
computation

Article

High-Performance Computation in Residue Number System
Using Floating-Point Arithmetic

Konstantin Isupov

����������
�������

Citation: Isupov, K.

High-Performance Computation

in Residue Number System Using

Floating-Point Arithmetic.

Computation 2021, 9, 9. https://

doi.org/10.3390/computation9020009

Received: 19 November 2020

Accepted: 19 January 2021

Published: 21 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronic Computing Machines, Vyatka State University, 610000 Kirov, Russia;
ks_isupov@vyatsu.ru

Abstract: Residue number system (RNS) is known for its parallel arithmetic and has been used in
recent decades in various important applications, from digital signal processing and deep neural
networks to cryptography and high-precision computation. However, comparison, sign identification,
overflow detection, and division are still hard to implement in RNS. For such operations, most of
the methods proposed in the literature only support small dynamic ranges (up to several tens of
bits), so they are only suitable for low-precision applications. We recently proposed a method that
supports arbitrary moduli sets with cryptographically sized dynamic ranges, up to several thousands
of bits. The practical interest of our method compared to existing methods is that it relies only
on very fast standard floating-point operations, so it is suitable for multiple-precision applications
and can be efficiently implemented on many general-purpose platforms that support IEEE 754
arithmetic. In this paper, we make further improvements to this method and demonstrate that it
can successfully be applied to implement efficient data-parallel primitives operating in the RNS
domain, namely finding the maximum element of an array of RNS numbers on graphics processing
units. Our experimental results on an NVIDIA RTX 2080 GPU show that for random residues and
a 128-moduli set with 2048-bit dynamic range, the proposed implementation reduces the running
time by a factor of 39 and the memory consumption by a factor of 13 compared to an implementation
based on mixed-radix conversion.

Keywords: residue number system; digital arithmetic; high-performance computing; data-parallel
primitives; graphics processing units

1. Introduction

The emergence of new highly parallel architectures has increased interest in fast,
carry-free, and energy-efficient computer arithmetic techniques. One such technique is the
residue number system (RNS), which has received a lot of attention over recent years [1–3].
The RNS is of interest to scientists dealing with computationally intensive applications
as it provides efficient highly parallelizable arithmetic operations. This number coding
system is defined in terms of pairwise coprime integers called moduli, and a large weighted
number is converted into several smaller numbers called residues, which are obtained as
the remainders when the given number is divided by the moduli. A useful feature is that
the residues are mutually independent, and for addition, subtraction and multiplication,
instead of big word length (multiple-precision) operations, we can perform several small
word length operations on these residues without carry propagation between them [1].

The RNS has been used in several applications, namely homomorphic encryption [4,5],
cloud computing [6], stochastic computing [7], motion estimation [8], energy-efficient
digital signal processing [9], high-precision linear algebra [10], blockchain [11], pseudo-
random number generation [12], and deep neural networks [13]. Interest in RNS is currently
growing due to the widespread adoption of massively parallel computing platforms such
as graphics processing units (GPUs).

However, some operations are still difficult to implement in RNS, such as magni-
tude comparison, sign estimation, scaling, and division. Various methods have been

Computation 2021, 9, 9. https://doi.org/10.3390/computation9020009 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-0239-0404
https://doi.org/10.3390/computation9020009
https://doi.org/10.3390/computation9020009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9020009
https://www.mdpi.com/journal/computation
https://www.mdpi.com/2079-3197/9/2/9?type=check_update&version=1

Computation 2021, 9, 9 2 of 15

proposed in the literature to overcome this problem and perform the above operations
in an efficient manner. Many of the existing methods are designed for special moduli
sets like {2n + 1, 2n, 2n − 1} [14], {2n+k, 2n − 1, 2n + 1, 2n±1 − 1} [15], {2k, 2p − 1, 2p + 1}
and {2k, 2p − 1, 2p−1 − 1} [16]. On the other hand, there are methods for arbitrary moduli
sets [17–20].

In a recent paper [21], we have presented a method for implementing difficult RNS
operations via computing a finite precision floating-point interval that localizes the frac-
tional value of an RNS representation. Such an interval is called a floating-point interval
evaluation, or simply an interval evaluation. The method deserves attention for three rea-
sons. First, it is intended for arbitrary moduli sets with large dynamic ranges significantly
exceeding the usual word length of computers. Dynamic ranges consisting of hundreds
and even thousands of bits are in demand in many modern applications, primarily in
cryptography and high-precision arithmetic. Second, the method leads to efficient software
implementations using general-purpose computing platforms, since it only requires very
fast standard (finite precision) floating-point operations, and most computations can be
performed in a parallel manner. Third, it is a fairly versatile method suitable for computing
a wide range of fundamental operations that are problematic in RNS, including

• magnitude comparison;
• sign identification;
• dynamic range overflow detection;
• general division and scaling.

A key component of this method is an accurate algorithm that computes the floating-
point interval evaluation for a number in RNS representation; see Algorithm 1 in [21].
In order to obtain the result with the desired accuracy using only finite precision operations,
this algorithm performs the iterative procedure, which in some cases is the most expensive
part of the algorithm.

In this paper, we continue our research on the application of finite precision floating-
point intervals to implement high-performance RNS algorithms. The contribution of this
paper is four-fold:

1. In Section 3, we provide proofs of some important properties of the interval evaluation
algorithm that were not included in the previous article [21].

2. In Section 4, we present an improved version of the interval evaluation algorithm that
reduces the number of iterations required to achieve the desired accuracy.

3. In Section 5, we demonstrate that our method can successfully be applied to imple-
ment efficient data-parallel primitives in the RNS arithmetic, namely we use it to find
the maximum element of an array of RNS numbers on GPUs.

4. In Section 6, we present new numerical results showing the performance of the
method on various moduli sets, from a moderately small 4-moduli set with 64-bit
dynamic range to a huge 256-moduli set with 4096-bit dynamic range.

2. Background
2.1. Residue Number System

We fix a set of n positive relatively prime integers {m1, m2, . . . , mn} called the moduli
set. The number mi from this set is called a modulus, and the inequality mi > 1 should hold
for all i ∈ {1, 2, . . . , n}. We define M as the product of all the mi’s. Throughout this paper,
we assume that operations modulo mi are inexpensive, in contrast to modulo M operations,
which can take a long time. Consider an integer X. For each modulus in {m1, m2, . . . , mn},
we have xi = X mod mi, i.e., xi is the smallest non-negative remainder of X modulo mi;
this is also written |X|mi , and xi is called the ith residue of X. Thus, an integer X in the
RNS is represented by the n-tuple of residues

X = (x1, x2, . . . , xn).

Computation 2021, 9, 9 3 of 15

It has been proved that if 0 ≤ X < M, then the number X is one-to-one corresponding
to the RNS representation [22]. An interesting and useful feature of RNS is that addition,
subtraction and multiplication are computed in an element-wise fashion. If X, Y, and Z
have RNS representations given by (x1, x2, . . . , xn), (y1, y2, . . . , yn), and (z1, z2, . . . , zn),
then for ◦ ∈ {+,−,×} we have

Z = (|x1 ◦ y1|m1 , |x2 ◦ y2|m2 , . . . , |xn ◦ yn|mn).

That is, the ith RNS digit, namely zi, is defined in terms of |xi ◦ yi|mi only, and no carry
information need be communicated between residue digits [23]. As a result, we have very
high speed concurrent (parallel) operations, which makes the RNS attractive for modern
high-performance applications.

We can convert an RNS representation back to its integer form using the following
well-known formula:

X =

∣∣∣∣∣ n

∑
i=1

Mi|xiwi|mi

∣∣∣∣∣
M

, (1)

where Mi = M/mi and wi is the modulo mi multiplicative inverse of Mi. Both Mi and wi
are the RNS constants that follow from the Chinese Remainder Theorem (CRT) [2].

2.2. Implementing Difficult RNS Operations Using Finite Precision Floating-Point Intervals

Here we give a brief overview of a method for implementing difficult non-modular
RNS operations (e.g., comparison, sign determination, overflow detection, and division)
using limited precision floating-point arithmetic [21]. A straightforward approach is based
on the CRT Formula (1). However, the sum modulo M causes a major implementation
problem because M is generally a very large and arbitrary integer [24]. When M consists
of hundreds or thousands of bits, the CRT-based method is very slow and inefficient.
Instead, the paper [21] uses a fractional version of the CRT, which operates with a fractional
representation of an RNS number [25].

Let an integer X be represented in the RNS by the residues (x1, x2, . . . , xn). The frac-
tional representation of X is calculated as follows:

X
M

=

∣∣∣∣∣ n

∑
i=1

|xiwi|mi

mi

∣∣∣∣∣
1

, (2)

where the notation | |1 denotes that the integer part of the expression is discarded and
only the fractional part is retained. Unlike (1), the fractional version of the CRT defined by
formula (2) does not require the time consuming modulo M operation.

However, X/M is actually a rational number and difficulties arise when we attempt
to compute X/M using limited precision arithmetic. To address these difficulties without
increasing the precision, ref. [21] suggests evaluating X/M using floating-point inter-
val arithmetic.

Definition 1 ([21]). Let X = (x1, x2, . . . , xn) be an RNS number in the range from 0 to M− 1
and let X/M be the exact fractional representation of X. The floating-point interval evaluation of
X, denoted by I(X/M) = [X/M, X/M], is an interval defined by its lower and upper bounds X/M
and X/M that are finite precision floating-point numbers satisfying X/M ≤ X/M ≤ X/M.

Thus, I(X/M) provides information about the range of possible values for the exact
fractional representation of an RNS number. This information may not be sufficient to
restore the binary form of the number, but it can be efficiently used to perform other hard
RNS operations such as magnitude comparison, sign detection, scaling, and division.

Computation 2021, 9, 9 4 of 15

2.3. Highly Accurate Computation of I(X/M)

Consider an RNS representation X = (x1, x2, . . . , xn), which can take any value in the
range 0 to M− 1. To compute I(X/M) such that δI(X/M) < ε, where ε is a given accuracy
parameter and δI(X/M) denotes the difference between the upper and lower bounds of
I(X/M) divided by X/M, we can use Algorithm 1 of [21]. The general structure of this
algorithm is shown in Figure 1.

Figure 1. Accurate computation of the floating-point interval evaluation for an RNS representation
using finite precision arithmetic. For a complete description and proof of the correctness of the
algorithm, see [21].

The algorithm consists of the following main stages:

1. Initial computation. In this stage, evaluation of (2) using floating-point interval arith-
metic is performed. We first calculate ui = |xiwi|mi for all i ∈ {1, 2, . . . , n}. Then,
SL(X) and SU(X) are computed by evaluating ∑n

i=1 ui/mi in finite precision arith-
metic with downwardly directed rounding and upwardly directed rounding, respec-
tively. The algorithm ends if both SL(X) and SU(X) are equal to zero, since in this
case X is also zero; otherwise (at least one of SL(X) and SU(X) is not zero) the initial
values of X/M and X/M are obtained by discarding the integer parts and keeping
only the fractional parts in SL(X) and SU(X).

2. Validation. In this stage, the algorithm checks the condition bSL(X)c = bSU(X)c. If it
is true, then X/M and X/M are calculated correctly. Otherwise (a rare case), one of
the bounds is adjusted by calling the mixed-radix conversion (MRC) procedure.

3. Checking the accuracy. The algorithm operates with the predefined constant

ψ = 4un log2 n(1 + ε/2)/ε,

where u = 21−p assuming p-bit floating-point arithmetic (p = 24 and 53 for binary32
and binary64, respectively). The value of ψ may seem strange at first glance; however,
it has been proved in [21] that if X/M is greater than or equal to ψ, then δI(X/M) < ε.
If this is the case, then the algorithm ends; otherwise, the refinement stage is per-
formed. One should ensure that ψ ≤ 1/4 (note that this condition is very weak and is
satisfied for virtually all values of n and ε).

4. Refinement. The ultimate goal of this stage is to determine K such that bU = 2KX/M ≥ ψ.
We set K ← 0 and do the following iterative computation:

ui ←
∣∣ui · |2k|mi

∣∣
mi

for all i ∈ {1, 2, . . . , n},

bU ←
∣∣fl4(∑n

i=1 ui/mi
)∣∣

1,

K ← K + k,

(3)

where k = blog2(1/2ψ)c and the initial values of the ui’s are computed earlier (at the
first stage of the algorithm). All the |2k|mi ’s are constants that can be preprocessed.
The symbol fl4

(
·
)

denotes the result of a finite precision floating-point computation

Computation 2021, 9, 9 5 of 15

performed with upwardly directed rounding. The computation of (3) is repeated until
bU ≥ ψ. Once the iterations are finished, the following is computed:

bL ←
∣∣fl5(∑n

i=1 ui/mi
)∣∣

1, (4)

where the ui’s are those computed in the iterative procedure and fl5
(
·
)

denotes the
result of a finite precision floating-point computation performed with downwardly
directed rounding. Finally, we compute the endpoints of I(X/M) as follows:

X/M← bL/2K,

X/M← bU/2K.
(5)

We note that in the described algorithm, pairwise summation is used to compute the
sum of a set of floating-point numbers in finite precision arithmetic.

3. Properties of the Interval Evaluation Algorithm

The following theorem gives the maximum number of iterations in the refinement
stage of the described algorithm.

Theorem 1. The refinement stage of the described algorithm for computing I(X/M) = [X/M, X/M]
is performed in no more than d(log2 ψM)/ke iterations.

Proof. The iterative procedure ends at the jth iteration if bU ≥ ψ. On the other hand,
when applying upwardly directed rounding, bU cannot be less than 2jkX/M, provided that
b∑n

i=1 ui/mi
⌋
= bfl4

(
∑n

i=1 ui/mi
)
c. Thus, the number of iterations depends on the magni-

tude of X: the smaller the magnitude, the more iterations are needed. For X = 1, the loop
termination condition is satisfied when 2jk/M ≥ ψ. The result follows by expressing j in
terms of M, ψ, and k and requiring it to be an integer.

One way to reduce the number of iterations is to increase the refinement factor k.
However, the following theorem says that this can lead to an incorrect result.

Theorem 2. To guarantee the correct result of calculating I(X/M) = [X/M, X/M], the refinement
factor k must not be greater than blog2(1/2ψ)c.

Proof. The proof is based on two remarks:

1. As shown in [21], if X is too close to M, namely if 1− X/M ≤ 2un log2 n then X/M
may not be computed correctly. Consequently, X should be less than M(1− 2un log2 n)
if we want to calculate the correct value of X/M.

2. Calculation of (3) at the (i− 1)th refining iteration can be considered the same as cal-
culating (2) with rounding upwards for some number Xi−1. Accordingly, calculating
(3) at the ith iteration can be considered the same as calculating (2) with rounding
upwards for the number Xi = 2kXi−1.

We denote the result of the (i− 1)th iteration by b(i−1)
U , and the result of the ith iteration

by b(i)U . The ith iteration is performed when b(i−1)
U < ψ, whence it follows that

Xi−1/M < ψ⇒ Xi−1 < ψM⇒ Xi < 2kψM.

First, assume k = blog2(1/2ψ)c. In this case, Xi is less than 2blog2(1/2ψ)cψM, and since

2blog2(1/2ψ)c ≤ 1/2ψ then Xi is less than M/2. Thus, if un log2 n ≤ 1/4, then b(i)U will be
computed correctly (see the first remark above).

Now consider the case when k = blog2(1/2ψ)c + 1. For this setting, we have
Xi < 2 · 2blog2(1/2ψ)cψM, so we can only guarantee that Xi is less than M, but not that
it is less than M(1− 2un log2 n). Thus, b(i)U may not be computed correctly.

Computation 2021, 9, 9 6 of 15

4. Proposed Improvement
4.1. Description

We propose an improvement to the algorithm of [21] described above by modifying
each iteration of the refinement loop as follows:

r ← max{−(dlog2 bUe+ 1), k},
ui ←

∣∣ui · |2r|mi

∣∣
mi

for all i ∈ {1, 2, . . . , n},

bU ←
∣∣fl4(∑n

i=1 ui/mi
)∣∣

1,

K ← K + r.

(6)

Thus, we make the refinement factor r dependent on the value of bU , but not less
than k = blog2(1/2ψ)c, and before starting the iterations, we assign the value of X/M
computed at the first stage of the algorithm to bU . Once the iterations are finished, bL is
computed according to (4), and the desired endpoints of I(X/M) are obtained according
to (5). The proposed modification improves the performance of the algorithm by reducing
the number of iterations required to achieve the desired accuracy.

Summarizing, we present an improved accurate algorithm for computing the floating-
point interval evaluation of an RNS number in Algorithm 1. The algorithm takes as input
an integer X ∈ [0, M− 1] represented by the residues (x1, x2, . . . , xn) relative to the moduli
set {m1, m2, . . . , mn} and produces as output an interval I(X/M) = [X/M, X/M] such
that X/M ≤ X/M ≤ X/M and δI(X/M) < ε, where ε is a given accuracy parameter and
δI(X/M) = (X/M− X/M)

/
X/M.

Algorithm 1 Computing the floating-point interval evaluation for an RNS number

1: ui =
∣∣xiwi

∣∣
mi

for all i ∈ {1, 2, . . . , n}
2: SL(X)← fl5

(
∑n

i=1 ui/mi
)

3: SU(X)← fl4
(
∑n

i=1 ui/mi
)

4: if SL(X) = SU(X) = 0 then
5: return X/M← 0 and X/M← 0
6: end if
7: X/M← |SL(X)|1
8: X/M← |SU(X)|1
9: if bSL(X)c 6= bSU(X)c then

10: Compute the mixed-radix representation of X and test the most significant mixed-
radix digit, x̄n: if x̄n 6= 0, then set X/M← M−1

M ; otherwise set X/M← 1/M
11: end if
12: if X/M ≥ ψ then
13: return X/M and X/M
14: end if
15: bU ← X/M
16: K ← 0
17: while bU < ψ do
18: r ← max{−(dlog2 bUe+ 1), k}
19: ui ←

∣∣ui · |2r|mi

∣∣
mi

for all i ∈ {1, 2, . . . , n}
20: bU ←

∣∣fl4(∑n
i=1 ui/mi

)∣∣
1

21: K ← K + r
22: end while
23: bL ←

∣∣fl5(∑n
i=1 ui/mi

)∣∣
1

24: X/M← bL/2K

25: X/M← bU/2K

26: return X/M and X/M

Computation 2021, 9, 9 7 of 15

The correctness statement of the original algorithm has been proved in [21], so we
only must prove that the proposed modification does not violate the correctness of the
algorithm. The following theorem establishes this fact.

Theorem 3. The proposed modification does not violate the correctness of the algorithm for com-
puting the floating-point interval evaluation.

Proof. Denote again the result of the (i − 1)th iteration by b(i−1)
U , and the result of the

ith iteration by b(i)U . Assuming that b(i−1)
U is calculated properly, it is only necessary to

prove that b(i)U is also calculated properly. The proof is as follows. Calculation of (6) at
the ith iteration can be considered the same as calculating (2) with upwardly directed
rounding for the input Xi = 2rXi−1. Please note that Xi−1/M cannot exceed b(i−1)

U .
According to the first remark from the proof of Theorem 2 above, Xi should be less than
M(1− 2un log2 n). Assuming r = −(dlog2 b(i−1)

U e+ 1) (we are not interested in the case

r = k), 2r cannot exceed 2−(log2 b(i−1)
U +1) and thus Xi cannot exceed 2−(log2 b(i−1)

U +1)Xi−1. Sim-
plifying, we have Xi ≤ Xi−1/2b(i−1)

U . Finally, since 1/b(i−1)
U ≤ M/Xi−1, then Xi ≤ M/2,

so if un log2 n ≤ 1/4, then it is guaranteed that b(i)U is computed properly.

To implement the proposed improved algorithm, all the |2r|mi ’s should be prepro-
cessed and stored in a lookup table of size no more than n by blog2 Mc. We note that this
memory overhead is not actually significant. In fact, let each RNS modulus consists of
32 bits and n = 512. Then M has a bit size of about 16 thousand bits (huge dynamic range),
and the total size of the lookup table is 32 MB. Moreover, the table of powers of two is in
demand in various RNS applications.

4.2. Demonstration

To demonstrate the benefits of the proposed modification, we have counted the
number of iterations required to compute the interval evaluation in residue number systems
with four different moduli sets. The first set consists of 8 moduli and provides a 128-bit
dynamic range. The second set consists of 32 moduli and provides a 512-bit dynamic range.
The third set consists of 64 moduli and provides a 1024-bit dynamic range. The fourth set
consists of 256 moduli and provides a 4096-bit dynamic range.

The results are reported in Figures 2 and 3, where the algorithm from [21] is labeled as
“Original algorithm” and the modified algorithm (Algorithm 1) as “Proposed modification”.
The inputs are represented by powers of two from 20 to 2blog2 Mc, and the x-axis on the
plots denotes the binary logarithm of the RNS number for which the interval evaluation is
computed. The y-axis denotes the number of refining iterations required to compute the
interval evaluation with accuracy ε = 10−7.

(a) 8-moduli set (128 bits) (b) 32-moduli set (512 bits)

Figure 2. Number of iterations required to compute the interval evaluation of an RNS number with accuracy ε = 10−7 in 8-
and 32-moduli sets using double precision floating-point arithmetic.

Computation 2021, 9, 9 8 of 15

(a) 64-moduli set (1024 bits) (b) 256-moduli set (4096 bits)

Figure 3. Number of iterations required to compute the interval evaluation of an RNS number with accuracy ε = 10−7 in 64-
and 256-moduli sets using double precision floating-point arithmetic.

In this demonstration, all calculations were done in standard floating-point arithmetic
(double precision). The plots show that for small inputs, the proposed modification reduces
the number of iterations by almost 3 times, and increasing the size of the moduli set
increases the advantage.

5. Application: Finding the Maximum Element of an Array of RNS Numbers

Reduction is a widely used data-parallel primitive in high-performance computing
and is part of many important algorithms such as least squares and MapReduce [26]. For an
array of N elements {X1, X2, . . . , XN}, applying the reduction operator ⊕ gives a single
value X∗ = X1 ⊕ X2 ⊕ · · · ⊕ XN . The reduction operator is a binary associative (and often
commutative) operator such as +, ×, MIN, MAX, logical AND, logical OR. In this section,
we applied the considered interval evaluation method to implement one operation of the
parallel reduction primitive over an array of RNS numbers, namely MAX, which consists
of finding the maximum element in the array. Our implementation is intended for GPUs
supporting the Compute Unified Device Architecture (CUDA) [27].

5.1. Approach

Let {X1, X2, . . . , XN} be an array of N integers in RNS representation and we want
to find the largest element of this array, X∗ = max{X1, X2, . . . , XN}. To simplify our
presentation, we are considering unsigned numbers, i.e., each Xi varies in the range of
0 to M − 1. Our approach to finding X∗ is illustrated in Figure 4. The computation is
decomposed into two stages:

1. For a given array {X1, X2, . . . , XN}, the array {I(X1/M), I(X2/M), . . . , I(XN/M)}
is calculated. Each interval evaluation is coupled with the corresponding index of
the RNS representation in the input array (idx in Figure 4), so knowing the interval
evaluation, we can always fetch the original RNS representation.

2. The reduction tree is built over the array of interval evaluations to obtain the maxi-
mum RNS representation. The basic brick of the reduction is comparing the magni-
tude of two numbers in the RNS. For two given numbers X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn), the magnitude comparison is performed as follows [21]:

• if X/M > Y/M then X > Y;

• if X/M < Y/M then X < Y;

• if xi = yi for all i ∈ {1, 2, . . . , n}, then X = Y;

• if neither case is true, then the mixed-radix representations of X and Y are
calculated and compared component-wise to produce the final result.

Computation 2021, 9, 9 9 of 15

Thus, after the array of interval evaluations is computed, each RNS comparison is
performed very quickly, namely in O(1) time, and the input RNS array is accessed only in
corner cases, when the numbers being compared are equal or nearly equal to each other and
the accuracy of their interval evaluations is insufficient. On the other hand, the presented
approach also reduces the memory footprint of intermediate computations, since not
RNS numbers are stored on the reduction layers, but only their interval evaluations,
and each interval evaluation has a fixed size, regardless of the size of the moduli set and
dynamic range.

Figure 4. Calculating the maximum element of an array of RNS numbers using floating-point interval
evaluations. Each interval evaluation is denoted as [f , f], and idx is the index of the corresponding
RNS number in the input array.

5.2. CUDA Implementation

In CUDA, programs that run on the GPU are called kernels. Each kernel launches a
grid of parallel threads, and within the grid, GPU threads are grouped into thread blocks.
Threads belonging to the same block can communicate through shared memory or shuffle
instructions, while global communication between thread blocks is done by sequential
kernel launches or using device memory atomic operations.

In what follows, we denote by Arr the pointer to the global memory for accessing
the input RNS array and by Eval the pointer to the global memory for accessing the array
of floating-point interval evaluations. Each element of the Eval array is an instance of a
structure that consists of three fields:

• low is the lower bound of the interval evaluation;
• upp is the upper bound of the interval evaluation;
• idx is the index of the corresponding RNS representation in the Arr array.

We also use the following notations:

• N is the size of the input array;
• gSize is the number of thread blocks per grid;
• bSize is the number threads per block;
• bx is the block index within the grid;
• tx is the thread index within the block.

For an input array of RNS numbers, the calculation of the array of floating-point
interval evaluations is implemented as a separate kernel. One thread computes one interval

Computation 2021, 9, 9 10 of 15

evaluation, and many threads run concurrently, storing the results in a pre-allocated global
memory buffer of the GPU. The pseudocode of the kernel (the code executed by each
thread) is shown in Algorithm 2, where the device function ComputeEval is a sequential
computation of an interval evaluation as described in Algorithm 1.

Algorithm 2 Computing an array of floating-point interval evaluations

1: i← bSize× bx + tx
2: while i < N do
3: (Eval[i].low, Eval[i].upp)← ComputeEval(Arr[i])
4: Eval[i].idx ← i
5: i← i + gSize× bSize
6: end while

Remark 1. We have also implemented a parallel algorithm in which n threads simultaneously
compute an interval evaluation for a number represented in an n-moduli RNS, and the ith thread is
assigned for modulo mi computation. However, for our purpose (calculating an array of interval
evaluations), the sequential algorithm is preferable, since it does not require communication between
parallel threads. The parallel version can be used in applications that have insufficient internal
parallelism to saturate the GPU.

Once the array of interval evaluations is computed, the reduction kernel is launched,
which generates and stores partial reduction results using multiple (gSize) thread blocks.
To avoid multiple global memory accesses, fast shared memory cache is employed at the
internal reduction levels. The same reduction kernel then runs again to reduce the partial
results into a single result using a single thread block. The result is an interval evaluation
that represent the maximum element in the input array, and the desired RNS number is
retrieved from the array using the index associated with that interval evaluation.

The pseudocode of the reduction kernel is shown in Algorithm 3. In this algorithm,
S is the size of the reduction operation, Sh is an array in the shared memory of each thread
block, and Pow is the next highest power of 2 of bSize. Just like the Eval array, each element
of the Sh array is a structure consisting of three fields, low, upp and idx.

Algorithm 3 Reduction of an array of floating-point interval evaluations

1: i← bSize× bx + tx
2: Sh[tx].idx ← −1
3: while i < S do
4: if RnsCmp(Eval[i], Sh[tx], Arr) = 1 then
5: Sh[tx]← Eval[i]
6: end if
7: i← i + gSize× bSize
8: end while
9: — Intra-block synchronization —

10: i← Pow/2
11: while i ≥ 1 do
12: if tx < i and tx + i < bSize and RnsCmp(Sh[tx + i], Sh[tx], Arr) = 1 then
13: Sh[tx]← Sh[tx + i]
14: end if
15: i← i/2
16: — Intra-block synchronization —
17: end while
18: if tx = 0 then
19: Eval[bx]← Sh[tx]
20: end if

Computation 2021, 9, 9 11 of 15

Note that in Algorithm 3, S = N for the first kernel invocation and S = gSize for
the second one. The final result of the two kernel launches is stored in the first element
of the Eval array, i.e., Eval[0] assuming zero-based indexing. We give the pseudocode of
the RnsCmp function in Algorithm 4.

Algorithm 4 RnsCmp(A, B, Arr)

1: if B.idx < 0 or A.low > B.upp then
2: return 1
3: else if A.idx < 0 or A.upp < B.low then
4: return −1
5: else if Arr[A.idx] and Arr[B.idx] are equal component-wise then
6: return 0
7: else
8: Compare Arr[A.idx] and Arr[B.idx] using mixed-radix conversion
9: end if

Although we have only considered the MAX operation in this paper, other reduction
operations can be implemented in a quite similar manner. We also note that our approach
can be straightforwardly extended to find the maximum element in an array of signed
RNS numbers.

6. Results and Discussion

We present several performance results of different approaches to finding the maxi-
mum element in an array of RNS numbers on the GPU:

• Proposed approach is an implementation of the MAX operation as described in Section 5
using floating-point interval evaluations to compare the magnitude of RNS numbers.

• Naive approach is a straightforward parallel reduction using floating-point interval
evaluations that consists of two kernel invocations. In contrast to the proposed variant,
the naive one does not have a kernel that computes an array of interval evaluations.
Instead, the computation of two interval evaluations is performed each time two
RNS numbers are compared. This reduces the memory footprint but leads to more
computation load.

• Mixed-radix approach is an implementation of the MAX operation as described in
Section 5, but using the MRC procedure instead of floating-point interval evaluations
to compare the magnitude of RNS numbers. We used the Szabo and Tanaka MRC
algorithm [3] for this implementation.

All tests were carried out on a system running Ubuntu 20.04.1 LTS, equipped with an
NVIDIA GeForce RTX 2080 video card (see Table 1), an Intel Core i5 7500 CPU, and 16 GB
of DDR4 memory. We used CUDA Toolkit version 11.1.105 and NVIDIA Driver version
455.32.00. The source code was compiled with the -O3 option.

Table 1. Overview of the GPU hardware used in the experiments. The column labeled “CC” indicates
the compute capability version of the GPU.

Hardware # Cores Clock Speed Memory Size/Type Bandwidth CC

NVIDIA RTX 2080 2944 1515 MHz 8 GB/GDDR6 448.0 GB/s 7.5

We carried out the performance tests using 7 different sets of RNS moduli that provide
dynamic ranges from 64 to 4096 bits. An overview of the moduli sets is given in Table 2,
and the tool used to generate these sets is available on the GitHub repository: https:
//github.com/kisupov/rns-moduli-generator.

https://github.com/kisupov/rns-moduli-generator
https://github.com/kisupov/rns-moduli-generator

Computation 2021, 9, 9 12 of 15

Table 2. Overview of the moduli sets used in the experiments.

Size of Set, n Dynamic Range, M (Approx.) Bit-Length m1 . . . mn

4 1.891730206351222500900× 1019 64 65,947 . . . 65,953
8 3.486474761596273374449× 1038 128 65,725 . . . 65,749

16 1.182869237276559892956× 1077 256 65,599 . . . 65,657
32 1.381750867498453484869× 10154 512 65,533 . . . 65,683
64 1.834972082650114435387× 10308 1024 65,379 . . . 65,771

128 3.267493893788783073405× 10616 2048 65,139 . . . 66,071
256 1.113716837551166769174× 101233 4096 64,491 . . . 66,889

The measurements were performed with arrays of fixed length N = 5,000,000, and ran-
dom residues were used for the data generation, i.e., in the case of an n-moduli RNS,
the input dataset (an array of N RNS numbers) was obtained from a random integer array
of size N × n. The GNU MP library was used to validate the results.

We report the performance of the tested CUDA implementations in Table 3. We clearly
see that the proposed approach significantly outperforms the naive and mixed-radix
variants for all test cases. The MRC method has a quadratic behavior, while the proposed
and naive approaches based on floating-point interval evaluations have a linear behavior.
In fact, the Szabo and Tanaka algorithm requires n(n− 1) operations modulo mi to compute
the mixed-radix representation in an n-moduli RNS, while sequential (single-threaded)
computation of the interval evaluation using Algorithm 1 requires only n operations
modulo mi and 4n standard floating-point operations, assuming no ambiguity resolution or
refinement iterations are required. The mixed-radix implementation has not been evaluated
for the 256-moduli set due to excessive memory consumption.

Table 3. Running times (in milliseconds) of the different approaches for calculating the maximum
element of an array of RNS numbers on an NVIDIA RTX 2080.

Size of Set, n Proposed Naive Mixed-Radix

4 1.964 2.851 1.517
8 2.395 4.654 9.737

16 4.126 8.377 63.033
32 7.579 16.004 262.495
64 11.262 24.162 1017.980

128 107.726 268.151 4223.760
256 227.690 749.596 N/A

Although in some cases Algorithm 1 calls the MRC procedure, these cases are very
rare when the numbers are randomly distributed. Moreover, if it is known in advance
that the RNS number is small enough, then a quick-and-dirty computation of the interval
evaluation is possible, which is obtained from Algorithm 1 by eliminating steps 9 to 11.

In Figure 5, we show the performance gains of the proposed approach over the other
approaches tested. The superiority of the proposed approach over the naive one increases
with an increase in the size of the moduli set. In turn, for the case of the 128-moduli set,
the superiority of the proposed approach over the mixed-radix method is less than that for
the case of the 64-moduli set. One possible reason for this is a decrease in the GPU memory
bandwidth due to strided accesses to the input array of RNS numbers. The reader can refer
to [28] for further details. An interval addressing scheme, in which the residues of the RNS
numbers are interleaved, will provide more efficient access to the global GPU memory.
We plan to explore this in the future.

Table 4 shows the memory consumption (in MB) of the tested implementations.
Memory consumption is calculated as the size of the auxiliary buffer that needs to be
allocated in the global GPU memory for a particular implementation to work properly.

Computation 2021, 9, 9 13 of 15

Figure 5. Performance gains of the proposed approach over the other two approaches.

The memory requirements of the mixed-radix implementation increase in proportion
to the number of moduli, since the size of each mixed-radix representation is equal to the
size of the corresponding RNS representation. In contrast, the memory requirements of
the naive and proposed implementations are constant, since the size of each floating-point
interval evaluation is fixed (40 bytes in our setting, including padding) and does not
depend on the size of the moduli set.

Table 4. Memory consumption (in MB) of the different approaches.

Size of Set, n Proposed Naive Mixed-Radix

4 190.735 0.000 977 95.367
8 190.735 0.000 977 171.661

16 190.735 0.000 977 324.249
32 190.735 0.000 977 629.425
64 190.735 0.000 977 1239.777

128 190.735 0.000 977 2460.480
256 190.735 0.000 977 4901.886

The naive implementation requires less memory, since it stores only partial results
generated by the first reduction kernel, while the proposed implementation requires storing
the computed interval evaluations for all inputs. However, the memory consumption of
our proposed implementation do not seem critical, since the NVIDIA RTX 2080 graphics
card has 8 GB of GDDR6 RAM.

7. Conclusions

An efficient method has been considered for performing difficult operations in a
residue number system with arbitrary moduli sets. It relies only on very fast standard
floating-point operations and integer modulo mi arithmetic, which allows it to be im-
plemented on many general-purpose computing architectures. The method can be used
to improve the efficiency of various parallel algorithms operating in the RNS domain.
In particular, it has now been successfully employed in CUDA-accelerated multiple-
precision linear algebra kernels [10]. It is also implemented in GRNS, a new software
library for high-performance RNS computations on CPU and GPU architectures (available
at https://github.com/kisupov/grns). Similar to the MAX operation presented in this
paper, in the future we plan to use our method to build other important data-parallel
primitives over RNS arrays, such as SUM and SCAN.

https://github.com/kisupov/grns

Computation 2021, 9, 9 14 of 15

Funding: This research was funded by the Russian Science Foundation grant number 20-71-00046.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

Sample Availability: The source code is available at: https://github.com/kisupov/grns.

Abbreviations
The following abbreviations are used in this manuscript:

RNS Residue number system
GPUs Graphics processing units
CRT Chinese Remainder Theorem
MRC Mixed-radix conversion
CUDA Compute Unified Device Architecture

References
1. Ananda Mohan, P.V. Residue Number Systems: Theory and Applications; Birkhäuser: Cham, Switzerland, 2016.
2. Omondi, A.; Premkumar, B. Residue Number Systems: Theory and Implementation; Imperial College Press: London, UK, 2007.
3. Szabo, N.S.; Tanaka, R.I. Residue Arithmetic and Its Application to Computer Technology; McGraw-Hill: New York, NY, USA, 1967.
4. Qaisar Ahmad Al Badawi, A.; Polyakov, Y.; Aung, K.M.M.; Veeravalli, B.; Rohloff, K. Implementation and Performance Evaluation

of RNS Variants of the BFV Homomorphic Encryption Scheme. IEEE Trans. Emerg. Top. Comput. 2019. [CrossRef]
5. Bajard, J.C.; Eynard, J.; Hasan, M.A.; Zucca, V. A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes.

In Selected Areas in Cryptography—SAC 2016; Avanzi, R., Heys, H., Eds.; Springer International Publishing: Cham, Switzerland,
2017; pp. 423–442.

6. Celesti, A.; Fazio, M.; Villari, M.; Puliafito, A. Adding long-term availability, obfuscation, and encryption to multi-cloud storage
systems. J. Netw. Comput. Appl. 2016, 59, 208–218. [CrossRef]

7. Givaki, K.; Hojabr, R.; Najafi, M.H.; Khonsari, A.; Gholamrezayi, M.H.; Gorgin, S.; Rahmati, D. Using Residue Number
Systems to Accelerate Deterministic Bit-stream Multiplication. In Proceedings of the 2019 IEEE 30th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), New York, NY, USA, 15–17 July 2019; p. 40. [CrossRef]

8. Vayalil, N.C.; Paul, M.; Kong, Y. A Residue Number System Hardware Design of Fast-Search Variable-Motion-Estimation
Accelerator for HEVC/H.265. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 572–581. [CrossRef]

9. Chen, J.; Hu, J. Energy-Efficient Digital Signal Processing via Voltage-Overscaling-Based Residue Number System. IEEE Trans.
Very Large Scale Integr. Syst. 2013, 21, 1322–1332. [CrossRef]

10. Isupov, K.; Knyazkov, V.; Kuvaev, A. Design and implementation of multiple-precision BLAS Level 1 functions for graphics
processing units. J. Parallel Distrib. Comput. 2020, 140, 25–36. [CrossRef]

11. Guo, Z.; Gao, Z.; Mei, H.; Zhao, M.; Yang, J. Design and Optimization for Storage Mechanism of the Public Blockchain Based on
Redundant Residual Number System. IEEE Access 2019, 7, 98546–98554. [CrossRef]

12. Gayoso, C.A.; Arnone, L.; González, C.; Moreira, J.C. A general construction method for Pseudo-Random Number Generators
based on the Residue Number System. In Proceedings of the 2019 XVIII Workshop on Information Processing and Control
(RPIC), Bahía Blanca, Argentina, 18–20 September 2019; pp. 25–30. [CrossRef]

13. Salamat, S.; Imani, M.; Gupta, S.; Rosing, T. RNSnet: In-Memory Neural Network Acceleration Using Residue Number System.
In Proceedings of the 2018 IEEE International Conference on Rebooting Computing (ICRC), Tysons, VA, USA, 7–9 November
2018; pp. 1–12. [CrossRef]

14. Torabi, Z.; Jaberipur, G.; Belghadr, A. Fast division in the residue number system {2n + 1, 2n, 2n − 1} based on shortcut mixed
radix conversion. Comput. Electr. Eng. 2020, 83, 106571. [CrossRef]

15. Kumar, S.; Chang, C.; Tay, T.F. New Algorithm for Signed Integer Comparison in {2n+k, 2n − 1, 2n + 1, 2n±1 − 1} and Its Efficient
Hardware Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1481–1493. [CrossRef]

16. Hiasat, A. General Frameworks for Designing Arithmetic Components for Residue Number Systems. In Intelligent Methods
in Computing, Communications and Control; Dzitac, I., Dzitac, S., Filip, F.G., Kacprzyk, J., Manolescu, M.J., Oros, H., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 82–92. [CrossRef]

17. Brönnimann, H.; Emiris, I.Z.; Pan, V.Y.; Pion, S. Sign determination in residue number systems. Theor. Comput. Sci. 1999,
210, 173–197. [CrossRef]

18. Dimauro, G.; Impedovo, S.; Pirlo, G. A new technique for fast number comparison in the residue number system. IEEE Trans.
Comput. 1993, 42, 608–612. [CrossRef]

https://github.com/kisupov/grns
http://dx.doi.org/10.1109/TETC.2019.2902799
http://dx.doi.org/10.1016/j.jnca.2014.09.021
http://dx.doi.org/10.1109/ASAP.2019.00-33
http://dx.doi.org/10.1109/TCSVT.2017.2787194
http://dx.doi.org/10.1109/TVLSI.2012.2205953
http://dx.doi.org/10.1016/j.jpdc.2020.02.006
http://dx.doi.org/10.1109/ACCESS.2019.2930125
http://dx.doi.org/10.1109/RPIC.2019.8882147
http://dx.doi.org/10.1109/ICRC.2018.8638592
http://dx.doi.org/10.1016/j.compeleceng.2020.106571
http://dx.doi.org/10.1109/TCSI.2016.2561718
http://dx.doi.org/10.1007/978-3-030-53651-0_7
http://dx.doi.org/10.1016/S0304-3975(98)00101-7
http://dx.doi.org/10.1109/12.223680

Computation 2021, 9, 9 15 of 15

19. Wang, Y.; Song, X.; Aboulhamid, M. A new algorithm for RNS magnitude comparison based on New Chinese Remainder
Theorem II. In Proceedings of the Ninth Great Lakes Symposium on VLSI, Ypsilanti, Michigan, 4–6 March 1999; pp. 362–365.
[CrossRef]

20. Gbolagade, K.A.; Cotofana, S.D. An O(n) Residue Number System to Mixed Radix Conversion technique. In Proceedings of the
IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 521–524. [CrossRef]

21. Isupov, K. Using Floating-Point Intervals for Non-Modular Computations in Residue Number System. IEEE Access 2020,
8, 58603–58619. [CrossRef]

22. Lu, M. Arithmetic and Logic in Computer Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004. [CrossRef]
23. Taylor, F.J. Residue Arithmetic A Tutorial with Examples. Computer 1984, 17, 50–62. [CrossRef]
24. Vu, T.V. Efficient Implementations of the Chinese Remainder Theorem for Sign Detection and Residue Decoding. IEEE Trans.

Comput. 1985, 100, 646–651. [CrossRef]
25. Soderstrand, M.; Vernia, C.; Chang, J.H. An improved residue number system digital-to-analog converter. IEEE Trans. Circuits

Syst. 1983, 30, 903–907. [CrossRef]
26. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
27. Farber, R. CUDA Application Design and Development; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2011.
28. Harris, M. How to Access Global Memory Efficiently in CUDA C/C++ Kernels. Available online: https://developer.nvidia.com

/blog/how-access-global-memory-efficiently-cuda-c-kernels/ (accessed on 11 November 2020).

http://dx.doi.org/10.1109/GLSV.1999.757457
http://dx.doi.org/10.1109/ISCAS.2009.5117800
http://dx.doi.org/10.1109/ACCESS.2020.2982365
http://dx.doi.org/10.1002/0471728519
http://dx.doi.org/10.1109/MC.1984.1659138
http://dx.doi.org/10.1109/TC.1985.1676602
http://dx.doi.org/10.1109/TCS.1983.1085311
http://dx.doi.org/10.1145/1327452.1327492
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/

	Introduction
	Background
	Residue Number System
	Implementing Difficult RNS Operations Using Finite Precision Floating-Point Intervals
	Highly Accurate Computation of I(X/M)

	Properties of the Interval Evaluation Algorithm
	Proposed Improvement
	Description
	Demonstration

	Application: Finding the Maximum Element of an Array of RNS Numbers
	Approach
	CUDA Implementation

	Results and Discussion
	Conclusions
	References

