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Abstract: Parameter estimation of complex nonlinear turbulent dynamical systems using only
partially observed time series is a challenging topic. The nonlinearity and partial observations often
impede using closed analytic formulae to recover the model parameters. In this paper, an exact
path-wise sampling method is developed, which is incorporated into a Bayesian Markov chain Monte
Carlo (MCMC) algorithm in light of data augmentation to efficiently estimate the parameters in a rich
class of nonlinear and non-Gaussian turbulent systems using partial observations. This path-wise
sampling method exploits closed analytic formulae to sample the trajectories of the unobserved
variables, which avoid the numerical errors in the general sampling approaches and significantly
increase the overall parameter estimation efficiency. The unknown parameters and the missing
trajectories are estimated in an alternating fashion in an adaptive MCMC iteration algorithm with
rapid convergence. It is shown based on the noisy Lorenz 63 model and a stochastically coupled
FitzHugh–Nagumo model that the new algorithm is very skillful in estimating the parameters in
highly nonlinear turbulent models. The model with the estimated parameters succeeds in recovering
the nonlinear and non-Gaussian features of the truth, including capturing the intermittency and
extreme events, in both test examples.

Keywords: partial observations; data augmentation; MCMC; sampling; extreme events; non-Gaussian
statistics

1. Introduction

Complex nonlinear turbulent dynamical systems are ubiquitous in many areas, in-
cluding geophysics, engineering, material science, and neural science [1–4]. Estimating the
model parameters is a crucial prerequisite for data assimilation, uncertainty quantification,
and prediction [5,6]. However, parameter estimation of these nonlinear systems is a big
challenge for the following reasons. First, these systems often have strong non-Gaussian
features [7,8]. The intermittent instability, the extreme events, and the associated non-
Gaussian probability density functions (PDFs) with significant skewness or fat tails can
easily break the conditions that are required in many existing parameter estimation algo-
rithms designed for more stabilized or laminar systems. Second, the dimension of many
complex turbulent systems is quite large [9–12], which requires the development of efficient
parameter estimation algorithms that can overcome the curse of dimensionality [13,14].
Finally, one of the key features of many turbulent dynamical systems is the availability
of only the partial observations [15–17]. Despite the lack of observational data, the unre-
solved variables nevertheless play a crucial role in transferring energy with the observed
or resolved variables in a highly nonlinear way [18,19]. These unobserved variables are
also able to trigger various non-Gaussian phenomena including extreme events in both
the resolved and unresolved scales [6,20]. Unfortunately, many desirable mathematical
formulations for the parameter estimation algorithms in the presence of full observations
are no longer applicable to the partially observed turbulent systems, which leads to a
fundamental difficulty in recovering the model parameters.
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Several parameter estimation algorithms have been developed for turbulent systems.
One simple and frequently adopted parameter estimation approach is based on computing
maximum a posteriori or maximum likelihood estimates [21–23]. Another commonly
used method is the expectation–maximization algorithms [24–27], where the target energy
function is evaluated recursively. Other parameter estimation algorithms based on specific
cost functions are also routinely seen depending on the applications [28–33].

Among all the parameter estimation algorithms, the Bayesian approaches are widely
applied in many practical problems. One of the commonly used Bayesian techniques is the
Markov chain Monte Carlo (MCMC) method [34–36], which samples the so-called posterior
distribution of the parameters conditioned on the given observations. In the situation
with partial observations, data augmentation [37] is often incorporated into the MCMC
algorithm [38,39]. Then, the MCMC algorithm is applied to sample the parameters and the
unobserved trajectories in an alternating fashion. The main challenge in simultaneously
sampling the parameters and the hidden trajectories comes from the high-dimensional
representation of the latter even in the presence of a low-dimensional dynamical system. In
fact, the degree of freedom needed to characterize a trajectory equals the total time instants.
Even with the time discretization approximation, a large number of the temporal points are
required to fully represent a trajectory. This raises a challenge in the sampling procedure.
To this end, several innovative updating strategies have been developed in the context
of multivariate diffusion models [40–48]. While these methods are designed for general
nonlinear models, specific methods can be developed in light of the model structures,
which then have the potential to further facilitate sampling and parameter estimation.

The focus of this paper is on a rich class of complex nonlinear turbulent systems [49–51].
This rich class of the complex turbulent models is highly nonlinear and non-Gaussian but
certain conditional distributions are Gaussian. These systems have wide applications
in modeling and predicting many important phenomena in geophysics [52–54], climate
science [55–57], and neural science [58,59]. Specific examples include the Lorenz models
(Lorenz 63, 84, and two-layered 96 models), Boussinesq equations with noise, and a variety
of the stochastically coupled FitzHugh–Nagumo model. Despite being highly nonlinear,
this paper aims at showing that the conditional Gaussian structure can be explored to
the development of an efficient path-wise sampling strategy, which is then incorporated
into an MCMC algorithm to advance the parameter estimation using only partial ob-
servations. The advantage of such a path-wise sampling algorithm is that the sampled
trajectories can be written using closed analytic formulae in light of the conditional Gaus-
sian statistics, which are not achievable for general nonlinear systems. Therefore, the new
parameter estimation algorithm is extremely efficient and avoids potential numerical errors.
It also has the potential to be applied in high-dimensional systems due to its analytically
solvable characteristics.

The rest of the paper is organized as follows. The rich class of complex nonlinear
turbulent systems with conditional statistics is introduced in Section 2. Section 3 focuses on
the development of the sampling and parameter estimation algorithm. Section 4 includes
the numerical test experiments. The paper is concluded in Section 5.

2. The Nonlinear Turbulent Models with Conditional Gaussian Statistics

The general framework of the nonlinear and non-Gaussian turbulent dynamical
models considered in this paper is as follows [49,51]:

dX(t) =
[
A0(X, t) + A1(X, t)Y(t)

]
dt + B(X, t)dWX(t), (1a)

dY(t) =
[
a0(X, t) + a1(X, t)Y(t)

]
dt + b(X, t)dWY(t). (1b)

In the coupled system (1a) and (1b), the state variables are X and Y, which are both
column vectors representing the multi-dimensional states. On the right-hand side of (1a)
and (1b), A0, and a0 are column vectors while A1, a1, b, and B are matrices. All of them
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can depend nonlinearly on the state variables X and time t but not the state variable Y. The
vectors W1 and W2 are independent white noise sources. For complex nonlinear turbulent
systems with partial observations, X can be regarded as the collection of the observed
variables while Y contains the variables that are not directly observed.

Because of the strong nonlinearity in A0(X, t), A1(X, t), a0(X, t) and a0(X, t) and their
coupling with Y, its interaction with the white noise can easily induce non-Gaussian statis-
tics for both the marginal and the joint distributions of the coupled system (1a) and (1b).
Extreme events, intermittency, and complex nonlinear interactions between different vari-
ables all appear in such systems. Despite being highly nonlinear and non-Gaussian, the
system in (1a) and (1b) has a desirable analytic feature. That is, conditioned on a given
realization of X(s) for s ≤ t, the distribution of Y(t) is Gaussian. Therefore, the coupled
system is called the conditional Gaussian nonlinear system.

The conditional Gaussian nonlinear modeling framework (1a) and (1b) includes many
physics-constrained nonlinear stochastic models, large-scale dynamical models in turbu-
lence, fluids, and geophysical flows, as well as stochastically coupled reaction-diffusion
models in neuroscience and ecology. A gallery of examples of conditional Gaussian systems
in engineering, neuroscience, ecology, fluids, and geophysical flows can be found in [49].

3. The Parameter Estimation Algorithm
3.1. The General Bayesian MCMC Parameter Estimation Framework with Partial Observations

Denote θ as the collection of the parameters to be estimated in the coupled system
(1a) and (1b), where θ can appear in A0, A1, a0, a1, b, and B. Assume Xobs is the given
trajectory of the state variable X in (1a) and (1b) within the time interval [0, T]. The goal
of parameter estimation in the Bayesian framework is to find the conditional distribution,
which is also known as the posterior distribution,

p(θ|Xobs) ∝ p(θ)p(Xobs|θ). (2)

In (2), p(θ) is the prior distribution, which is based on the empirical knowledge of
choosing the parameter θ, while p(Xobs|θ) is the likelihood function. Since the nonlinear
system (1a) and (1b) is only partially observed, the closed analytic formula of solving (2)
is in general not available. One strategy to solve (2) is to apply the data augmentation
technique [37], which augments the target state space variables from θ to (θ, Yhidden).
Here, Yhidden is the trajectories of the unobserved variable Y. In such a way, the Bayesian
framework in (2) is modified to

p(θ, Yhidden|Xobs) ∝ p(θ, Yhidden, Xobs) (3a)

= p(θ)p(Xobs, Yhidden|θ) (3b)

= p(θ)p(Yhidden|θ)p(Xobs|Yhidden, θ). (3c)

It is clear from (3a)–(3c) that, if p(θ, Yhidden|Xobs) is solved, then p(θ|Xobs) can be
reached by marginalizing over the auxiliary variable Yhidden. Therefore, the goal here is to
develop a suitable MCMC algorithm to compute the posterior distribution p(θ, Yhidden|Xobs).
In addition to the prior distribution p(θ), the other two components on the right-hand side
of (3c) represent the probability of the sampled trajectory of the hidden variable given the
parameters p(Yhidden|θ) and the likelihood of the observed trajectory conditioned on both
the sampled one and parameters p(Xobs|Yhidden, θ).

Comparing with (2), the most significant improvement in (3a)–(3c) is the solvability of
the likelihood function. In fact, if the unobserved trajectory Yhidden is given, then a closed
analytic formula of the likelihood p(Xobs|Yhidden, θ) is available. Specifically, assume a time
discretization of both the trajectories Xobs and Yhidden denoted by

X̃obs = (X̃obs
0 , X̃obs

1 , . . . , X̃obs
n )

Ỹhidden = (Ỹhidden
0 , Ỹhidden

1 , . . . , Ỹhidden
n ),

(4)
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where X̃obs
i = Xobs(ti) and Ỹhidden

i = Yhidden(ti). Here, the time interval is discretized
with small subintervals 0 = t0 < t1 < . . . ,< tn = T. The notation with tilde is for
discrete approximation while that without tilde is for the original continuous time series.
With such notations, the discrete version of the likelihood p(X̃obs|Ỹhidden, θ) can be written
down explicitly:

p(X̃obs|Ỹhidden, θ) =
n

∏
i=1

p(X̃obs
i |X̃obs

i−1, Ỹhidden
i−1 , Ỹhidden

i , θ) (5)

according to the Markov property. With a small time increment, each probability on the
right-hand side of (5) can be computed using a Gaussian approximation based on a forward
Euler scheme p(X̃obs

i |X̃obs
i−1, Ỹhidden

i−1 , θ). The product of these Gaussian distributions finishes
the calculation of the likelihood.

On the other hand, the discrete approximation of p(Yhidden|θ), i.e., p(Ỹhidden|θ) can be
solved via

p(Ỹhidden|θ) ∝ L(Ỹhidden; θ) =
n

∏
i=1

Li(Ỹhidden
[i−1,i] ; θ), (6)

where each Li(Ỹhidden
[i−1,i] ; θ) is given by

Li(Ỹhidden
[i−1,i] ; θ) = exp

(∫ i

i−1
α(Yhidden

scaled , θ, t)dYhidden
scaled

)
exp

(
−1

2

∫ i

i−1
α(Yhidden

scaled , θ, t)2dt
)

. (7)

Formulas (6)–(7) basically follow the Girsanov formula [60]. In other words, the
Equation (1b) is rescaled by

dYhidden
scaled = α(Yhidden

scaled , θ, t)dt + dWY(t), (8)

where Yhidden
scaled is the rescaled state variable of Yhidden by dividing the noise coefficient b

componentwise, assuming b is a diagonal matrix as in most of the applications. The
reason to introduce the rescaled variable with an identity noise coefficient in (8) is the
following. The probability L(Ỹhidden; θ) can be viewed as the Radon–Nikodym derivative
of the measure induced by (1b) with respect to the Wiener measure scaled by the diffusion
coefficient b. Given that two such dominating measures (with different b) are singular,
a direct MCMC implementation will result in a reducible algorithm [38]. Note that the
function α(·) depends on X as well. However, for the notation simplicity here, we drop
such an explicit dependence.

It is also noticeable that the left-hand side is only proportional instead of equaling to
the right-hand side in (6). Nevertheless, this is sufficient for the MCMC algorithm. The
reason is that each step in the MCMC algorithm is to compute the ratio between the two
p(Ỹhidden|θ) in the previous and current steps. The pre-constants will cancel with each
other in computing the ratio.

3.2. The Path-Wise Sampler of the Unobserved Trajectories

To apply the Bayesian MCMC parameter estimation algorithm, what remains is to
develop an efficient path-wise sampler of the unobserved trajectory Yhidden(t) given the
parameters θ, i.e., sampling from p(Yhidden|θ) appearing in (3a)–(3c). In what follows,
the goal is to develop an efficient sampling algorithm for the conditional distribution
p(Yhidden|Xobs, θ). Note that p(Yhidden|Xobs, θ) is only a subset of p(Yhidden|θ). Nevertheless,
since the MCMC procedure also involves sampling from p(Xobs|Yhidden, θ) in (3a)–(3c),
the trajectories of Yhidden sampled from p(Yhidden|Xobs, θ) will lead to a higher proba-
bility for p(Xobs|Yhidden, θ). This means that only those Yhidden that are sampled from
p(Yhidden|Xobs, θ) will have a higher acceptance in the MCMC algorithm. Thus, sampling
from p(Yhidden|Xobs, θ) is a more efficient way than sampling from p(Yhidden|θ). Notably,
the path-wise sampler here exploits the closed analytic properties of the conditional statis-
tics associated with the coupled nonlinear systems in (1a) and (1b). Data assimilation
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is utilized in the development of such a path-wise sampler. Throughout this subsection
(Section 3.2), we use p(Yhidden|Xobs, θ) to denote p(Yhidden|Xobs) since the parameters here
are fixed.

As a prerequisite of the path-wise sampler, let us start with solving the conditional
(or posterior) distribution p(Yhidden(t)|Xobs(s), s ≤ t) at a fixed time instant t. This is also
known as the filtering. For the conditional nonlinear Gaussian systems (1a) and (1b), the
solution of the filtering can be written down with closed analytic formulae.

Theorem 1. For the conditional Gaussian nonlinear systems (1a) and (1b), given one realization of
Xobs(s) for s ∈ [0, t], the conditional distribution p(Yhidden(t)|Xobs(s), s ≤ t) ∼ N (µf(t), Rf(t))
is Gaussian. The conditional mean µf and the conditional covariance Rf are given by the following
explicit formulae:

dµf = (a0 + a1µf)dt + (RfA∗1)(BB∗)−1(dXobs − (A0 + A1µf)dt), (9a)

dRf =
(
a1Rf + Rfa∗1 + bb∗ − (RfA∗1)(BB∗)−1(A1Rf)

)
dt, (9b)

where ·∗ is the conjugate transpose.

The filtering exploits the observational information up to the current time instant
for improving the initialization of real-time prediction. On the other hand, the optimal
offline point-wise statistical state estimation can be carried out by making use of the
observational information in the entire training period. This leads to more accurate state
estimation, achieved by a forward pass of filtering and a backward pass of smoothing.
Such a smoothing state estimation is directly associated with the path-wise sampler to be
developed shortly.

Theorem 2. For the conditional Gaussian nonlinear systems (1a) and (1b), given one realization of
Xobs(t) for t ∈ [0, T], the optimal nonlinear smoother estimate p(Yhidden(t)|Xobs(s), s ∈ [0, T]) ∼
N (µs(t), Rs(t)) is conditional Gaussian, where the conditional mean µs(t) and the conditional
covariance Rs(t) satisfy the following equations:

←−−
dµs =

(
− a0 − a1µs + (bb∗)R−1

f (µf − µs)
)

dt, (10a)
←−−
dRs = −

(
(a1 + (bb∗)R−1

f )Rs + Rs(a∗1 + (bb∗)R−1
f )− bb∗

)
dt. (10b)

The backward notations on the left-hand side of (10a) and (10b) are understood as
←−−
dµs =

lim∆t→0 µs(t)− µs(t + ∆t). The starting value of the nonlinear smoother (µs(T), Rs(T)) is the
same as the filter estimate at the endpoint (µf(T), Rf(T)).

With these tools in hand, we are ready to show the efficient path-wise sampler of the
hidden trajectory Yhidden. In fact, the path-wise sampler can be achieved by applying a
conditional sampling formula, which is carried out in an extremely efficient way by solving
a simple SDE.

Theorem 3. For the conditional Gaussian nonlinear systems (1a) and (1b), conditioned on one
realization of X(t) for t ∈ [0, T], the optimal conditional sampling formula of the trajectories of
Y(t) in the same time interval satisfies the following explicit formula:

←−−−−−
dYhidden =

←−−
dµs −

(
a1 + (bb∗)R−1

f
)
(Yhidden − µs)dt +

(
bb∗

)1/2 dWYhidden . (11)

where WYhidden is an independent white noise source and the square root of the positive definite
matrix bb∗ is unique. The initial value of Yhidden is drawn from N (µf(T), Rf(T)).

The detailed proofs of these formulae can be found in [51,61]. Thanks to the explicit
formula in (11), the conditional sampling procedure using (11) for sampling Yhidden is
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computationally much cheaper than the traditional numerical methods. Such a desirable
feature facilitates the efficiency and accuracy of the path-wise sampler required in the
parameter estimation.

3.3. The Setup of the MCMC Algorithm

A Metropolis–Hasting algorithm is adopted as the MCMC scheme for calculating
the posterior distribution (3a)–(3c), which alternates between updating θ conditionally on
Yhidden and Xobs and sampling the unobserved trajectory Yhidden conditionally on θ and
Xobs. To overcome the issue of low acceptance ratio in the standard MCMC algorithm, an
adaptive Metropolis algorithm [62] is adopted here for proposing the new parameter values.
This adaptive MCMC algorithm combines both the shape and the scale adaptations of the
Metropolis and the acceptance probability optimization in light of a Cholesky factorization.
More specifically, the target acceptance ratio for this adaptive algorithm is set to be 35% for
numerical experiments done in the next section.

The entire procedure of the MCMC algorithm is as follows:

1. Assign an initial guess of the parameters θ. Setup the iteration index k = 1 in
the MCMC.

2. For k = 1 to K,

2a. Sample a trajectory of the unobserved variable Yhidden using the current pa-
rameter values. Compute the prior distribution and the likelihood, i.e., the
right-hand side of (6).

2b. Propose a new parameter candidate for θ based on the adaptive MCMC algorithm.
2c. Compute the ratio of the product of the prior and the likelihood functions

associated with the parameter values used in the current and the previous
steps, based on the observed trajectory and the hidden trajectory generated
in (2a).

2d. Accept or reject the proposed parameter values.

4. Numerical Test Experiments

The numerical integration time step is ∆t = 0.005 for the test done in Section 4.1,
while that for Section 4.2 is ∆t = 0.001, which are also the time step for the discretization in
computing the likelihood. A forward Euler scheme is used for computing the likelihood
while the stochastic system is solved via the Euler–Maruyama scheme [63]. In all the tests
below, a non-informative prior distribution p(θ) is used for all the parameters in the drift
part of the model, which means the same probability is used for θ as the prior information
regardless of its value. For the parameters in the diffusion part of the model, the only
knowledge in the prior information is their non-negativity.

4.1. The Noisy Lorenz 63 Model

The first test model considered here is the noisy version of the Lorenz 63 model:

dx = σ(y− x)dt + σx dWx,

dy =
(

x(ρ− z)− y
)

dt + σy dWy,

dz = (xy− βz)dt + σz dWz.

(12)

The deterministic Lorenz 63 model [64] is a simplified mathematical model for at-
mospheric convection. These equations relate the properties of a two-dimensional fluid
layer uniformly warmed from below and cooled from above. These equations describe
the rate of change of three quantities with respect to time. Physically, x is proportional
to the rate of convection, y to the horizontal temperature variation, and z to the vertical
temperature variation. The constants σ, ρ, and β are system parameters proportional to
the non-dimensional numbers: Prandtl number, Rayleigh number, and certain physical
dimensions of the layer itself [65]. In addition to the applications in atmospheric science,
the Lorenz 63 model is also widely used as a test model in many other areas, including
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lasers, dynamos, and chemical reactions [66–72]. The noisy version of the Lorenz 63 in-
cludes more turbulent and small-scale features coming from the unresolved scales. The
time series of the noisy Lorenz 63 model thus contains more fluctuations, but they retain
the characteristics in the original Lorenz 63. The parameters adopted here are the classical
values for the deterministic part together with moderate noise strengths,

ρ = 28, σ = 10, β = 8/3, σx = 10, σy = σz = 5 (13)

Figure 1 shows one realization of the model simulation. It is clear that the one-
dimensional trajectories of the noisy Lorenz 63 model are similar to those from the original
deterministic version but with more fluctuations. The chaotic features are illustrated in
these time series. The three-dimensional phase plot also clearly indicates a butterfly shape
of the model solution.

Assume one realization of the time series y and z is available as the observations.
In such a situation, the noisy Lorenz 63 model is a conditional Gaussian system. The
new parameter estimation algorithm including the efficient path-wise sampling of the
unobserved variable x is thus applicable. To test the parameter estimation skill, the length
of the observed time series for y and z is assumed to have 500 time units.

Figure 2 shows the trace plots of the estimated parameters. The initial values of
the trace plots start from random numbers that are very different from the truth. After
about 200 iterations, all the parameters (except σx) converge to the truth, indicating a
skillful estimation of these parameters. As a further sanity check, the trace plots of the log-
likelihood are also included, which confirm the skill of the algorithm. To understand the
behavior of the estimated value of σx, it is important to note that σx is the noise coefficient
in the unobserved variable. In fact, it has only weak contributions to the fluctuation of
the observed time series y and z in the presence of the additional random noise from
σy and σz. In other words, the parameter σx is only weakly identified in such a chaotic
system. Therefore, it is anticipated that the estimation of σx is not as accurate as other
parameters. Nevertheless, as is shown in Figure 3, the model with the estimated parameters
succeeds in capturing the key statistics of the true signal. In particular, the non-Gaussian
PDF of x and the oscillating temporal autocorrelation function (ACF), which measures the
memory, of z are both recovered with high accuracy. These results confirm the skill of the
estimated parameters.

Figure 1. The noisy Lorenz 63 model (12) with parameters in (13). (a–c) one realization of the one-
dimensional trajectories of x, y, and z, respectively; (d) the associated three-dimensional phase plot
of (x, y, z).
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Figure 2. Trace plots of the estimated parameters in the noisy Lorenz 63 model. (a–f) the trace plots
of each individual parameters ρ, σ, β, σx, σy, and σz. For reference, the true parameters are shown by
the black solid lines; (g) the trace plot of the log-likelihood for the hidden path of x, according to (6);
(h–i) the trace plots of the log-likelihood of the observation of y and z, respectively, according to (5);
(j) the trace plots of the total log-likelihood.

(a) PDF of x (b) PDF of y (c) PDF of z

t

(d) ACF of x

Simulation

Truth

t

(e) ACF of y

t

(f) ACF of z

Figure 3. Comparison of the PDFs and ACFs of a long simulation from the noisy Lorenz 63 model
with the true parameters (13) (dashed red curves) and that with the estimated parameters (solid blue
curve). The last point in each of the trace plots is regarded as the estimated value of each parameter.

4.2. A Stochastically Coupled FitzHugh–Nagumo (FHN) Model

The FitzHugh–Nagumo model (FHN) is a prototype system that describes the excitable
medium. It aims at characterizing the activation and deactivation dynamics of a spiking
neuron [73]. Stochastic versions of the FHN model mimic more realistic situations, where
noise-induced limit cycles were widely studied and applied in the context of stochastic
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resonance [74–77]. With these desirable dynamical and statistical features, FHN models
have applications in many other areas [78–81].

The stochastically coupled FHN model considered here is as follows:

du = e
(
u− 1

3
u3 − v

)
dt + σu dWu,

dv = (u + a)dt + σv dWv.
(14)

In (14), the parameter e is a crucial one that represents the time scale ratio. The time
scale here is characterized by ε := 1/e, which is much smaller than one (e.g., ε = 10−2),
implying that u is a fast variable while v is a slow variable. The parameter a is another
key parameter that controls the dynamical behavior of the FHN model. The value a > 1
is required in order to guarantee that the system has a global attractor in the absence of
noise and diffusion. However, the random noise is able to drive the system above the
threshold level of global stability and triggers limit cycles intermittently that enriches the
dynamical features.

The stochastically coupled FHN model (14) is used as the test model for the parameter
estimation algorithm. The model (14) has a single neuron, and it contains the model
families with both coherence resonance and self-induced stochastic resonance. The model
fits into the conditional Gaussian nonlinear modeling framework, where the observed
variable is u and the hidden variable is v. With different choices of the noise strength
σv, (14) exhibits rich dynamical behaviors. The following two regimes are considered for
the parameter estimation experiments.

Regime 1: Coherent temporal pattern and nearly regular oscillations. In this dynamical
regime, the temporal patterns are highly coherent due to the choice of a weak noise σv. The
time series of both u and v have nearly regular oscillations with large bursts in u around
every fixed number of units. The associated statistical equilibrium PDF of u is bimodal
while that of v is skewed. The following parameters are adopted to generate the true time
series for regime 1:

e = 100, a = 1.1, σu = 2, σv = 0.3. (15)

Regime 2: Mixed temporal pattern and irregular oscillations. In this dynamical regime,
the temporal patterns are strongly mixed due to the choice of strong noise σv. The oscillation
period of u becomes more irregular as in regime 1. Correspondingly, the PDF of v becomes
nearly Gaussian with a large variance. In addition, a small a is adopted in this regime,
leading to a relatively short time between two consecutive excitations of u. The following
parameters are adopted to generate the true time series for regime 2:

e = 100, a = 0.8, σu = 2, σv = 1.5. (16)

Figure 4 includes the time series, the PDFs, and the phase diagrams of the two
dynamical regimes. It is clear that both dynamical regimes have strong non-Gaussian
features, where a bimodal distribution is seen in u. Such a bimodal distribution corresponds
to a highly intermittent time series with strong extreme events. Regime 1 also has a highly
skewed PDF of v, as was described above.

In the setup of parameter estimation, only a single realization of u is available. The
total length of the observed u is only 30 time units, representing a moderately short
observational period. Figure 5 shows the trace plots of the parameter estimation. Despite
being started from a random initial condition, most of the parameters converge quickly
to the truth. The only exception is σv in regime 2. This is again understandable because
regime 2 is more turbulent and the parameter σv is hard to be identified from the noisy
observations. Nevertheless, such a weak identification property also means the feedback
from σv to the observed process u is not strong, and therefore the estimated parameters
can still recover the significant nonlinear and non-Gaussian features of the true dynamics,
especially for the observed variable u.
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Figures 6 and 7 show the comparison of the model with the true parameters and
that with the estimated parameters. Note that the trajectories are computed with different
random noise seeds in the two runs. Therefore, the trajectories are not expected to be
point-wise consistent with each other. Nevertheless, the overall behavior of the trajectories
from the model with the estimated parameters resembles that of the truth. In particular, the
model with the estimated parameters generates similar intermittent time series with strong
extreme events as the truth. In addition, the statistics from the model with the estimated
parameters are also very close to the truth. In regime 1, the highly non-Gaussian PDFs and
the irregularly oscillating-decaying ACFs are both perfectly captured by the model with
the estimated parameters. In the even tougher dynamical regime 2, despite the small error,
the ACFs and the PDFs are still recovered with high accuracy.

(a) Trajectories of u and v
u v

(b) PDFs

u

v

(c) Phase diagram

t u

v

Regime 1

  a = 1.1

v
 = 0.3

Regime 2

  a = 0.8

v
 = 1.5

Figure 4. The two dynamical regimes of the stochastically coupled FHN model (14), where the
parameters of the two regimes are listed in (15) and (16). The three columns show the model
trajectories, the PDFs, and the phase diagram of both dynamical regimes.

(a) e

truth

(b) 
u (c) a

(d) 
v

(e) log L
u

(f) log L
v

(g) e (h) 
u (i) a

k

(j) 
v

k

(k) log L
u

k

(l) log L
v

Regime 1

  a = 1.1

v
 = 0.3

Regime 2

  a = 0.8

v
 = 1.5

Figure 5. Trace plot of the estimated parameters in the stochastically coupled FHN model (14) for
dynamical regime 1 (top 2 rows) and 2 (bottom 2 rows). (a–d,g–j) the trace plots of the parameters
e, σu, a, and σv. For reference, the true parameter values are shown by the black lines; (e,k) the
trace plot of the log-likelihood of the observation of u, according to (5); (f,l) the trace plot of the
log-likelihood for the hidden path of v, according to (6).
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Figure 6. Comparison of the models with the true parameters (dashed red curves) and with the
estimated parameters (solid blue curve) for dynamical regime 1. The last point in each of the trace
plots is regarded as the estimated value of each parameter. (a) the comparison of the trajectories.
Note that the trajectories are computed with different random noise seeds in the two runs. Therefore,
the trajectories are not expected to be point-wise consistent with each other; (b,c) the comparisons of
the PDFs and the ACFs.

Figure 7. Similar to Figure 6 but for dynamical regime 2.

5. Conclusions

In this paper, a parameter estimation algorithm is developed for a rich class of complex
nonlinear and non-Gaussian turbulent dynamical models using only partial observations.
The algorithm follows a data augmentation technique, which allows updating the estimated
parameters and the trajectories of the unobserved variables alternatively within a Bayesian
MCMC framework. Different from the traditional path-wise sampling methods, the method
proposed here exploits the mathematical structure of the class of nonlinear systems, which
facilitates the development of a closed analytic formula to sample the trajectories of the
unobserved variables. Therefore, the sampling approach is mathematically exact and
computationally efficient. The parameter estimation algorithm is applied to both the
noisy Lorenz 63 model, which is a highly chaotic system, and a stochastically coupled
FHN model, which is a highly nonlinear model with strong non-Gaussian statistics and
extreme events.

The test models used in this study are still simple low-dimensional models. Never-
theless, the closed analytic formula of the sampling technique should allow an efficient
path-wise sampling for even high-dimensional systems. This will be left as a future
work. The rigorous mathematical study of the convergence of the algorithm is another
future work.
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