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Abstract: Interfacial thermal resistance (ITR) plays a critical role in the thermal properties of a variety
of material systems. Accurate and reliable ITR prediction is vital in the structure design and thermal
management of nanodevices, aircraft, buildings, etc. However, because ITR is affected by dozens of
factors, traditional models have difficulty predicting it. To address this high-dimensional problem,
we employ machine learning and deep learning algorithms in this work. First, exploratory data
analysis and data visualization were performed on the raw data to obtain a comprehensive picture
of the objects. Second, XGBoost was chosen to demonstrate the significance of various descriptors
in ITR prediction. Following that, the top 20 descriptors with the highest importance scores were
chosen except for fdensity, fmass, and smass, to build concise models based on XGBoost, Kernel
Ridge Regression, and deep neural network algorithms. Finally, ensemble learning was used to
combine all three models and predict high melting points, high ITR material systems for spacecraft,
automotive, building insulation, etc. The predicted ITR of the Pb/diamond high melting point
material system was consistent with the experimental value reported in the literature, while the other
predicted material systems provide valuable guidelines for experimentalists and engineers searching
for high melting point, high ITR material systems.

Keywords: interfacial thermal resistance; XGBoost; Kernel Ridge Regression; deep neural networks;
ensemble learning

1. Introduction

Interfacial thermal resistance (ITR) is a property that measures an interface’s resistance
to thermal flow [1–3]. When thermal flux is applied across an interface, ITR causes a finite
temperature discontinuity. Low ITR is technologically important for heat dissipation in
integrated circuits [4], whereas high ITR is critical for engine turbine protection [5,6]. The
growing interest in space exploration necessitates developing special material systems that
can withstand high temperatures and have high ITR. A reliable and accurate prediction
of ITR is thus critical for the design of materials with desired properties. However, ITR is
affected by a wide range of factors, including melting point, film thickness, material density,
heat capacity, electronegativity, binding energy, and temperature [7,8]. Furthermore, for
nanodevices, quantum effects must be considered [9]. As a result, ITR prediction is a
high-dimensional problem that cannot be solved ideally using traditional methods.

The traditional representative models for predicting ITR are the acoustic mismatch
model (AMM), diffuse mismatch model (DMM) [10], scattering-mediated acoustic mis-
match model (SMAMM) [11], and molecular dynamics simulation (MD) [12]. To some
extent, these models all have simplified assumptions, which limit the prediction to specific
scenarios. Briefly, the AMM model is based on the idea that ITR is caused by an acoustic
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impedance mismatch between two materials. Other factors, such as phonon scattering,
geometry, and chemical bonds, are ignored, resulting in AMM working well only at low
temperatures and underestimating ITR at high temperatures [13]. The DMM is proposed
as a supplement to AMM. It assumes complete phonon scattering at the interface, resulting
in the overestimation of ITR, particularly at low temperatures [10]. The SMAMM improves
the AMM model by incorporating phonon scattering and achieves reasonable ITR pre-
diction over a wider temperature range. However, its accuracy is still limited due to the
omission of other factors influencing ITR. As an atomic-level simulation, MD simulation
considers chemical bonds, defects, and atomic species at interfaces and can outperform
AMM, DMM, and SMAMM models [12]. However, because inelastic quantum scattering is
difficult to capture in MD simulation, it is challenging to integrate quantum effects [14].
In addition, MD simulation is computationally expensive, preventing its applications to
complex material systems. The rise of machine learning in the last decade has enabled the
solution of high-dimensional problems. The goal of machine learning is to automatically
discover the underlying pattern by training models on given datasets. The Xu group
predicted ITR using classical machine learning methods (LSBoost, support vector machines,
and Gaussian process regression) and achieved higher prediction accuracy than traditional
AMM and DMM models [7,8]. Table 1 summarizes the advantages and disadvantages of
machine learning models in ITR prediction when compared to traditional AMM, DMM,
and SMAMM models, and MD simulations.

Table 1. Pros and cons of different models for interfacial thermal resistance (ITR) prediction.

Models Advantage Disadvantage Reference

Acoustic mismatch model (AMM) Suitable for interfaces at low
temperatures

Not suitable for interfaces where phonon
scattering matters [15]

Diffuse mismatch model (DMM)
Suitable for interfaces with
characteristic roughness at

elevated temperatures

Not suitable for interfaces at
moderate and above cryogenic

temperatures
[16]

Scattering-mediated acoustic
mismatch model (SMAMM)

Suitable for interfaces in a wide
temperature range

Prediction accuracy restricted by Debye
approximation [11]

Molecular dynamics simulation
(MD)

Works well at a certain level of
accuracy

Computationally expensive and
time-consuming [17]

Machine learning models Suitable for various interfaces,
computationally efficient

Requires a large amount of experimental
data to train reliable models This work

In general, machine learning models are more reliable when trained on large datasets [18,19].
However, the available ITR dataset from the literature is relatively small (692 instances) [7,8].
In this case, the corresponding machine learning models are prone to overfitting, thereby
reducing prediction accuracy and robustness. In this work, we used ensemble learning
to reduce the overfitting of machine learning models and achieve a robust and precise
ITR prediction, as illustrated in Figure 1. First, exploratory data analysis (EDA) and
data visualization were performed on the raw data to obtain a comprehensive view of
the dataset. The correlations between training descriptors and target ITR values were
used to select descriptors. Second, the XGBoost (XGB) algorithm was chosen to create
an interpretable XGB model and demonstrate the significance of various descriptors in
ITR prediction. Following that, the top 20 descriptors with the highest importance scores
were chosen, except for fdensity, fmass, and smass, to build concise models using XGBoost,
Kernel Ridge Regression, and deep neural networks. An ensemble model was created by
combining these three models. Finally, over 80,000 material systems were constructed and
used as test data for ITR predictions. The top 40 material systems with melting points
higher than 600 K predicted by our ensemble model were reported.
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Figure 1. A schematic of predicting high melting point, high ITR material systems by ensemble learning.

2. Methods
2.1. Dataset Collection

The dataset(“training dataset for ITR prediction.xlsx” and “descriptor dataset.xlsx”)
was collected from the literature, organized by the Xu group [7,8], and can be downloaded
directly from: https://doi.org/10.5281/zenodo.3564173 (accessed on 28 July 2021).

2.2. Dataset Preprocessing

Descriptors were scaled before being fed into models. According to the distribution
of descriptors, the min–max scale and standard scale were used. The min–max scaler
transforms the descriptors fthick, fmelt, fdensity, sdensity, fAC1x, fAC1y, fAC2x, fAC2y,
fIPc, fIPa, smelt, sAC1x, sAC1y, sAC2x, sAC2y, sIPc, and sIPa. T, fmass, fEb, sEb, and
smass are the descriptors transformed by the standard scaler. Table S1 summarizes the
meaning of each descriptor’s abbreviation.

Material systems were constructed using the “descriptor dataset.” The corresponding
python codes’ material system construction for ITR prediction can be downloaded directly
from: https://github.com/pacificknight/Ensemble-learning-for-ITR-prediction (accessed
on 28 July 2021).

2.2.1. XGBoost

The XGB is a gradient boosting library implementation designed for high speed and
accuracy in solving many data science problems [20]. Another advantage of XGB is that
obtaining importance scores for each descriptor after the boosted trees are constructed is
relatively straightforward. Importance scores indicate a descriptor’s contribution to the
final prediction and serve as guidelines for descriptor selection. The greater a descriptor’s
importance score, the more it contributes to the final prediction. The training time for the
XGB model with the selected descriptors is 0.16 s.

2.2.2. Kernel Ridge Regression

The KRR was chosen because it is a well-known machine learning method. It applies
the powerful idea of support vector machines to regression. KRR improves computational
efficiency by combining ridge regression with the “kernel trick” and extending ridge
regression to the nonlinear case [21–24]. In this work, the radial basis function was used as
the kernel. The training time for the KRR model with selected descriptors is 0.045 s.

2.2.3. Deep Neural Network

A deep neural network (DNN) is an artificial neural network with more than three
hidden layers between the input and output layers. The DNNs are feedforward networks
suitable for modeling complex nonlinear relationships [25–27]. There are several reasons
to use DNN. First, DNN differs from traditional machine learning methods. It represents
cutting-edge deep learning technology. Second, we expected to use DNN to capture
potential patterns that may be ignored by traditional machine learning models in ITR
predictions. Lastly, DNN can eliminate feature engineering and generate layered structures
that eliminate representational redundancy. The parameter optimization of DNN is based

https://doi.org/10.5281/zenodo.3564173
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on backpropagation. DNN is prone to overfitting; thus, regularization is widely adopted in
DNN to penalize overfitting and make the model more robust and reliable [27,28]. A DNN
with three hidden layers was constructed. From the first hidden layer to the last hidden
layer, the neuron numbers were 64, 128, and 64, respectively. Root mean squared error
(RMSE) was used as the loss function. Adam optimizer was employed with a weight decay
of 5 × 10−5, a learning rate of 3 × 10−4. The training epochs were 15,000. R2 and RMSE
were used to evaluate the model performance. First, batch normalization was performed
on the input data using the equation below.

y =
x − E[x]√
Var[x] + ε

,

where E[x] and
√

Var[x] + ε are the mean and standard deviation, respectively. The pur-
pose of batch normalization is to accelerate DNN training by reducing internal covariate
shifts [29]. The data was then transformed from 17 to 64 dimensions using a linear trans-
formation and the Relu activation function, and nonlinear relationships were introduced
into the model. Following that, the data was passed through the hidden layers. Dropout
layers with a drop rate of 0.25 were added to each hidden layer after batch normalization
and before linear transformation as a regularization method to reduce overfitting. Dropout
refers to the process of randomly removing a percentage of neurons from our DNN during
the training process [30]. By this act, the final ITR results will no longer depend on specific
neurons, making the DNN model more robust and reliable. Furthermore, our DNN was
trained with Adam optimizer at a decay weight rate of 5 × 10−5. Weight decay is another
method of regularization [31]. Weight decay is based on the idea that neural networks
with smaller weights are less likely to overfit. Given that large prediction error in ITR is
misleading to materials design, we chose MSE over mean absolute error as the criterion
in our DNN, which penalized large error more heavily. The DNN model with selected
descriptors takes 434 s to train.

2.2.4. Ensemble Model

The XGB, KRR, and DNN models were used as base estimators. The ensemble model
is built by combining all of the models used in the ITR prediction process to predict low
variance, high accuracy, less feature noise, and bias. The aggregating method adopted is
averaging. As a result, the final prediction was made by averaging the predicting results of
XGB, KRR, and DNN models.

Even though the ITR has insignificant temperature dependence above room tempera-
ture in the training example, when constructing the test samples, the temperature used to
predict high melting point ITR was set to be 600 K.

2.3. Algorithm Evaluation

The R2 score and RMSE were used to evaluate the model performances. The R2

score is also known as the coefficient of determination in statistics, and it measures how
well-observed outcomes are replicated by the model [32]. The R2 score has a range of 0–1.
The closer the R2 score is to 1, the better the model performance. The RMSE is often used to
measure the difference between a model’s real and the predicted value [33]. For the same
dataset, the smaller the RMSE, the better the model’s performance.

In statistics, R2 is calculated by

R2 = 1 − ∑n
i=1(yi − ui)

2

∑n
i=1(yi − u)2 .
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The RMSE is given by

RMSE =

√
∑n

i=1(yi − ui)
2

n
,

where n, yi, ui, and u are numbers of data instances, real ITR, predicted ITR, and averaged
real ITR values, respectively.

3. Results and Discussion
3.1. Descriptor Selection

The EDA is a statistical approach for analyzing and summarizing datasets and their
characteristics [34]. First, the Pearson heatmap of correlations between all 35 descriptors
was calculated and plotted in Figure S1. The heatmap is diagonally symmetric because
the correlation between descriptor A and descriptor B is equal to the correlation between
descriptor B and descriptor A. The correlation between all 35 descriptors ranges from −1 to
1, with some descriptors having a high correlation with one another (yellow or dark areas).
Figure 2 shows a heatmap of descriptors with absolute correlation values greater than 0.9.
These highly correlated descriptors suggest that descriptor dimensions can be significantly
reduced without negatively impacting model performance. For example, fmass has a corre-
lation value of 0.9 with fdensity consistent with the two descriptors’ physical correlation.
As a result, descriptor selection is required to reduce descriptor dimensions for a quick and
reliable prediction. Second, the Pearson correlation coefficient between each descriptor
and the target ITR was investigated, as shown in Figure 3. Descriptors such as funit, fmass,
fAC2y, and fAC1y have a strong positive correlation with ITR, whereas fheatcap, sheatcap,
fmelt, and T demonstrate a strong negative correlation with ITR. It is important to note
that descriptor selection should not be based solely on the absolute value of descriptor
correlations with ITR. For example, if we build models using high correlation descriptors
like fmass, fAC2y, and fAC1y, the prediction results will be inaccurate. Because descriptors
fAC2y and fAC1y have a high correlation with descriptor fmass, as shown in Figure 2,
models with all three descriptors are not expected to outperform models containing only
one of the three descriptors. In light of this, we chose descriptor based not only on the
importance scores of each descriptor provided by the XGB model but also on the Pearson
correlation coefficients.

First, an XGB model with all 35 descriptors was built, and the corresponding param-
eters were optimized. The test dataset had an R2 score of 0.88 and an RMSE of 9.44. To
better understand the contributions of each descriptor, the ranked descriptor importance of
all 35 descriptors was given in Figure S2. It indicates that the binding energy, volume per
formula unit, melting point, density, heat capacity, and temperature, among other factors,
play a significant role in predicting ITR. For example, binding energy and melting point can
influence phonon transport; volume per formula unit and density can influence the Debye
cutoff frequency; [8] and temperature can influence ITR directly through heat capacity and
phonon distribution [35]. However, some of the descriptors are highly correlated with one
another and thus redundant for ITR prediction. In addition, it is difficult to collect all of the
descriptor data in practice, which dictates descriptor selection. Figure 4 shows the descrip-
tor selection procedures. First, the top 20 descriptors with the highest importance scores
were selected. Then, within the top 20 descriptors (fdensity, fmass, and smass), duplicated
descriptors were removed, yielding 17 relatively independent dominating descriptors.
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Figure 2. Pearson correlation coefficient map between 19 highly correlated descriptors (p > 0.9).

Figure 3. Pearson correlation coefficient map between all 35 descriptors and the target ITR in a training dataset.
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Figure 4. Venn diagram showing the descriptor selection process. First, the top 20 descriptors
were selected by XGBoost based on importance scores. Then, smass, fdensity, and fmass were
removed as they are highly correlated with other descriptors. The remaining relatively independent
17 descriptors were selected to build concise machine learning models.

3.2. Model Performance

In this section, we trained and evaluated the performance of a new XGB model with
the 17 descriptors obtained from the preceding section. The R2 score and RMSE obtained
for the test dataset were 0.87 and 10.00, respectively, comparable to the XGB model trained
with all 35 descriptors. This indicates that we have extracted all necessary descriptors to
build reliable and concise machine learning models. The KRR and DNN models were also
trained with the training data and evaluated with the test data. Table 2 summarizes the
predictive performance of all three models evaluated by R2 and RMSE. After descriptor
selection, all three models maintained high predictive performance, resulting in concise
and accurate models.

Table 2. The predictive performance of various models evaluated by R and RMSE.

Model
R RMSE

All Descriptors Selected Descriptors All Descriptors Selected Descriptors

XGB 0.88 0.87 9.44 10.00

KRR 0.87 0.86 9.98 10.25

DNN 0.84 0.84 10.30 10.04

Ensemble N/A 0.87 N/A 9.34

According to the no free lunch theorem, there is no universally best machine learning
algorithm. Almost all machine learning algorithms are based on few assumptions (learning
bias) about the relationship between descriptors and targets. Some algorithms perform
better on certain datasets than others, while some datasets will not be modeled effectively
by a given algorithm [36]. Ensemble learning combines the benefits of various algorithms
to achieve higher predictive accuracy than individual algorithms [37]. Common types of
ensembles include bootstrap aggregating [38], boosting [39], Bayesian model averaging [40],
Bayesian model combination [41], Bucket of models [42], and stacking and averaging
etc. [43,44]. As the raw dataset for ITR prediction is small, our individual models are more
or less overfitted. Ensemble averaging has been demonstrated to reduce overfitting to some
extent and make predictions more robust. As a result, we averaged the prediction results
of all our models (XGB, KRR, and DNN models) to make a final ITR prediction, leading to
higher R and lower RMSE than any individual model shown in Table 1, indicating better
predictive performance. Figure 5 shows the experimental ITR versus the predicted ITR
values of the ensemble model. The blue dots represent values predicted with all descriptors
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and the orange dots represent results predicted with selected descriptors. As we can
see, the majority of the blue and orange dots overlapped and is located near the black
diagonal dash line. Similarly, the correlations between experimental ITR and predicted
ITR forecasted by individual models (XGB, KRR, and DNN) before and after descriptor
selection were given in Figures S3–S5. The high overlap between orange and blue dots
indicates that we have selected all necessary descriptors, and built a concise ensemble
model with improved predictive performances.

The concise ensemble model was then used to search high melting point, high ITR
material systems. To benchmark the prediction performance of our ensemble model, the
predicted top 20 materials systems with high ITR was listed in Table S2. Bi/Diamond,
Bi/graphite, Bi/P, Bi/B, Bi/BN, and Bi/BeO systems were also predicted by other groups
in the literature, indicating the effectiveness of our ensemble model. To predict high
melting points, high ITR material systems, material systems with melting points higher
than 600 K were filtered and ranked based on the ITR values. The top 20 high melting
points and high ITR material systems predicted by the ensemble model are listed in Table 3.
The top predicted material systems are mainly composed of carbon-based substrates,
such as diamond, graphite, and graphene. Carbon materials have long been the focus of
scientific and industrial communities due to their exceptional electrical, thermal, optical,
and mechanical properties. Diamond, graphite, graphene, and carbon nanotubes, for
example, have high melting points due to C–C covalent bonds.

Figure 5. Correlation between the experimental values and values predicted by ensemble model
with all descriptors (blue dots) and selected descriptors (orange dots).

Table 3. High melting point, high ITR material systems predicted by ensemble model.

High Melting Point,
High ITR Material

Systems

Predicted ITR by
Ensemble Model

(10−9 m2K/W)

High Melting Point,
High ITR Material

Systems

Predicted ITR by
Ensemble Model

(10−9 m2K/W)

PtS/Diamond 50.42 CuS/Diamond 43.23

PtS/Graphene 48.97 CdTe/Graphene 42.81

PtS/Graphite 48.48 CdTe/Graphite 42.64

PdTe/Diamond 47.15 SnO/Diamond 42.37

ZnS/Diamond 46.96 KF/Diamond 42.17

PtTe/Diamond 45.02 FeSe2/GaAs 42.10

PbO/Diamond 44.98 AgCl/GaP 41.71
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Table 3. Cont.

High Melting Point,
High ITR Material

Systems

Predicted ITR by
Ensemble Model

(10−9 m2K/W)

High Melting Point,
High ITR Material

Systems

Predicted ITR by
Ensemble Model

(10−9 m2K/W)

LiCl/Diamond 44.56 CuBr/GaAs 41.69

ZnS/Graphene 44.41 CuBr/InP 41.57

PtTe/Graphene 44.15 CuBr/GaP 41.48

ZnS/Graphite 44.06 AgCl/Al2O3 41.36

PtTe/Graphite 44.03 FeSe2/InP 41.34

PdTe/Graphene 43.81 MnTe/Ga2O3 41.26

CdTe/Diamond 43.48 MnTe/InP 41.10

PdTe/Graphite 43.48 Pb/Diamond 41.00

Furthermore, as synthesis technologies evolve, graphite and graphene can be eco-
nomically produced on a large scale. As a result, we encourage experimentalists to follow
our predictions and explore high melting points, high ITR material systems for practical
applications such as spacecraft, automobiles, building insulation, etc. Some of the predicted
material systems have been experimentally validated, according to reports in the literature.
For example, it has been reported that a Pb/Diamond material system has a very low
interface thermal conductance of 25 MW/m2K [45], corresponding to very high ITR 40
(10−9 m2K/W). This indicates that our model has a high prediction accuracy. Although
some material systems, such as CdTe/Diamond, have been explored for solar cells [46],
their ITRs are yet to be measured and reported.

4. Conclusions

In this study, using ensemble learning, we predicted ITR in a robust and reliable
approach. The EDA and data visualization were conducted to analyze the raw dataset,
summarize its characteristics, and provide guidance for descriptor engineering. The
XGB model’s importance scores and Pearson coefficients of descriptors were employed
for descriptor selection and dimension reduction. To create concise models, 17 out of
35 descriptors were chosen. For ITR prediction, an ensemble model based on the XGB, KRR,
and DNN algorithms was developed. The predicted ITR values were used to identify and
rank material systems with high melting points and high ITR. The ITR of the Pb/Diamond
system predicted by our ensemble model was highly consistent with the experimental
value reported in the literature, indicating the high prediction performance of our ensemble
model. The predicted material systems provide effective guidelines and significantly
reduce the effort required by experimentalists and engineers to search for high melting,
high ITR material systems.

The current data used for training models have several limitations. First, the data
set is small, and it cannot cover all of the material systems required for training. Second,
the data contains only a small fraction (2.9%) of two-dimensional material systems, which
must be improved by combining more data from experiments.

Our future work will be focused on developing a database for ITR data from various
material systems and collecting additional ITR data from recent literature and experiments.
Furthermore, we intend to investigate multicomponent (>2) high melting points, high ITR
material systems by synthesizing corresponding nanomaterial compounds. For example,
we can synthesize PtTe, PdTe, and graphite nanomaterials separately, and uniformly
combine them to produce PtTe/PdTe/graphite nano compounds for practical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/computation9080087/s1, Figure S1: Pearson correlation coefficient map between all 35 de-
scriptors in the raw dataset. Figure S2: Rank of Descriptors based on importance score provided by

https://www.mdpi.com/article/10.3390/computation9080087/s1
https://www.mdpi.com/article/10.3390/computation9080087/s1
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XGB model. Figure S3: Correlation between the experimental values and values predicted by XGB
model with all descriptors (blue dots) and selected descriptors (orange dots). Figure S4: Correlation
between the experimental values and values predicted by KRR model with all descriptors (blue dots)
and selected descriptors (orange dots). Figure S5: Correlation between the experimental values and
values predicted by DNN model with all descriptors (blue dots) and selected descriptors (orange
dots). Table S1: Abbreviations of descriptors and the target explored in this work. Table S2: Top 20
material systems with high ITR predicted by ensemble model.
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