unknowns in Equation (1), three solutions
are needed to solve it. As for the value of p which is the local order of convergence, it is
calculated using Equation (3) [29].

One of the first main concerns in GCI is the value of SF. At first, Roache [11] proposed
the value of 3, but then revised it at 1.25 [29]. The value of 1 was discarded since there is a
50% chance of the value of f 0 being outside the range of f 1 ± GCI. This is true, but only
if the value of f1 is the center of the estimate. By taking another value which is possibly
closer to f 0, it is possible to use a safety factor of 1 or maybe less, while still maintaining its
accuracy. To give a comparison to this idea, during an experiment, the uncertainty due to
random error is usually not meant or given for individual data, but the average of the data,
which is a better approximation of the real value. This is the basis of the suggested model,
which is to calculate an uncertainty for a more accurate representation of the real value.
This comparison is also illustrated in Figure 1.

In the suggested model there are two things that needs to be calculated which are
f 0,guess, and the uncertainty. In essence, these two values are needed to calculate the possible
range of f 0 such as that the minimum possible value and the maximum possible would
be known. Apparently, this relationship also applies in a reverse manner in which by
knowing the minimum and maximum possible range of f 0, the value of f 0,guess, and the
uncertainty could be obtained. This relationship is shown in Equations (4) and (5) in which
the variables a and b denote either the maximum or minimum possible range of f 0,guess.
By using these equations, the problem now lies on estimating the range of f 0 in which some
assumptions are going to be made to obtain theses values.

f0,guess =
a + b

2
(4)
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U =

∣∣∣∣ a− b
2

∣∣∣∣ (5)

Based on GRE, if the solutions are within the asymptotic range, then the function
of fh should be in the most part monotonic. There would be some wiggles in the data
due to the HOT, but within the scale of f 2 − f 1, these HOT should be able to be ignored.
The monotonic assumption would also apply to the derivative of fh which is denoted by g.
Using this monotonic assumption as a basis, if 1 < p, then the limiting value of f 0 could be
modeled as Equation (6), with the value of g12 calculated with Equation (7). This modeling
is possible since when p > 1, the value of |g(h ≤ h1)| would decrease as the cell size
approaches zero. The limiting value of f 0 is then taken by considering g(h ≤ h1) = g12 and
g(h ≤ h1) = 0, in which upon integration resulted in Equation (6). This limiting value is also
illustrated in Figure 2, in which line A1 represents the condition of g(h ≤ h1) = g12 and line
A2 represents g(h ≤ h1) = 0.

i f 1 < p→
{

a = f1
b = f1 − g12h1

(6)

g12 =
f2 − f1

h2 − h1
(7)

g23 =
f3 − f2

h3 − h2
(8)
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Using the same approach, which is a gradient based analysis, the limiting values
of f 0 for the condition of 0 < p < 1 could also be obtained. One of these limiting value
is g(h ≤ h1) = g12. As for the other limiting value, some additional modeling is required.
This is due to |g(h ≤ h1)| in which it always increases as the cell size approaches zero.
A quick glance would results in |g(h ≤ h1)|= ∞, which is unacceptable. As such, it is
required to find an estimation of g0, so that the possible values of g(h ≤ h1) is limited.

After examining several datasets which satisfy the condition of 0 < p < 1, it is found that
the inverse of the gradient (1/g) tends to behave linearly. Using this as a basis, Equation (9)
is formed in which it shows how to calculate g0. A linear relationship with either h1, h2,
or h3 is not done, since both g12 and g23 which is calculated by using Equations (7) and
(8) are both estimates of the real gradient itself (e.g.,g12 6=g1, g12 6=g2). To ensure that the
estimated g0would lead to a conservative estimate of f 0, some modifications are needed,
which in this case it is done by estimate of h which equal to g12 and g23, respectively (e.g.,
|gh12,min|≤| g12|≤| gh12,max|). These values are shown in Equations (10) and (11).

After obtaining the value of g0, the other limiting value of f 0 could then be calculated,
in which it occurs at g(h ≤ h1) = (g12+ g0)/2. This average form is taken due to its simplicity
and robustness. Although as stated before that the inverse of the gradient tends to behave
linearly, this model is not used as the value g0 is still considered as a guess. This could
lead to some conservative issues, in which the model of g(h ≤ h1) = (g12+ g0)/2 is preferred
as it is more conservative. Hence, the limiting values of f 0for the condition of 0 < p
< 1 is g(h ≤ h1) = g12 and g(h ≤ h1) = (g12 + g0)/2. Upon integration, it would result in
Equation (12) and, respectively, shown in Figure 2 as line B2, and B1.

1
g0

=
1

g12
−
(

1
g23
− 1

g12

)
1

[h23,min/h12,max]− 1
(9)

h12,max =
h1 + h2

2
(10)

h23,min =
5r23 + 7

(r23 + 11)(r23 + 1)
(h3 − h2) + h2 (11)

i f 0 < p < 1→
{

a = f1 − g12h1

b = f1 −
(

g12+g0
2

)
h1

(12)

Some issues persist with Equations (6)–(12). Firstly, the estimate in the new model is
discontinuous when p = 1. As some cases do tend to behave as p ≈ 1, this discontinues
estimate could lead to some sensitivity issues. To alleviate the problem a safety factor
was used so that the condition of where Equation (6) applies is set to 1.1 < p and for
Equation (12) it only applies if 0 < p ≤ 1.1. Furthermore, to alleviate some concerns of the
misinterpretation regarding the value of p due to its sensitivity, the condition of where
Equation (6) applies is set to 1.1|g12|≤ |g23|, and Equation (12) applies if 1.1|g12| > |g23|.
For the sake of simplicity though, the condition of 1.1|g12| ≤ |g23| would be referred as
condition A, and the condition of 1.1|g12| > |g23| would be referred as condition B.

For the second problem, when p ≈ 0, the estimation of g0becomes unrealistic. All gra-
dients (g12, g23, and g0) should have the same sign, either positive or negative. A change
in sign would suggest an oscillation in the simulated data (f ), which breaks the basic
assumption of this method. However, when the value of p is near 0, there is a tendency that
the value of g0 would have a different sign from both g12 and g23. To alleviate this problem,
Equation (13) is used.

i f g0g12 < 0 →
{

a = −99 f1
b = 101 f1

(13)

Due to the difficulty in estimating a reliable estimate in the condition of p ≈ 0, within
Equation (13), a wide estimate range is taken to ensure the conservativeness of such case.
The value of−99f 1 and 101f 1 is taken to have the value of f 1 to be the center of the estimate,
and also it is considered to be less likely that the value of f 0 would have a change of



Computation 2021, 9, 10 6 of 16

sign from the value of f 1. Though there may not many useful practical usages from this
equation, since the uncertainty is guaranteed to be 20000%, this equation is meant to evade
any misleading estimate due to an unrealistic g0 value.

The third problem is the possibility if a mesh used for the simulation is not dense
enough that it has a behavior of condition B, which upon refinement, changes to con-
dition A. This leads to some conservative issues in Equation (12), which to ensure a
conservative estimate, it is best to substitute the limiting value of f 1 − g12h1 in Equation (12)
with f 1. The final problem is again in Equation (12), in which to ensure conservativeness,
the variable of h1 should be substituted by h12max.

To summarize, the complete model of the suggested method is shown in Equations
(4), (5), (14), and (15). The values of g12, g23, g0, h12max, and h23mn, are calculated using
Equations (7)–(11), respectively. The definition of condition A is if 1.1|g12| ≤ |g23|and
g0g12 >0, while the definition of condition B is 1.1|g12| > |g23|andg0g12 >0.

a =

{
f1 i f Condition A or B
101 f1 i f g0g12 < 0

(14)

b =

{ f1 − g12h1 i f Condition A
f1 −

(
g12+g0

2

)
h12max i f Condition B

−99 f1 i f g0g12 < 0
(15)

3. Evaluation Method

For the evaluation of the suggested method, a dataset of 11 different cases obtained
by using the method of manufactured solution (MMS)[30] is prepared. From these cases,
a total of 36 variables are taken for evaluation. For the detail of each case, the variables that
are being evaluated, the number of mesh used for each case, and also the MMS equation;
all of this could be seen in Table 1.

Table 1. Details of the method of manufactured solution (MMS) simulations.

No Case Variable Total Mesh MMS Equation

1 1D Heat Equation (First and Second
order accurate) T

26
T = 50exp(−t/20) sin(πx)

2 35

3 Laplace Equation
s

u dxdy 25 u = ysin(πx) sin
(
πy2)

4 1D Convection+ Difusion Equation T 44 T = (1− 0.5t)a
a = (100− exp(x ln(90)))

5

Hagen–Poiseuille
(First and Second order

accurate)(Uniform Mesh)

vmax

32
u = −48y2 + 0.03

v = 0

6 ∆P
7 τwall
8 vmax
9 ∆P

10 τwall

11
Hagen–Poiseuille

(Non-Uniform Mesh)

vmax
2112 ∆P

13 τwall

14
Modified

Hagen–Poiseuille—
piecewise x-velocity

∆P

30

i f y < −0.02 :
15 u u = 0.052 + 2.08y
16 vmax i f y > 0.02 :
17 τwall u = 0.052− 2.08y
18 ∂u/∂ywall else : u = −52y2 + 0.0312

19

Annulus Flow

u

19
u = −103(a− 0.045)2 + 0.625

a =
√

y2 + z2
20 ∆P
21 τwall
22 vmax
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Table 1. Cont.

No Case Variable Total Mesh MMS Equation

23

Boundary Layer

u

32
u = u∞ − u∞ exp(−50y)

v = 30
2500 u∞(a + 1)

a = −(50y + 1) exp(−50y)

24 ∂u/∂xy=0.2
25 τwall
26 ∆P

27

Diffuser

∆P

17

u = −48y2 + 3
v = 028 vmax

29 ∆P u = −400a3y2 + a
v = −2400a4y3 + 4a2y

P = −96µwaterx
a = 0.25/(x + 0.25)

30 ∂u/∂ywall

31 vmax

32

Nozzle

Pinlet
25

u = −3a2y2 + 3
v = 0.4a3y3

P = 50x
a = 5/(−x + 1.25)

33 umax

34 ∂u/∂ymax

35
Cavity Flow

ulid,max
28 ulid = 136 ulid

For each case in Table 1, it is simulated in one of two different applications which
are also operated between two different computers. The application includes a self-coded
python code in JetBrains PyCharm and Fluent. As for the computers, one is using an 8-core
processor (Intel i5-8256U) with an 8 GB of RAM, and the other with a 24-core processor
(AMD Threadripper 3960x) with a 32 GB of RAM. As each application is set on its default
settings, the number of cores available for the calculation is 7 or 23 cores for JetBrains
PyCharm and 1 core for Fluent.

To ensure the validity of the simulation, first the simulations are conducted by using
a 64-bit floating number (double precision) to evade any interference from the round-off
error [31] and simulated to machine accuracy limit to evade any potential iterative error.
The result of this simulation is then compared to the MMS equation to ensure that it is
indeed solving the right equation.

To be able to measure the time to simulate each mesh, the computer is set to safe mode
to prevent any kind of interference, and also the simulation is conducted multiple times
to ensure that the measured time is valid. Although the simulations are conducted on
different programs and computers, for each case in Table 1, both of these factors would
remain the same, thus it is possible to do a time comparison for each of the meshes in
each case.

As some of the data obtained within this simulation do show oscillating behavior,
some of the data are bound to be rejected. This rejection only occurs in the coarsest
mesh of each simulation, indicating that those meshes are outside the asymptotic range.
After rejection, on average, each variable would have data from 23 different meshes.
As every non-oscillating triplet would be used for analysis, the number of triplets that is
going to be used is 95,992 triplets.

There are three overall tests that are going to be conducted by accuracy, precision,
and required computational time. The accuracy test measures how often the f 0 estimate
does contain the real f 0 value. This could easily be done as the MMS method allows us to
know the analytical solution of the simulation. The precision test is measuring how tight
of an estimate is given by a method. This test is conducted by measuring how often the
uncertainty or the GCI of a specific method is below a standard statistical acceptance of
10%, 5%, and 1%. For the computational time analysis, this measures the minimal real
time that is needed for a computer to simulate three meshes, so that the data have an
uncertainty below 10%, 5%, and 1%, if they are analyzed by a specific method. For the
sake of convenience, the accuracy test is going to be measured by the conservativeness
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parameter defined in equation 16, with the value of f 0,guess = f 1 and U = GCI for the GCI
method. As for the precision test, this is going to be measured by a probability parameter
shown in equation 17, with UTarget is set to 10%, 5%, and 1%. All of these tests are going to be
conducted with the gradient based method, Roache’s method, and also some improvement
of Roache’s method which is proposed by Oberkampf and Roy [16], Stern-Wilson [19,21],
and Xing and Stern [22]. Each of these methods will be denoted as Ugradient, GCIR, GCIOR,
GCISW, and GCIXS.

Ψ =
∑ Cases with

(
f0,guess −U ≤ f0 ≤ f0,guess + U

)
∑ Total Number o f Cases

(16)

Γ =
∑ Cases with

(
U or GCI ≤ UTarget

)
∑ Total Number o f Cases

(17)

4. Results

For the result of the accuracy test, the value of Ψ can be seen in Table 2. There are
three different values of Ψ in this analysis, which aim to minimize the effect of any possible
kind of bias within the analysis, for example due to the different number of data points on
each case. For ΨOverall, this is the value of Ψ from all of the 95,922 triplets. For ΨCase, this is
the average value of Ψ on every case. For Ψp, this is the averaged value of Ψ from a group
of 31 intervals of p, each with an interval of 0.1 in the range of 0 < p ≤ 3 and a separate
individual group for 3 < p.

Table 2. Result of the Accuracy Test.

Method ΨOverall ΨCase Ψp

GCIR 90.49% 87.27% 81.11%
GCIOR 96.95% 96.13% 91.84%
GCISW 96.11% 94.68% 90.16%
GCIXS 97.85% 95.05% 91.92%

Ugradient 98.94% 96.75% 92.56%

From the result of the accuracy analysis it could be seen that for every variation of
Ψ, the value of Ψ from Ugradient is the highest of them all. This consistent result across all
variation of Ψ, shows that the gradient-based method does indeed perform better than
all the other methods. This means that even though the gradient-based method uses the
value of f 0,guess as the center of the estimate, as the model is built upon this assumption,
the accuracy is not affected at all, and this method manages to estimate the value of f 0
better than the other methods.

To understand where each method failed, the failure rate of each method based on
its p value is shown in Figure 3. In general, the failures could be divided into three parts,
which are 0 < p≤ 1, 1 < p≤ 2, 2 < p. For the range of 0 < p≤ 1, the failure could only be seen
for Ugradient. This failure is due to the estimation of g0 which is sometimes not conservative
enough. For the range of 2 < p, the failures are mainly caused by triplets that include data
from some very coarse mesh with have a behavior that is different from the rest. These data
might as well be considered outside the asymptotic range, thus by including them in the
analysis, they are expected to produce a high failure rate. The other source of failure only
applies to GCIR, in which it could be seen that in this range, the failure rate is significantly
higher than the other methods. The cause of this failure is due to the value of p that exceeds
the formal order of accuracy (pf) which is usually 1 or 2. This would cause the value of
GCI to be very small but it tends to be less accurate. This is an already known problem for
GCIR, in which the other variations of GCI have tried to prevent. As such, they tend to
have a lower failure rate.
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As for the range of 1 < p ≤ 2, for GCIR, the failures are caused by the same reasons as
the failures for the range of 2 < p, which are some coarse meshes that behaves differently
and also a p value that exceeds the value of pf. This is possible since the failure at the range
of 2 < p has the properties of pf = 2. However, within the range 1 < p ≤ 2, the failures are
caused by the data that have the properties of pf = 1. As such the same reason of failures
applies, although there are some differences that need to be addressed. First, within the
data with pf = 2 there are some data with the p value lower than what tends to be accurate.
This would have an effect of the failures in the range of 1 < p ≤ 2, which is not as significant
as the failures in the range of 2 < p. Second, is that for the data with a p value that exceeds
pf = 1, the deviation is usually not that far off. As such the value of p is found to be limited
to p < 2. This caused a drastic reduction in failure rate from 1 < p ≤ 2 to 2 < p ≤ 2.2.
As for the variations of GCIR, the same reasons also apply. However, as each method has
tried to improve upon GCIR, the failures are usually less than GCIR with a varying degree
of success.

For Ugradient, within the same range of 1 < p ≤ 2,the failures are caused mainly by
a wrong usage of the equation for condition A, in which the data do mathematically
fit the description of condition A, although the overall trend shows that condition B
should actually be applied. With the boundary between condition A and B is around 1.1,
this caused the failures to be focused around this value and above it. As such, a high
failure rate is not observed for 1 < p, but the failure rate is not only focused on 1 < p ≤ 1.2,
but also spreads to 1 < p < 1.6. However, it should be known that the misinterpretation of
the conditions is more likely to occur near p = 1. As such the failure rate would decrease on
a higher value of p.

For the precision test, this result is shown in Table 3. It could be seen that there are
again 3 variations of Γ, which is again to minimize any possible bias. These variations
have a similar definition as the Ψ variations in the accuracy test. It should be known that
the data in Table 3 are required to be conservative, since if the data are not conservative,
regardless if the uncertainty is high or low, it would be meaningless if it is not accurate.
From all of these variations, there are two things that have to be considered. First is that
the value of Γ would be higher for a higher UTarget. This is obvious since a tighter estimate
would be harder to obtain, thus the value of Γ would be lower. The second one is that it
could be once again seen that Ugradient has the highest Γ, which indicates that this method
does tend to produce the tightest estimate of f0, or the lowest uncertainty of the f 0 estimate.
This is again caused by design, as the gradient based method uses the value of f 0,guess to be
the center of the estimate, thus allowing for a lower uncertainty.
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Table 3. Result of the Precision Test.

UTarget(%) Method ΓOverall ΓCase Γp

GCIR 76.29% 60.46% 57.04%
GCIOR 76.74% 63.37% 59.08%

10% GCISW 78.56% 61.98% 59.67%
GCIXS 78.94% 62.02% 59.47%

Ugradient 84.76% 67.59% 66.82%

GCIR 72.61% 56.29% 52.39%
GCIOR 72.35% 57.72% 53.04%

5% GCISW 74.36% 57.68% 54.66%
GCIXS 73.82% 56.54% 52.64%

Ugradient 82.02% 64.42% 62.58%

GCIR 58.82% 43.39% 37.85%
GCIOR 50.85% 38.35% 21.35%

1% GCISW 55.46% 40.92% 34.47%
GCIXS 53.18% 39.16% 22.70%

Ugradient 67.35% 50.66% 44.11%

As for the time analysis, this result is shown in Table 4, in which it is showing the
average time saving of each method compared to GCIR. The positive sign in this data shows
that the method does on average requires less real time to simulate a certain case, and a
negative sign means that the method, on average requires more real time for its simulation.
It should be known that once again, the data used for this analysis must be conservative.

Table 4. Average Computational Time Saving Compared to Roache’s Method.

Method UTarget = 10% UTarget = 5% UTarget = 1%

GCIR 0% 0% 0%
GCIOR −182.86% −76.39% −84.42%
GCISW −24.61% −17.12% −44.45%
GCIXS −138.40% −107.16% −165.81%

Ugradient 26.23% 27.76% 14.83%

In Table 4, it could be seen that Ugradient is the only method that manage to reduce
the required computational time, in which it is reduced by 15%–30%. It should be known
that this is the averaged value. There are cases where the other methods also save time,
and there are cases where Ugradient requires more time. Some example of the time required
to simulate a case, and obtain an acceptable uncertainty is shown in Table 5.

Table 5. Several Examples of Required Simulation Time.

Method
Time (s)

Case 10
(UTarget = 10%)

Case 20
(UTarget = 5%)

Case 24
(UTarget = 1%)

Case 35
(UTarget = 1%)

GCIR 47.646 3594.817 5522.303 17,708.15
GCIOR 51.846 3523.34 15333.32 30,509.99
GCISW 50.591 3523.34 15333.32 24,218.85
GCIXS 50.591 6464.425 5564.398 50,600.98

Ugradient 44.878 674.898 534.6054 26,107.87

The general reason why Ugradient manages to save time is due to the possibility of
the method to analyze data from a more coarse mesh, and does produce an accurate and
precise estimate. This is a very big advantage, as the computational time would increase
significantly as the mesh is gets denser. As such, even by just evading one more mesh
refinement, there could be a significant time saving.
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Observing the data, it seems that the saving would be much more significant if the
overall data is on condition B. Some examples of the cases that fits this condition is shown
in Figure 4, in which for case 24 itself, the time saving for this case is 50.15%, 50.15%,
and 90.32%, respectively, for UTarget = 10%, 5%, and 1%. On the other hand, if the data are
in condition A, especially if the data are parabolic (p ≈ 2), the time saving would be less
significant, even there might not be any time saving at all. The examples of the cases that
fit this condition are shown in Figure 5, where the most extreme example is case 3 which
has a time saving of −13.63%, −31.78%, and −35.65%, respectively, for UTarget = 10%, 5%,
and 1%. The cause of this difference is apparently due to precision issues.

Computation 2021, 9, x FOR PEER REVIEW 11 of 17 
 

 

there are cases where Ugradient requires more time. Some example of the time required to 
simulate a case, and obtain an acceptable uncertainty is shown in Table 5. 

Table 5. Several Examples of Required Simulation Time. 

Method 
Time (s) 

Case 10 
(UTarget = 10%) 

Case 20 
(UTarget = 5%) 

Case 24 
(UTarget = 1%) 

Case 35 
(UTarget = 1%) 

GCIR 47.646 3594.817 5522.303 17708.15 
GCIOR 51.846 3523.34 15333.32 30509.99 
GCISW 50.591 3523.34 15333.32 24218.85 
GCIXS 50.591 6464.425 5564.398 50600.98 
Ugradient 44.878 674.898 534.6054 26107.87 

The general reason why Ugradient manages to save time is due to the possibility of the 
method to analyze data from a more coarse mesh, and does produce an accurate and 
precise estimate. This is a very big advantage, as the computational time would increase 
significantly as the mesh is gets denser. As such, even by just evading one more mesh 
refinement, there could be a significant time saving. 

Observing the data, it seems that the saving would be much more significant if the 
overall data is on condition B. Some examples of the cases that fits this condition is shown 
in Figure 4, in which for case 24 itself, the time saving for this case is 50.15%, 50.15%, and 
90.32%, respectively, for UTarget = 10%, 5%, and 1%. On the other hand, if the data are in 
condition A, especially if the data are parabolic (p ≈ 2), the time saving would be less 
significant, even there might not be any time saving at all. The examples of the cases that 
fit this condition are shown in Figure 5, where the most extreme example is case 3 which 
has a time saving of −13.63%, −31.78%, and −35.65%, respectively, for UTarget = 10%, 5%, 
and 1%. The cause of this difference is apparently due to precision issues. 

   
(a) (b) (c) 

Figure 4. The MMS simulation result that fits condition B: (a) Case 12; (b) Case 24; (c) Case 30. 

   
(a) (b) (c) 

Figure 4. The MMS simulation result that fits condition B: (a) Case 12; (b) Case 24; (c) Case 30.

Computation 2021, 9, x FOR PEER REVIEW 11 of 17 
 

 

there are cases where Ugradient requires more time. Some example of the time required to 
simulate a case, and obtain an acceptable uncertainty is shown in Table 5. 

Table 5. Several Examples of Required Simulation Time. 

Method 
Time (s) 

Case 10 
(UTarget = 10%) 

Case 20 
(UTarget = 5%) 

Case 24 
(UTarget = 1%) 

Case 35 
(UTarget = 1%) 

GCIR 47.646 3594.817 5522.303 17708.15 
GCIOR 51.846 3523.34 15333.32 30509.99 
GCISW 50.591 3523.34 15333.32 24218.85 
GCIXS 50.591 6464.425 5564.398 50600.98 
Ugradient 44.878 674.898 534.6054 26107.87 

The general reason why Ugradient manages to save time is due to the possibility of the 
method to analyze data from a more coarse mesh, and does produce an accurate and 
precise estimate. This is a very big advantage, as the computational time would increase 
significantly as the mesh is gets denser. As such, even by just evading one more mesh 
refinement, there could be a significant time saving. 

Observing the data, it seems that the saving would be much more significant if the 
overall data is on condition B. Some examples of the cases that fits this condition is shown 
in Figure 4, in which for case 24 itself, the time saving for this case is 50.15%, 50.15%, and 
90.32%, respectively, for UTarget = 10%, 5%, and 1%. On the other hand, if the data are in 
condition A, especially if the data are parabolic (p ≈ 2), the time saving would be less 
significant, even there might not be any time saving at all. The examples of the cases that 
fit this condition are shown in Figure 5, where the most extreme example is case 3 which 
has a time saving of −13.63%, −31.78%, and −35.65%, respectively, for UTarget = 10%, 5%, 
and 1%. The cause of this difference is apparently due to precision issues. 

   
(a) (b) (c) 

Figure 4. The MMS simulation result that fits condition B: (a) Case 12; (b) Case 24; (c) Case 30. 

   
(a) (b) (c) 
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Although previously it has been shown that the Ugradient gave the tightest estimate,
or it is the more precise method, this is not true across all conditions. On a higher value of p,
the other methods tend to be better than Ugradient if the accuracy issue is ignored. To prove
this, the precision test would be conducted once again, but this time the dataset would
consist of multiple random values of p, r12, r23, and also f 3/f 1. The interval of p is set to
be 0 < p ≤ 3, while all the other variables is set to 1 < r12, r23, f 3/f 1 ≤ 2. A total of 3 × 107

random data are taken and the Γ value is calculated once again. This result which is shown
in Figure 6 shows that upon 1.8< p, some other methods tend to be equal or even better
than Ugradient. This is especially true for GCIR. A word of caution though, as these data
do not take the accuracy into consideration. As seen in Figure 3, that especially for GCIR
with 2.2 < p, the failure is already very significant, that it could not be recommended for
normal usage.

The effect of this result in the time analysis is that even if 2.2 < p, since there is a
lot of combination on each case, there would be at least 1 triplet that is conservative.
As such, these data are used for the time analysis. This would result in GCIR to have the
lowest uncertainty estimate, thus this method could utilize a more coarse mesh to obtain
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an uncertainty equal or below UTarget and the overall time would be lower than all the
other methods.
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Considering Figures 3 and 6, for 1.8 < p, where there are several methods that perform
better in terms of accuracy than Ugradient and do not have a low failure rate; there is a chance
that these methods do have a lower computational time than Ugradient. This suggests that
the usage of Ugradient to save time would be more significant if the data has a value of p < 1.8.
This trend apparently occurs quite often in our dataset, especially when the meshes are
coarse enough. However, upon refinement, there is a tendency that the data would behave
as p ≈ 2 which have a minimal time saving. This switch in behavior is one of the cause that
the time saving for Ugradient at UTarget = 1% is lower compared to the rest. Some examples of
the cases with switching behavior are shown in Figure 7, in which for case 35 itself, the time
savings are 15.86%, 38%, and −47.43%, for, respectively, UTarget = 10%, 5%, and 1%. All of
this suggests that the usage of Ugradient is much better aimed at coarse meshes, with p < 1.8.
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Judging by the data from Table 4, in which the data on this table show the averaged
time saving from all across the p spectrum, it could be inferred that for data with p < 1.8,
then the time saving should be higher. As such, as engineers usually use a 5% uncertainty,
then for a simulation data with p < 1.8, the time saving by using Ugradien compared to
GCIR is on average at least 25%. This is a significant amount of time saving and it could
potentially be more. The maximum time saving that is observed in this dataset is up to
89.22%, which occurs in case 1 for UTarget = 5%.
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5. Study Case

To show the performance of the gradient based method on a real simulation, a study
case would be presented. A simulation of an air flow passing through a 100 mm diameter
cylinder is conducted. This flow is single phased, and have a uniform velocity distribution
of 5 m/s, in which overall it correlates to a Reynolds number of 34,300. A total of 16 meshes
are going to be used ranging from 1536 cells to 230,496 cells, of which the cell distribution
is shown in Figure 8 and for each mesh the mesh is refined in a systematic manner.
The simulation is solved in a steady-state manner using a standard k-ε turbulence model
with a near wall formulation is used for the cells near the wall. For the discretization,
it is done by using a finite volume method with a second order accurate method is used
to interpolate the face values. The simulation is then iterated until it reaches machine
accuracy, in which then the drag coefficient (CD) could be obtained.
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The result of this simulation could be seen in Figure 9. First it could be seen that
the data do behave monotonically and no oscillation is observed. This means that every
triplet in this simulation could be calculated using the GCI and the gradient-based method.
Although the accuracy test could not be done for these data since the analytical solution of
this case is unknown, the precision test and the required computational time could still be
done. Both of these test results are shown, respectively, in Tables 6 and 7.
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Table 6. The precision test result of the simulation of a flow passes through a cylinder.

Method
Γ

UTarget = 10% UTarget = 5% UTarget = 1%

GCIR 100.00% 98.35% 38.74%
GCIOR 96.98% 70.88% 0.82%
GCISW 100.00% 95.05% 16.48%
GCIXS 100.00% 93.68% 18.41%

Ugradient 100.00% 100.00% 55.77%

Table 7. The required computational time of the simulation of a flow passes through a cylinder.

Method
Time (s)

UTarget = 10% UTarget = 5% UTarget = 1%

GCIR 765.964 1537.095 40,103.05
GCIOR 1983.451 3161.402 45,013.19
GCISW 765.964 1993.79 41,529.36
GCIXS 765.964 1993.79 75,110.02

Ugradient 765.964 765.964 19,444.85

The data on Tables 6 and 7 have the same tendencies as the result from the MMS
simulations. The value of the Γ from Ugradient tends to be always the highest, which means
that Ugradient is the most precise method. This precision also translates to the required com-
putational time, in which for UTarget = 5%, it saves 50.17% over GCIR and for UTarget = 1%,
it saves 51.51%. There is no time saving in UTarget = 10% since all the uncertainties from both
GCIR and Ugradient even from the coarsest mesh is already below 10%. This does show that
the result on the MMS simulation could also apply into a real engineering case simulation.

Regarding the application of Ugradient to a real engineering case, it should be noted
that within this example, this is a simple case where there is a single phase flow that passes
through a simple geometry at a rather low Reynolds number of 34,300. This is much simpler
case than any kind of real world application of CFD. At a higher complexity, or higher
Reynolds number flow, it is expected that the data tend to oscillates more, thus making
it incompatible with the GCI and Ugradient. This would require some mesh refinement,
in which sometimes, to make sure the data do not oscillate, the required mesh is not
practical to be created or even simulated. This does limit the application of both GCI
and Ugradient. However, with the advantages that Ugradient have, the required mesh is only
required to not oscillate any more. If the mesh does not oscillate any more, which means
that Ugradient can be applied, it has been shown that Ugradient could produce an accurate
and precise estimate even from coarse meshes. For comparison the GCIR would require
the mesh to not only stop oscillating but also be well behaved (p≈pf) to ensure that the
estimate is both accurate and precise.

6. Conclusions

In this study, a new method to estimate a discretization error in CFD is presented.
The method is based on the behavior of the gradient in a CFD simulation result. This method
is tested on an MMS simulation dataset, in which the results show that even by changing
the center of estimation from f 1 to f 0,guess, the gradient-based method can still estimate
the value of f 0 even to a degree that is more accurate than the other method tested in this
study. This gradient-based method is also shown to be more precise, especially for p < 1.8,
which usually occurs on coarser meshes. This higher precision is a significant advantage
for the gradient based method since it does allow the usage of a coarser mesh to obtain a
certain level of uncertainty, thus reducing the overall computational time required for the
simulation. For the range that this method is recommended for, which is p < 1.8, the time
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saving is compared to the standard GCI with a targeted uncertainty of 5%, is on average at
least 25%. This significant advantage would be useful for analyzing CFD simulation results.

The standard GCI is only practical for a low Reynolds number flow. However, with the
advantage that the gradient-based method has, it might be practical up to a medium
Reynolds number flow. It is not sure that this method would be suitable for a high
Reynolds flow simulation or a more complex simulation, since the result of such simulation
usually has a high tendency to oscillate which does break the assumptions of the gradient-
based method.

Although it might not be perfect, nor it is applicable to every CFD simulation,
the gradient-based method that has been shown is capable of performing better than
the standard GCI. It is more accurate, more precise, and may reduce the overall computa-
tional time by a significant amount. As such, we do recommend the use of this method for
analyzing the results of CFD.
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Abbreviations
ASME The American Society of Mechanical Engineers
AIAA American Institute of Aeronautics and Astronautics
CFD Computational fluid dynamics
GCI Grid convergence index
GRE Generalized Richardson extrapolation
MMS Method of manufactured solutions

Nomenclature
a,b Constants HOT Higher Order Terms
CD Drag Coefficient µ Viscosity
f 0 Analytical result p Order of convergence

f 0,guess Guessed analytical result pf Formal order of accuracy
f h Simulation result of mesh with cell size h P Pressure

f 1,2,3 Simulation result of mesh index 1,2, or 3 Ψ Conservativeness
g0 Gradient at cell size = 0 rab Cell size ratio of mesh index a and b
ga Gradient at mesh index a SF Safety Factor
gab Gradient of mesh index a and b t Time
GCI Grid Convergence Index T Temperature

Γ Probability of U or GCI ≤ UTarget τ Shear Stress
ha Cell size of mesh index a u,v,w Velocity

h12max Maximum possible h value that has a gradient equal to g12 U Uncertainty
h23min Minimum possible h value that has a gradient equal to g23 UTarget Targeted uncertainty value
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