
computation

Article

Density Functional Theory of Coulombic Excited States Based
on Nodal Variational Principle †

Ágnes Nagy

����������
�������

Citation: Nagy, Á. Density

Functional Theory of Coulombic

Excited States Based on Nodal

Variational Principle. Computation

2021, 9, 93. https://doi.org/10.3390/

computation9080093

Academic Editor: Henry Chermette

Received: 27 July 2021

Accepted: 19 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Theoretical Physics, University of Debrecen, H-4002 Debrecen, Hungary; anagy@phys.unideb.hu
† Dedicated to Professor Karlheinz Schwarz on the occasion of his 80th birthday.

Abstract: The density functional theory developed earlier for Coulombic excited states is reconsidered
using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because
only the correct number of nodes of the orbitals should be insured instead of the orthogonality.
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1. Introduction

The density functional theory (DFT) [1,2] has been originally worked out for the
ground state. It has rigorously been extended to excited states by Theophilou [3] and
later by Gross, Oliveira, and Kohn [4–6]. For further extensions and applications of these
subspace and ensemble theories, see reference [7]. Subsequently, theories for individual
excited states were presented [8–15]. Several works on excited states have been done within
the local potential framework [16–29]. Recently, a comprehensive theory for Coulombic
excited states has been put forward in a series of papers [30–32]. It takes advantage of
the fact that the Coulomb density determines not only its Hamiltonian but the degree of
excitation as well and consequently, there is a universal functional valid for any excited
state. In addition, excited state Kohn–Sham (KS) equations similar to the ground-state KS
equations can be derived.

Recently, Zahariev, Gordon, and Levy [33] have presented a nodal variational principle
for excited states. They have proved that the minimum of the energy expectation value of
trial wave functions that are analytically well behaved and have nodes of the exact wave
function is the exact eigenvalue. This minimum is achieved at the exact eigenfunction.

In this paper, the Coulombic excited state theory is reconsidered utilizing the nodal
variational principle. Certainly, the functionals are the same as in the original theory, but
it is much easier to solve the Kohn–Sham equations, because only the correct number
of nodes of the orbitals should be insured instead of the orthogonality. It is especially
important in case of highly excited orbitals.

The paper is organized as follows. In Section 2, the DFT for Coulombic excited
states [30–32] is reworked. Section 3 is dedicated to the discussion.

2. Coulombic Excited State Theory Using Nodal Variation Principle

The theory is valid for Coulomb external potential vCoul . The Hamiltonian has the form

Ĥ = T̂ + V̂ee +
N

∑
i=1

vCoul(ri) , (1)

where T̂ and V̂ee are the kinetic energy and the electron–electron energy operators. N is the
number of electrons and

vCoul(r) = −
M

∑
β=1

Zβ

rβ
. (2)
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M is the number of nuclei and rβ = |r−Rβ|. Rβ and Zβ denote the position and the charge
of the nucleus β. Kato’s theorem [34–40]

∂n̄β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

= −2Zβn(r = Rβ) (3)

is valid both for the ground and any excited state. It has the consequence that the cusps
of the density n exhibit the atomic numbers and the positions of the nuclei. In addition,
N is given by the the integral of n. Hence, n specifies all parameters of the Coulomb
potential (2), thus determines the external potential, the Hamiltonian (1), and all properties
of the Coulomb system. Furthermore, n cannot be the density for any other Coulomb
external potential, that is, two different excited states cannot have the same electron
density [30]. Therefore, we might think that the expression

FCoul [n] = E[n]−
∫

n(r)vCoul [n; r]dr (4)

would be the appropriate functional for Coulombic densities. However, it is not known
how to decide if a density is Coulombic or not. Therefore, instead of (4) F is defined in
another way: it is defined for all electron densities not only for Coulombic densities.

As a first step consider a bifunctional

F[n, nCoul ] = min
Ψ→n

{〈Ψ|ΨCoul
l [nCoul ]〉=0}k−1

l=1

〈Ψ|T̂ + V̂ee|Ψ〉 , (5)

where the minimum is searched over the wave functions that provide the excited state
density n and is orthogonal to the first k− 1 eigenfunctions of the Coulomb system of nCoul .

Using the nodal variation principle instead of Equation (5) we can write

F[n, nCoul ] = min
Ψ→n

{Ψ has the nodes of the exact wave function}

〈Ψ|T̂ + V̂ee|Ψ〉 . (6)

It is assumed that a Coulomb density close to n exists.

FCoul
ε [n] = min

nCoul
F[n, nCoul ]; ||nCoul − n|| ≤ ε. (7)

The smallest F is taken, if there are more than one Coulomb density at the same
distance from n:

FCoul [n] = FCoul
εmin

[n]. (8)

To measure the distance a Sobolev-type norm is applied:

d(nCoul , n) ≡
∫ ∣∣∣∣√nCoul(r)− n(r)

∣∣∣∣2dr +
∫ ∣∣∣∣∇√nCoul(r)− n(r)

∣∣∣∣2dr. (9)

The Euler equation is obtained by functional derivation

vCoul([n], r) = − δFCoul [n]
δn(r)

(10)

up to a constant.
It is worth emphasizing that the theory above is based on the following statements:
(a) The cusps and the asymptotic decay of the Coulombic density determine the

external potential and the ionization potential;
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(b) It is supposed that bifunctional F[n, nCoul ] (Equation (5) or (6)) exists, where nCoul

is close to n. Further, the existence of FCoul [n] (defined by the Equations (7) and (8))
is assumed;

(c) Equation (6) is based on the assumption that the nodes of the exact excited state
wave functions are known;

(d) It is assumed that the functional derivative of FCoul [n] exists. It is needed to derive
the Euler Equation (10).

Consider now the Kohn–Sham (KS) system. In our original definition the non-
interacting kinetic energy bifunctional was written

TCoul
s [n, nCoul ] = min

Φ→n
{〈Φ|Φl [nCoul ]〉=0}k−1

l=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉, (11)

where the search is over the wave functions Φ having the excited state density n and
orthogonal to the first l − 1 eigen functions of the non-interacting system. The excited state
density is the same in the real and the KS systems. If there are more than one KS system
with the same density nCoul , the one closest to the true ground-state density nCoul

1 is taken.
Instead of Equation (11) we can write

TCoul
s [n, nCoul ] = min

Φ→n
{Φ has the nodes of the exact wave function}

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉 (12)

using the nodal variation principle. The existence of a unique Coulomb density close to the
non-Coulomb density n is assumed:

TCoul
s,ε [n] = min

nCoul
Ts[n, nCoul ]; ||nCoul − n|| ≤ ε. (13)

It is supposed that there is at least one Coulomb density closer to n than ε, provided
that ε is large enough. The minimum specifies the final form:

TCoul
s [n] = TCoul

s,εmin
[n]. (14)

The functional derivation yields an Euler equation, within an additive constant,

wCoul([n], r) = − δTCoul
s [n]
δn(r)

. (15)

The KS theory presented above is based on the following statements:
(a) The existence of the non-interacting kinetic energy bifunctional TCoul

s [n, nCoul ]
(Equation (11) or (12)) with nCoul close to n is assumed. Further, it is presumed that TCoul

s [n]
constructed by Equations (13) and (14) exists;

(b) Equation (12) is based on the assumption that the nodes of the non-interacting
excited state wave functions are known;

(c) It is supposed that the functional derivative TCoul
s [n] exists and the Euler Equation (15)

can be derived.
It is convenient to partition FCoul [n] as

FCoul [n] = TCoul
s [n] + JCoul [n] + ECoul

xc [n], (16)

where JCoul [n] and ECoul
xc [n] are the classical Coulomb and exchange-correlation energies.

Equations (10), (15) and (16) lead to the KS potential

wCoul([n], r) = vCoul([n], r) + vCoul
J ([n], r) + vCoul

xc ([n], r) (17)
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as the sum of the external, the classical Coulomb and the exchange-correlation potentials.
The density has the form

n =
K

∑
i=1

λi|φi|2, (18)

where the KS orbitals φi are solutions of the KS equations[
−1

2
∇2 + wCoul([n], r)

]
φi = εiφi. (19)

The occupation numbers λi are 0, 1, or 2 for a non-degenerate system. K denotes the
orbital having the highest orbital energy with non-zero occupation number.

3. Discussion

In the present version of the Coulombic excited state theory, the variation is done
over the trial wave functions having the nodes of the exact wave functions both in the
interacting and the non-interacting systems. That is, the sole difference between the
original and the present forms of the theory is using Equations (6) and (12), instead of
Equations (5) and (11). Despite this difference, the functionals are the same as in both
versions. Generally, the nodes are not known. The wave functions are not known either.
In DFT we define functional F[n] via the wave function, but we do not actually use this
definition in calculations. Only, F as a functional of n is applied.

On the other hand, in DFT the exact functionals are not known and approximate func-
tionals are applied in calculations. Additionally, in actual calculations the KS Equations (19)
are solved. The nodal variational principle leads to a huge simplification, inducing much
easier calculations. It is the consequence of the fact that the variational problem reduces
to the solution of the KS equations. The orbitals, that is, one-particle functions have to
be obtained. If the electron configuration of the state is known, we have to solve the KS
equations insuring either the orthogonality of orbitals or the correct number of nodes of
the orbitals. The latter is simpler as it is explained in the example below. Certainly, we
have to know the correct number of nodes of the orbitals.

The nodal behavior of eigenfunctions were discussed in several papers (see, e.g., [41–44]).
Still the number of nodal surfaces is rarely counted in calculations. Hatano and cowork-
ers [43,44] developed a computer program to count the number of nodal regions and
applied it in molecular orbital calculations.

Recently, the original Coulombic excited state theory [30–32] has been discussed [7].
The localized Hartree–Fock (LHF) [45] and the Krieger, Li, and Iafrate (KLI) [46] methods
combined with correlation have been generalized for excited states. In addition, several
highly excited states of Li and Na atoms have been studied.

The radial KS equations can be solved using Numerov’s algorithm [47] searching
eigenvalues with the correct number of nodes. This method was used by Herman and
Skillman in their Hartree–Fock–Slater computer code [48]. We do not have to check the
orthogonality of the orbitals during the calculations, only the number of nodes has to be
counted. The correct number of nodes is enough to insure the orthogonality. It is especially
beneficial in studying higher excited states. In [7], several highly excited states of Li and
Na atoms have been studied. Calculations have been performed with KLI and KLI plus
(local Wigner) correlation (see details in [7]). Take, for example, the configuration 1s25s.
The orbital φ5s should be orthogonal to all the orbitals below, that is, φ1s, φ2s, φ3s, and
φ4s. The orbitals φ2s, φ3s, and φ4s have zero occupation numbers, do not contribute to the
density, so we do not have to calculate them. It is enough to calculate the orbital φ5s and the
correct number of nodes insures the orthogonality to all the orbitals below. We emphasize
that as the configuration (1s25s) is known, we know the exact number of nodes of the radial
orbitals. The radial orbital φks has k− 1 nodes. (Because of the spherical symmetry of the
system, the radial KS equations should be solved.) We can easily check numerically that the
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orbitals with the correct number of nodes are really orthogonal. We calculated the orbitals
φ2s, φ3s, and φ4s, and the integrals

∫
φk1 φk2 dr, where k1 and k2 can be 1s, . . . , 5s. We found

that the absolute value of the integral was always less than 10−6 for k1 6= k2.
In summary, the Coulombic excited state theory has been re-examined based on the

nodal variational principle. The functionals are the same as in the original theory, but the
solution of the Kohn–Sham equation is much easier as only the correct number of nodes of
the orbitals should be insured instead of the orthogonality.
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