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Abstract: Count data with excessive zeros are ubiquitous in healthcare, medical, and scientific studies.
There are numerous articles that show how to fit Poisson and other models which account for the
excessive zeros. However, in many situations, besides zero, the frequency of another count k tends to
be higher in the data. The zero- and k-inflated Poisson distribution model (ZkIP) is appropriate in
such situations The ZkIP distribution essentially is a mixture distribution of Poisson and degenerate
distributions at points zero and k. In this article, we study the fundamental properties of this mixture
distribution. Using stochastic representation, we provide details for obtaining parameter estimates of
the ZkIP regression model using the Expectation–Maximization (EM) algorithm for a given data. We
derive the standard errors of the EM estimates by computing the complete, missing, and observed
data information matrices. We present the analysis of two real-life data using the methods outlined
in the paper.

Keywords: poisson regression; zero-inflated data; zero- and k-inflated data; EM algorithm

1. Introduction

Data that count the number of occurrences of certain events or the number of subjects
or items that fall into certain categories arise in many scientific investigations, medi-
cal, and social science research. The most commonly used models to analyze such data
are developed using the Poisson probability distribution. The Poisson distribution pos-
sesses the equi-dispersion property because its mean and variance are equal. However,
in real-life examples, most often the data are over-dispersed or under-dispersed. The
occurrence of over-dispersion is more common than under-dispersion. In the absence of
equi-dispersion the most commonly used alternative to the Poisson distribution is the
negative Binomial distribution.

There could be several reasons that lead to over-dispersion in the data. A primary
cause of over-dispersion in the counts is an inflated number of zeros in excess of the
number expected under the Poisson distribution. In such cases, an appropriate model is
the zero-inflated Poisson (ZIP). The ZIP models are extensively studied in the literature.
The earliest paper on the ZIP model was by Cohen [5]. In a seminal paper, Lambert [3]
introduced and studied the ZIP regression model using the Expectation–Maximization
(EM) approach [6]. Lambert [3] applied the ZIP model to count data where the response
variable was the number of defects in a manufacturing process along with covariates
masking, soldering, etc. The ZIP model with random effects has been studied by Min and
Agresti [7] and Yau and Lee [8]. Ghosh et al. [9] explored the Bayesian approach for small
to moderate sample sizes. The ZIP models using the Bayesian approach for spatial data
were studied by Agarwal et al. [10]. Furthermore, ZIP models for censored data were
studied by Saffari and Adnan [11], Yang and Simpson [12], and Nguyen and Dupuy [13].
Altun [14] introduced a zero-inflated Poisson–Lindley regression model, while, recently,

Computation 2021, 9, 94. https://doi.org/10.3390/computation9090094 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-4507-9405
https://doi.org/10.3390/computation9090094
https://doi.org/10.3390/computation9090094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9090094
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation9090094?type=check_update&version=2


Computation 2021, 9, 94 2 of 16

Bakouch et al. [15] introduced COS-Poisson distribution and the corresponding regression
model for zero-inflated count data.

In health science research, zero-inflated count models have been shown to perform bet-
ter than traditional count models [16,17]. The ZIP models have been applied across a wide
spectrum of academic disciplines, including biology [18], ecology [19], psychology [20,21],
and education [22]. The ZIP models have also been studied in economics [23–25]. In
industry, the ZIP models have been applied in manufacturing [3,9], transportation [26,27],
and insurance [28]. Recently, Motalebi et al. [29] applied the ZIP models for monitoring
social networks. A good review and applications of ZIP models is given in Bohning and
Seidel [30] and Ridout et al. [18]. The other ZIP-like models are zero-inflated negative bino-
mial (ZINB), zero-inflated geometric (ZIG), and zero-inflated Binomial (ZIB). For example,
Hall [31] illustrated the use of ZIP and ZIB in horticulture.

The zero-inflated models can be fitted easily using available packages in SAS and
R software. There are two procedures in SAS that deal with zero-inflated models. In
SAS, the finite mixture model (FMM) and count regression (COUNTREG) procedures
can be used to study zero-inflated models. They provide estimates, standard errors, and
AIC values similar to glm procedure. The high-dimensional count regression procedure
(HPCOUNTREG) in SAS can handle big data. In R, the package ’pscl’ includes functions
for handling zero-inflated discrete distributions with various link options. The inflated
count models are also available in the ’VGAM’ package.

In addition to zero, some data sets may have an inflated count of additional value
k > 0 due to multiple effects, including the design of the study. Research questionnaire
studies are examples with zero- and k-inflated count data sets typically resulting either in
the way the questions were asked or the way the responses were provided. For example,
one study investigated the frequency of pap smear tests in women for the last six years. The
survey had a large number of women who never had a pap smear and many who had pap
smears on an annual basis. Thus, the survey resulted in large frequencies of zero and six.
The other source of inflation is the nature of the response. For example, Arora et al. [32]
considered a study that counts the number of days a subject exercised per week. The
reply of the non-exercising subjects was zero, and the reply of regularly exercising subjects
was 5. Hence, the data have 0 and 5 counts inflated. Lin and Tsai [1] describe a survey
where adults were asked about the number of cigarettes they consume daily. The responses
tend to be none or a pack. Since a pack consists of 20 cigarettes, the data result in inflated
frequencies for 0 and 20. Lin and Tsai [1] proposed a zero- and k-inflated Poisson regression
model (ZkIP) to analyze such data. Sheth et al. [2] also introduced two forms of ZkIP
models, known as doubly inflated Poisson (DIP) models. In this article, we study the
ZkIP form given by Lin and Tsai [1]. It is the same as the second DIP model proposed by
Sheth et al. [2].

The ZkIP is a finite mixture model. It has three components. The first is degenerate
at zero with probability π1. The second distribution is degenerate at k with probability
π2, and the third distribution is Poisson with mean λ with probability π3 = (1− π1 − π2).
The mixture leads to heterogeneity in the data, which is not captured by the Poisson model.
These components can also be interpreted as three groups of the population. A special case
of the ZkIP model is the zero- and one-inflated Poisson model (ZOIP). Zhang et al. [33]
studied the properties and inference on the parameters of the ZOIP distribution without
covariates. The inference of ZOIP without covariates was described by Alshkaki [34].
A Bayesian approach for the ZOIP model was examined by Tang et al. [35]. The ZOIP
regression model using maximum likelihood and the Bayesian approach was also studied
by [36]. The zero- and one-inflated count data using truncated Poisson was studied by [37].
Lin and Tsai [1] introduced the ZkIP regression model and used the nonlinear optimization
method to obtain the maximum likelihood (ML) estimates and standard errors. The ZkIP
has also been studied by Finkelman et al. [38] for grouped psychological data. In this
article, we study the ZkIP model using the Expectation–Maximization (EM) approach.



Computation 2021, 9, 94 3 of 16

Furthermore, we pursue the method outlined by Louis [4] to obtain the standard errors for
the EM parameter estimates.

The outline of the article is as follows: we present the derivation of the zero- and
k-inflated Poisson (ZkIP) distribution in Section 2. Section 3 contains the corresponding
ZkIP regression model that incorporates observed covariates on each subject. We describe
the EM algorithm steps to estimate the regression and mixing parameters in Section 3.1.
Computational details of the standard errors for the regression estimates using the method
described by Louis [4] are presented in Section 3.2. The criteria for model selection and
goodness of fit are described in Section 4. We illustrate our methods on two real-life data
sets in Section 5, including identification of significant covariates.

2. Zero- and k-Inflated Poisson Distribution

The Poisson distribution is widely used to model nonnegative integer count data.
The zero-inflated Poisson (ZIP) distribution is a popular model for count data containing
excessive zeros. The ZIP distribution is a mixture of degenerate distribution at zero with
probability π1 and Poisson distribution with probability 1− π1. Additionally, if another
count value k > 0 in the data are also inflated, a suitable model is the Poisson distribution
mixed with two- point masses π1 and π2 at 0 and k, respectively. The probability mass
function of a random variable Y with this mixture distribution is given by

P(Y = y) =



π1 + π3 e−λ when y = 0

π2 + π3
λke−λ

k!
when y = k

π3
λye−λ

y!
when y ≥ 1, y 6= k.

(1)

where 0 < π1 < π1 + π2 < 1, π3 = (1− π1 − π2), yεN, and λ > 0. The distribution (1) is
known as the zero- and k-inflated Poisson (ZkIP) distribution [1]. The moment generating
function of the ZkIP distribution is MY(t) = E(etY) = π1 + π2 etk + π3 eλ(et−1) and the
probability generating function is GY(z) = E(zY) = π1 + π2 zk + π3 eλ(z−1). Using MY(t),
it is easy to show that the mean and variance of the ZkIP distribution are

E(Y) = k π2 + π3 λ

Var(Y) = k2π2(1− π2) + π3λ(1 + π1λ + π2λ− 2kπ2).

Since the ZkIP distribution is essentially a mixture of Poisson and two degenerate
distributions at zero and k with probabilities π1 and π2, respectively, it reduces to ZIP when
π2 = 0 and becomes the Poisson distribution if π1 = π2 = 0. The following stochastic rep-
resentation is instrumental in elucidating the properties of the ZkIP distribution. Consider
a latent variable z = (z1, z2, z3) distributed as multinomial with parameters (1, π1, π2, π3).
Note that z takes values (1, 0, 0) with probability π1, (0, 1, 0) with probability π2, and
(0, 0, 1) with probability π3. That is,

P(z = (z1, z2, z3)) =


π1 if z1 = 1, z2 = 0, z3 = 0

π2 if z1 = 0, z2 = 1, z3 = 0

π3 if z1 = 0, z2 = 0, z3 = 1.

(2)
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Furthermore, let us assume the conditional distribution of Y|z is

P(Y = y|z = (z1, z2, z3)) =



1 for z1 = 1, y = 0

1 for z2 = 1, y = k

λye−λ

y!
for z3 = 1, y = 0, 1, . . . .

(3)

Thus, the joint distribution of (Y, z) obtained by multiplying (2) and (3) is

P(Y = y, z = (z1, z2, z3)) =



π1 for z1 = 1, y = 0

π2 for z2 = 1, y = k

π3
λye−λ

y!
for z3 = 1, y = 0, 1, . . . .

(4)

The marginal of Y can be obtained from (4) by summing over the three possible values
of z. Thus, we get

P(Y = 0) = P(Y = 0, z1 = 1) + P(Y = 0, z2 = 1) + P(Y = 0, z3 = 1)

= π1 + π3e−λ,

P(Y = k) = P(Y = k, z1 = 1) + P(Y = k, z2 = 1) + P(Y = k, z3 = 1)

= π2 + π3
λke−λ

k!
,

and

P(Y = y) = P(Y = y, z1 = 1) + P(Y = y, z2 = 1) + P(Y = y, z3 = 1)

= π3
λye−λ

y!
, for y ≥ 1, y 6= k,

which is equivalent to the ZkIP distribution defined by (1). Furthermore, the posterior
distribution P(z|Y) = P(z)P(Y|z)/P(Y) can be summarized as in Table 1.

Table 1. P(z = (z1, z2, z3)|Y = y) of ZkIP.

z = (z1, z2, z3) y = 0 y = k y 6= 0, k

z1 = 1
π1

π1 + π3 p0
0 0

z2 = 1 0
π2

π2 + π3 pk
0

z3 = 1
π3 p0

π1 + π3 p0

π3 pk
π2 + π3 pk

1

In Section 3, we build a ZkIP regression model using (1), and, in Section 3.1, we use
the conditional probabilities in Table 1 to develop the EM algorithm for estimation of the
ZkIP parameters from the data.

3. Zero- and k-Inflated Poisson Regression Model

Let y = (y1, y2, . . . , yn) be a vector of n independent count responses. We assume
that the number of yi’s that are equal to 0 (or k) is high and corresponding to each yi, a
vector xi

T = (1, xi1, . . . , xip) of covariates has been observed. A reasonable model for the
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distribution of each yi is given by (1) with different parameters λi but the same mixing
parameters π1 and π2. In this case, the likelihood function of the observed data is

Lobs(π1, π2, λ|y) = ∏
i:yi=0

(π1 + π3 p0i(λi)) ∏
i:yi=k

(π2 + π3 pki(λi)) ∏
i:yi 6=0,k

(π3 pyi(λi)), (5)

where λ = (λ1, λ2, . . . , λn) and pyi(λi) = e−λi λi
yi /yi! for yi = 0, 1, 2, . . .. To incorporate

the covariates into the model, we follow the standard generalized linear model (GLM)
framework for the multinomial distribution. The three mixing distributions can be viewed
as three nominal categories (degenerate(0), degenerate(k), and Poisson) with probabilities
π1, π2, and π3, respectively. Following the GLM baseline category logit models for the
multinomial, we re-parametrize and set

log
(

π1

π3

)
= γ and log

(
π2

π3

)
= δ. (6)

We treat the Poisson distribution as the baseline category, leading to two equations for
the other two categories. As in loglinear models, the ZkIP regression model assumes the
Poisson parameter λi is a loglinear function of the covariates, and it is given by

log(λi) = xT
i β.

where β = (β0, β1, β2, . . . , βp)T is a p + 1 dimensional unknown regression parameter vec-
tor. For simplicity, we assume that the parameters γ and δ are constants. The generalization
of the case where γ and δ are functions of the covariates is straightforward. Thus, the
parameters of our ZkIP regression model are β, γ, and δ. In the next section, we consider
estimating the parameters β, γ, and δ using the observed data.

3.1. Estimation of the Regression Parameters

In this section, we study methods for estimating the parameters of the ZkIP regression
model. The two popular methods are the maximum likelihood (ML) and Expectation–
Maximization (EM) approach. The ML technique involves optimizing the likelihood or the
log-likelihood function with respect to the unknown parameters β, γ, and δ. Substituting
the reparametrizations (6) in the likelihood function (5), we get

`obs(β, γ, δ) = log Lobs(β, γ, δ|y)
= ∑

i:yi=0
log (eγ + p0i(λi)) + ∑

i:yi=k
log (eδ + pki(λi)) (7)

+ ∑
i:yi 6=0,k

log(pyi(λi))− n log(1 + eγ + eδ),

where log λi = xT
i β. The ML estimates can be obtained by maximizing the log-likelihood

(7) directly with respect to the parameters or taking the partial derivatives and solving the
three score equations:

∑
i:yi=0

eγ

eγ + p0i(λi)
=

neγ

(1 + eγ + eδ)

∑
i:yi=k

eδ

eδ + pki(λi)
=

neδ

(1 + eγ + eδ)
(8)

∑
i:yi 6=0,k

(yi − λi)xi = ∑
i:yi=0

λi p0i(λi)

eγ + p0i
xi − ∑

i:yi=k

(k− λi) pki(λi)

eδ + pki(λi)
xi.

Equation (8) can be solved iteratively using the Newton–Raphson method. In theory,
this seems fine, but, in practice, there are convergence issues with ML estimation. An
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alternative to ML and a popular method for parameter estimation is the Expectation–
Maximization (EM) approach, used by Lambert [3] for the ZIP model. Here, we extend her
ideas for the ZkIP model.

The EM approach treats the observed data y = (y1, y2, . . . , yn) as the part of a complete
data that includes a latent vector z = (z1, z2, . . . , zn), which is regarded as missing. Here,
each zi = (zi1, zi2, zi3) is a three- component vector with a probability distribution given by
(2), and the conditional distribution of yi given zi is given by (3). Then, the joint distribution
of the observed and missing data are given by

P(yi, zi) =


π1 for yi = 0, z1i = 1

π2 for yi = k, z2i = 1

π3 pyi(λi) for yi = 0, 1, . . . , z3i = 1,

where pyi(λi) is the Poisson probability mass function with mean λi. Therefore, the
complete data likelihood function of the ZkIP model is given by

Lcomp(π1, π2, λ|y, z) = ∏
i:yi=0

(π1)
z1i ∏

i:yi=k
(π2)

z2i
n

∏
i=1

(π3 pyi(λi))
z3i ,

and the log-likelihood of the complete data, (y, z) for the ZkIP model is

`comp(π1, π2, λ|y, z) = ∑
i:yi=0

(
z1iπ1 + z3i(log π3 + log p0i(λi))

)
+ ∑

i:yi=k

(
z2i log π2 + z3i(log π3 + log pki(λi))

)
(9)

+
n

∑
i=1

(
z3i log π3 + log pyi(λi)

)
.

Using the reparametrization given in (6), we can write the log-likelihood of the
complete data as

`comp(γ, δ, λ|y, z) =
n

∑
i=1

(z1iγ + z2iδ− log(1 + eγ + eδ)) +
n

∑
i=1

z3i log pyi(λi). (10)

Note that, when π2 = 0, the ZkIP reduces to the ZIP model. Thus, from (9), the
log-likelihood of the ZIP for the complete data is

`comp(π1, λ|y, z1) = ∑
i:yi=0

(
z1iπ1 + (1− z1i)(log(1− π1) + log p0i(λi))

)
+ ∑

i:yi>0

(
(1− z1i) log(1− π1) + log pyi(λi)

)
.

From (10), the log-likelihood of the ZIP for the complete data can be written as

`comp(γ, λ|y, z1) =
n

∑
i=1

(z1iγ− log(1 + eγ) +
n

∑
i=1

(1− z1i) log pyi(λi). (11)

Lambert [3] used Equation (11) as the complete data log-likelihood for the ZIP model
to get the EM estimates.

We now proceed to describe in detail the EM algorithm for the ZkIP model. The first
step in the EM algorithm involves selecting some initial values for the unknown parameters.
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The choice of the initial values is important for the convergence of the algorithm. An
incorrect choice of the initial values could result in slow convergence or breakdown of the
algorithm. We recommend using the proportions of zeros and k’s from the observed data
as initial values for the parameters π1 and π2, respectively. Then, we use the relations (6)
to get initial values γ0 and δ0 for the parameters γ and δ, respectively. The initial values of
β can be obtained by fitting a Poisson model on the data. The initial values β0 can be used
as the coefficients of the covariates.

The next step involves filling the latent values zi by its expectations, which is the
E-step. We use the conditional expected values of E(z|y) given in Table 2 to generate zi’s.
Note that Table 2 is a reparametrized version of Table 1.

Table 2. E(z|y) for the ZkIP regression model.

z = (z1, z2, z3) y = 0 y = k y 6= 0, k

z1
eγ

eγ + p0i(λi)
0 0

z2 0
eδ

eδ + pki(λi)
0

z3
p0i(λi)

eγ + p0i(λi)

pki(λi)

eδ + pki(λi)
1

We use Table 2 to estimate the missing values in the expectation step of the EM
algorithm as follows:

ẑ1i = E(z1i|yi = 0) =
eγ

eγ + p0i(λi)
and ẑ1i = E(z1i|yi = k) = 0,

ẑ2i = E(z2i|yi = k) =
eδ

eδ + pki(λi)
and ẑ2i = E(z21i|yi 6= k) = 0. (12)

For the maximization step in the EM algorithm, instead of maximizing the complete
likelihood directly, we solve the score equations

∂`comp

∂β
=

n

∑
i=1

ẑ3i(yi − exT
i β) xi = 0

∂`comp

∂γ
=

n

∑
i=1

ẑ1i −
neγ

(1 + eγ + eδ)
= 0 (13)

∂`comp

∂δ
=

n

∑
i=1

ẑ2i −
neδ

(1 + eγ + eδ)
= 0,

where ẑ3i = (1− ẑ1i − ẑ1i) and `comp is defined in (10). In summary, the EM algorithm to
estimate the parameters γ, δ, and the regression parameter β for the ZkIP regression model
can be summarized as follows.

1. Select initial values β0, γ0, δ0 for the parameters β, γ, and δ respectively.
2. E-step: Estimate ẑ1i, ẑ2i using Equation (12).
3. M-step: Solve the score Equation (13) and obtain an updated estimates β1, γ1, δ1.
4. Repeat the E-step and the M-step until the parameter estimates converge.

In the next section, we will discuss how to obtain standard errors of the EM estimates.

3.2. Standard Errors for EM Estimates

The most commonly used method to get the standard errors in the mixture models is
to compute the matrix of partial derivatives of the log-likelihood for the observed data, that
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is, to calculate the information matrix from the observed data. The optimization algorithms
routinely output a numerically computed Hessian matrix for the functions that are being
optimized. Lambert [3] used this method for computing the standard errors for the ZIP
regression model. Lin and Tsai [1] used the Hessian matrix to get the standard errors
for the ZkIP model without actually computing second-order partial derivatives of the
log-likelihood.

However, for the EM framework, an appropriate and easier approach for obtaining the
standard errors is the method outlined by Louis [4]. The method is based on the complete
and missing data log-likelihoods. The relation between the likelihood of the complete,
observed and missing data is given by

Lcomp(θ | y, z) = Lobs(θ|y) Lmiss(θ | (z|y)), (14)

where y and z stand for the observed and missing data, respectively. Taking log on both
sides of (14), we get

`comp(θ | y, z) = `obs(θ|y) + `miss(θ | (z|y)) (15)

We can see from Equation (15) that the information matrices for the complete, observed,
and missing data satisfy the following equation:

Icomp = Iobs + Imissing, (16)

where Icomp is obtained using (15) as

Icomp =



−
∂2`comp

∂ββT −
∂2`comp

∂β∂γ
−

∂2`comp

∂β∂δ

−
∂2`comp

∂γ∂β
−

∂2`comp

∂γ2 −
∂2`comp

∂γ∂δ

−
∂2`comp

∂δ∂β
−

∂2`comp

∂δ∂γ
−

∂2`comp

∂δ2


. (17)

Equation (16) can be re-written as

Iobs = Icomp − Imiss. (18)

Since the right-hand side of Equation (18) depends on the missing data, Louis [4]
has recommended taking the conditional expected value of the missing data given the
observed data. Therefore, we have

Iobs = E(Iobs|y) = E(Icomp|y)− E(Imiss|y). (19)

Thus, the estimate of the observed information matrix is given by

Îobs = E(Icomp|y)− E(Imiss|y). (20)
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The elements of the expected information matrix E(Icomp|y) are given in Appendix A.1.
Using (7), (10), and (15), the log-likelihood of the missing data for the ZkIP regression
model is given by

`miss(β, γ, δ) =
n

∑
i=1

(z1iγ + z2iδ + z3i log pyi(λi))− ∑
i:yi=0

log(eγ + p0i(λi))

− ∑
i:yi=k

log(eδ + pki(λi))− ∑
i:yi 6=0,k

log pyi(λi). (21)

The elements of the matrix E(Imiss|observed) are the negative of the expected value
of second-order derivatives of (21), and these are given in Appendix A.2. Using these
second-order derivatives, we can compute Îobs given in Equation (20). The square root of

diagonal elements of
(
Îobs

)−1
gives the standard errors of the EM estimates.

4. Model Selection and Model Fit

In statistical inference, estimation of the parameters is usually followed by testing the
significance of the parameters and selecting the best model for the data. Hence, in this
section, we discuss the hypothesis testing to the significance of inflation at zero and k—in
other words, whether ZkIP significantly fits the data better than the ZIP or the Poisson
model. There are various criteria to select the best model. We use the Akaike Information
Criterion (AIC) and the likelihood-ratio method to arrive at the best model that fits the
data. These details will be illustrated with a couple of real-life data analyses in Section 5.

4.1. Hypothesis Testing

Here, we discuss hypothesis testing to determine significant parameters and covariates.
In the ZkIP model, the parameters π1 and π2 represent the proportion of observations that
come from degenerate distributions, and the parameter β determines the effects of the
covariates in the model. Let θ̂ = (π̂1, π̂2, β̂) denote the EM estimates of these parameters.
Assume that the true value θ0 = (π0

1, π0
2, β0) is in the interior of the parameter space,

that is, 0 < π0
1 + π0

2 < 1 and −∞ < β0 < ∞. Under usual regularity conditions, θ̂

is asymptotically normal with mean θ0 and covariance matrix is given by (Îobs)
−1. We

can use this result to construct a Wald’s test for testing the hypotheses that a specified
proportion 0 < π0

2 < 1 of observations come from a degenerate distribution at k or a
specified proportion 0 < π0

1 < 1 come from the degenerate distribution at zero. Similarly,
the hypothesis H0 : β = β0 could be tested for significance using Wald’s test.

The FMM and Countreg procedures in SAS use the parameters γ = log(π1/π3)
and δ = log(π2/π3) and test for the hypothesis H0 : (γ, δ) = (0, 0). This hypothesis
is equivalent to testing H0 : (π1, π2) = (π0

1 = 1/3, π0
2 = 1/3), which can be done

using Wald’s test because π0
1 = 1/3 and π0

2 = 1/3 are values in the interior of the
parameter space.

As we discussed in Section 2, the ZkIP, ZIP, and the Poisson model form a group of
three nested models in the sense that Poisson is a special case of ZIP which is a special
case of ZkIP. Thus, one could use the likelihood ratio test (LRT) to test the significance of
the nested models, that is, whether the ZkIP model could be replaced by the ZIP model
or whether the ZIP model could be replaced by the Poisson model. We need to test the
null hypothesis H0 : π2 = 0 to see whether there is a significant or insignificant inflated
frequency at count k. The acceptance of the null hypothesis implies that we can replace
the ZkIP model with the ZIP model. Similarly, the acceptance of H0 : π1 = 0 implies
that inflation at zero is insignificant, and the ZIP model can be replaced by the Poisson
model. Since 0 ≤ πi ≤ 1, (i = 1, 2), the null hypothesis H0 : πi = 0 corresponds to testing
a parameter value on the boundary. Therefore, the standard asymptotic theory for the
likelihood ratio statistic is not applicable. The asymptotic distribution of the likelihood
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ratio statistic is not a χ2 distribution, but is a mixture of χ2 distributions [39,40]. In fact, the
test statistic −2 log L approaches a 50:50 mixture of χ2

0 and χ2
1.

4.2. Model Selection

We can use several criteria for selecting the appropriate model between the three
competing models, Poisson, ZIP, and ZkIP. A popular criterion is the Akaike Information
Criteria (AIC). The AIC was introduced by [41], and it is calculated as −2 `+ 2m, where
` is the maximum value of the log-likelihood and m is the number of parameters for the
model under consideration. The log-likelihood tends to increase as we move from a simpler
model to a complex one. The constant 2 m penalizes the complex model since it will have
more parameters than the simple model. This avoids overfitting the model for the data. To
select the best model, we use minimum AIC criteria and apply Burnham and Anderson’s
approach [42]. The interpretation of AIC is weighty when different values are compared.
Thus, it is a relative term and not an absolute term that is of importance. The approach
given in [42] is based on AIC differences ∆i = AICi − AICmin, where AICi is the AIC of the
i-th model and AICmin is the minimum AIC of the models in the study. The lower values
of ∆i imply that there is not much difference between model i and model with minimum
AIC—while, from higher values of ∆i, we can infer that the model with minimum AIC is
better than model i (Table 3) .

Table 3. Rough rules of thumb for model selection based on AIC differences.

∆i Level of Empirical Support of Model i

0 ≤ ∆i ≤ 2 Substantial
4 ≤ ∆i ≤ 7 Considerably less
∆i > 10 Essentially none

4.3. Goodness of Fit

For count data, the most commonly used statistic for testing the goodness-of-fit test
is the Pearson chi-square statistic χ2 = ∑c

i=1(oi − ei)
2/ei, where oi is observed frequency

and ei is the expected frequency of the i-th category, and c is the total number of categories.
Asymptotically, the χ2 statistic follows a chi-square distribution with (c− 1) degrees of
freedom. The test is not the best when there are inflated frequencies. An alternate and
simple measure for checking the goodness-of-fit among competing models is the sum of
Absolute Error (ABE), which is defined as

Sum of ABE =
c

∑
i=1
|oi − ei|.

The model that has a minimum sum of ABE has the least deviation between the
observed and expected frequencies. Hence, the model with a minimum error fits data
the best.

5. Applications

In this section, we illustrate the results presented in Sections 3.1 and 3.2 on two real-life
data sets. These data sets were obtained from the National Health Interview Survey (NHIS)
conducted by the National Center for Health Sciences (NCHS). Since 1957, NCHS has been
collecting and archiving data on US residents. The data are collected annually on various
health topics, including immunizations, depression, hepatitis, cancer, tobacco use, and
other variables related to health. For our illustrations, we took a subset of data that was
collected in the year 2015. We fit the zero- and k-inflated Poisson (ZkIP) model for both
the data sets and compare them to the zero-inflated Poisson (ZIP) and Poisson models.
The first example illustrates a ZkIP model with inflations at 0 and k = 6, while the second
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example demonstrates a zero- and one-inflated Poisson (ZOIP) model with inflations at 0
and k = 1.

5.1. Pap Smear Data

Cervical cancer is a major concern for the female population. A common preventive
and early detection screening procedure for cervical cancer is the pap smear test. In this
example, the data consist of the number of pap smear tests a female took in the last six
years for females aged more than 18 years. The count variable represents responses to two
questions in the survey: (1) Have you ever had a Pap smear or Pap test? and (2) How many
Pap tests have you had in the last 6 years?. If the reply to the first question is a ‘No’, then the
number of tests done is reported zero, while, if the reply is a ‘Yes’, then the number of tests
done is the same as the reply to the second question. The data also consist of the age of
the female respondent and her answer to the question, “Do you ever received HPV shot or
vaccine?”. Here, age is a continuous variable, whereas the response to HPV shot/vaccine is a
dichotomous variable. Both of these variables could be treated as covariates in the model.

There were 33,672 females interviewed in the survey, out of which about 3.5% choose
not to answer, or their response was not recorded. We performed a list-wise deletion to clean
the data and ended up with a data set consisting of 12,014 independent observations. The
mean number of the pap smear tests for the data thus obtained is 3.40 and the variance is
5.25. The percentage (count) of females who never took a pap smear test was 15.68% (1884),
and the percentage (count) of females who had one pap smear each year for a total of six
in the last six years was 29.17% (3504). The proportions of zero and six in the data set
are inflated, and both of these proportions are more than what we would expect under a
Poisson model. Therefore, an appropriate model for these data is the zero and six inflated
Poisson model or the ZkIP model with k = 6.

Using the methods described in Sections 3.1 and 3.2, we fitted ZkIP, ZIP, and the
Poisson models for this pap smear data. We tested the significance of age and HPV shot
covariates in the models using Wald’s test. The variable age was not significant in the ZkIP
and ZIP models. Thus, age was removed in subsequent analysis, and we reran the models
with only HPV shot as the covariate.

The regression parameter is significant for all the models at α = 0.05. The estimates
obtained by the EM algorithm and the corresponding standard errors for the EM estimates
described in Section 3.2 are presented in Table 4. For the ZkIP model, the mixing parameter
estimates were π̂1 = 0.126 and π̂2 = 0.26, meaning about 12.6% of the zeros were from the
degenerate distribution and 26% of the observed frequencies of six pap smear count were
from a degenerate distribution at six. The table also has the AIC value and the maximum
value of the log-likelihood function for different models. The AIC values of the ZkIP, ZIP,
and Poisson models are 46,523.89, 52,205.70, and 56,061.88, respectively. The ZkIP model
has minimum AIC, and ∆ZIP is greater than 5000 and ∆Poisson > 9000. Thus, according to
Table 3, the empirical support for both the Poisson and ZIP model is “essentially none”.
Thus, for these data, adding one more distribution, which is degenerate at six to the model
or the ZkIP with k = 6, is a better model than the ZIP or Poisson model.

Recall that the three models Poisson, ZIP, and ZkIP, are nested models, and we could
use the likelihood ratio criterion described in Section 4 to decide whether the complex
model could be reduced to the simpler model. The LRT statistic, which compares the
Poisson model with the ZIP, is −2 log Λ = 3860.18 and the p-value is computed using the
limiting distribution, which is a mixture of two χ2’s with equal weights, is less than 0.0001.
This implies that the inflation at zero is significant, and the ZIP model is significantly better
than the Poisson model. Similarly, we use LRT to compare ZkIP with the ZIP model. The
value of the test statistic is −2 log Λ = 1469.85, which is again highly significant with a
p-value less than 0.0001. Hence, ZkIP is significantly better than the ZIP model.
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Table 4. Estimates and standard errors for pap smear data. The significant regression coefficients are
marked with an asterisk.

Parameter ZkIP ZIP Poisson

Intercept 1.0837 * 1.3696 * 1.2192*
(0.0086) (0.0054) (0.0053)

HPV shot 0.0727 * 0.0333 * 0.0276 *
(0.0235) (0.0154) (0.0152)

γ̂ −1.5844 −1.8132 –
(0.0331) (0.0184)

δ̂ −0.8526 – –
(0.0235)

π̂1 0.1257 0.1402 –
(0.0026) (0.0022)

π̂2 0.2613 – –
(0.0018)

log Lobs −25,363.93 −26,098.85 −28,028.94
AIC 46,523.89 52,205.70 56,061.88

Furthermore, we check the goodness-of-fit of the models by comparing the observed
frequencies and the expected frequencies. The observed and predicted frequencies are in
Table 5. Table 5 shows that the Poisson model has the highest sum of absolute error (ABE)
and does not provide a good fit to the data. The error 5685.69 of the ZIP model is lower
than that of the Poisson model 8086.16, while the sum of the absolute difference between
the observed and expected frequency is minimum (1130.93) for the ZkIP model. Therefore,
the ZkIP, which is able to capture inflated frequencies at both zero and 6, is a superior
model for these data compared with ZIP and the Poisson model.

Table 5. Frequency comparisons for pap smear data.

Count Observed ZkIP ZIP Poisson

0 1884 1884.24 1883.47 402.81
1 1417 1112.73 785.54 1366.85
2 1362 1661.47 1553.79 2323.12
3 1536 1648.59 2043.78 2627.90
4 1115 1228.13 2016.95 2230.12
5 905 732.45 1592.78 1514.29
6 3504 3504.14 1048.87 857.41

>6 291 162.46 600.28 421.80

Sum of ABE 1130.93 5685.69 8086.16
χ2 297.64 7263.93 15,312.36

5.2. Emergency Room Data

The data for this example were taken from the NHIS 2015 database on children aged
less than 18 years. The count variable is the number of visits to an emergency room (ER) of
children in a year. We choose age (0–17) and gender (Male/Female) as the covariates. We
remove the cases where the response or the covariates are missing and end up with a clean
data set of n = 12,223 children. The average number of visits to the ER in our sample is
0.26, and the variance is 0.45. In the data, the count values 0 and 1 have frequencies 10,046
and 1466, respectively. These frequencies are high because they account for 82.19 and 11.99
percentages of the total sample.

We fit zero- and one-inflated Poisson (ZOIP), zero-inflated Poisson (ZIP), and the
Poisson model for these data. The significance of the regression variables is tested using
Wald Test. In the first iteration, the gender variable was insignificant in all three models,
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so it was removed from the models. The analysis is again performed with only age as the
covariate. The model estimates and standard errors are presented in Table 6.

Table 6. Estimates and SE for ER data.The significant regression coefficients are marked with
an asterisk.

Parameter ZkIP ZIP Poisson

Intercept 0.1173 * -0.0314 * −1.0512 *
(0.0610) (0.0395) (0.0312)

Age −0.0217 * −0.0252 * −0.0358 *
(0.0044) (0.0039) (0.0033)

γ̂ 1.0959 0.7098 –
(0.1210) (0.0427)

δ̂ −2.0450 – –
(0.3853)

π̂1 0.7260 0.6704 –
(0.0213) (0.0094)

π̂2 0.0314 – –
(0.0679)

log Lobs −7736.62 −7741.19 −8295.23
AIC 15,481.24 15,488.39 16,594.00

The AIC value of the ZOIP, ZIP, and Poisson models are 15,481.24, 15,488.39, and
16,594.00, respectively. On calculating the AIC differences, we obtain ∆ZIP = 7.15, ∆Poisson =
1112.76. The AIC difference between ZIP and Poisson models gives ∆ = 1105.61. Clearly,
the ZIP model performs better than the Poisson model. Furthermore, the ZIP model
has “considerably less” support than the ZOIP model (Table 3). We also performed the
likelihood ratio test for model selection. The LRT statistic for testing the Poisson model
over ZIP is given by −2 log Λ = 1108.08, which is highly significant. The LRT statistic
−2 log Λ = 9.15 shows that the ZOIP model is significantly better than the ZIP. Hence,
both the AIC and LRT criteria show that ZOIP fits best for these data.

The observed and expected frequencies of the ZOIP, ZIP, and Poisson models are in
Table 7. The ZIP model is able to capture the inflation at count zero. However, the ZOIP
model is able to capture the inflation at count zero and one as well. The conclusions are
also supported by the sum of ABE measure. In conclusion, the ZOIP model gives a good fit
to the observed data.

Table 7. Frequency comparisons for ER data.

Count Observed ZOIP ZIP Poisson

0 10,046 10,047.60 10,049.72 9450.22
1 1466 1465.98 1436.96 2499.80

2–3 548 523.82 588.65 356.52
4–5 92 170.26 162.21 34.31
6–7 37 41.01 33.08 2.43
8–9 12 6.92 4.65 0.12

10–12 13 0.86 0.47 0.00
>12 9 0.21 0.10 0.00

Sum of ABE 134.07 176.32 1947.20
χ2 586.40 1150.84 304,381.20

6. Discussion

In this article, we developed the Expectation–Maximization (EM) algorithm for the
ZkIP model generalizing the results of seminal work by Lambert [3]. The EM algorithm is a
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computationally simpler approach to get the estimates of the unknown model parameters.
However, unlike Lambert [3], we obtain the standard errors of the parameters using the
approach developed specifically for the EM algorithm by Louis [4], which we believe is
the right approach. We demonstrate our methods on two real-life data, showing that, in
count data, if there is inflation at two points zero and k, then ZkIP outperforms the simpler
Poisson models, ZIP, and Poisson according to AIC and LRT criteria.

In our regression model, for simplicity, we assumed the Poisson parameter depends
on the covariates, and the obvious extension is linking the covariates to the inflation
parameters π1 and π2 as well. In that case, Equation (6) becomes log(π1/π3) = ui

Tγ
and log(π2/π3) = vi

Tδ. The covariate vectors ui and vi may or may not be the same.
This will result in higher dimensionality of the information matrix. The variable selection
methodologies in this article could be used to obtain a simpler model. Other possible
extensions are obtained replacing the Poisson distribution with generalized Poisson or
Conway–Maxwell Poisson (CMP). In particular, we could implement the EM algorithm for
the ZkICMP model studied by [32]. These extensions are currently our work in progress.
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Appendix A

As discussed in Section 3.2, the information matrix of the complete data can be used
to get the standard errors of the EM estimates. Here, we provide the elements of the
information matrix of the complete and missing data.

Appendix A.1. Information Matrix of the Complete Data

The elements of the matrix E(Icomp|y) are the expected values of the negative of
second-order partial derivatives of the complete data log-likelihood (10), and they are
given by

E

[
−∂2`comp

∂β∂βT

]
=

n

∑
i=1

[p0i(λi) pki(λi)− eγ+δ] λi

[eγ + p0i(λi)] [eδ + pki(λi)]
(xixT

i )

E

[
−∂2`comp

∂γ2

]
=

neγ(1 + eδ)

(1 + eγ + eδ)2

E

[
−∂2`comp

∂γ∂δ

]
=

−neγ+δ

(1 + eγ + eδ)2

E

[
−∂2`comp

∂δ2

]
=

neδ(1 + eγ)

(1 + eγ + eδ)2 .

The two elements −∂2`comp/∂β∂γ and −∂2`comp/∂β∂δ are equal to zero and the other
elements are obtained by symmetry.

https://www.cdc.gov/nchs/nhis/nhis_2015_data_release.htm
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Appendix A.2. Information Matrix of the Missing Data

The elements of the matrix E(Imiss|observed) are the negative of the expected value of
second-order derivatives of (21). These are given by the following equations:

E

[
−∂2`miss

∂β∂βT

]
= −E

[( n

∑
i=1

z3iλixixT
i − ∑

yi 6=0,k
λixixT

i

− ∑
i:yi=0

eγ p0i(1− λi) + p0i
2

(eγ + p0i)2 λixixT
i

− ∑
i:yi=k

eδ pki(λi − (k− λi)
2) + pki

2λi

(eδ + pki)2 xixT
i

)∣∣y]

=
n

∑
i=1

p0i pki − eγ+δ

(eγ + p0i)(eδ + pki)
λixixT

i − ∑
i:yi=0

eγ p0i(1− λi) + p0i
2

(eγ + p0i)2 λixixT
i

− ∑
i:yi=k

eδ pki(λi − (k− λi)
2) + pki

2λi

(eδ + pki)2 xixT
i

and

E
[
−∂2`miss

∂β∂γ

]
= ∑

i:yi=0

eγ p0iλixi

(eγ + p0i)2

E
[
−∂2`miss

∂β∂δ

]
= − ∑

i:yi=k

eδ pki(k− λi)xi

(eδ + pki)2

E
[
−∂2`miss

∂γ2

]
= ∑

i:yi=0

eγ p0i
(eγ + p0i)2

E
[
−∂2`miss

∂γ∂δ

]
= 0, E

[
−∂2`miss

∂δ2

]
= ∑

i:yi=k

eδ pki

(eδ + pki)2 .

E(Imiss|observed) is a symmetric matrix, so the remaining off-diagonal elements can be easily
obtained.
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