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Abstract: This work is devoted to the description and comparative study of some methods of
mathematical modeling. We consider methods that can be applied for building cyber-physical
systems and digital twins. These application areas add to the usual accuracy requirements for a
model the need to be adaptable to new data and the small computational complexity allows it to
be used in embedded systems. First, we regard the finite element method as one of the “pure”
physics-based modeling methods and the general neural network approach as a variant of machine
learning modeling with physics-based regularization (or physics-informed neural networks) and their
combination. A physics-based network architecture model class has been developed by us on the
basis of a modification of classical numerical methods for solving ordinary differential equations. The
model problem has a parameter at some values for which the phenomenon of stiffness is observed.
We consider a fixed parameter value problem statement and a case when a parameter is one of the
input variables. Thus, we obtain a solution for a set of parameter values. The resulting model allows
predicting the behavior of an object when its parameters change and identifying its parameters based
on observational data.

Keywords: cyber-physical systems; hybrid models; physics-based; physics-informed; stiffness;
differential equations; multilayer model; parameterized problem; singular perturbation

1. Introduction

The development of technologies that make it possible to obtain data from envi-
ronments, observed objects, and processes and process them with sufficient speed and
efficiency leads to the widespread implementation of cyber-physical systems (CPSs) [1].
As a part of the operating of these systems, the received information (data) is synchronized
with a corresponding physical or information object. The result of such synchronization
is a digital twin (DT) of an object, i.e., a model of a complex system. The DT continues to
synchronize with the modeled object and reflect its dynamic characteristics that change
over time. Such models can be used to conduct digital experiments, implement alternative
external scenarios, and predict the behavior of an object in the future without affecting or
changing a real prototype.

The issue of building DTs and the simultaneous development of artificial intelligence
technologies have led to the emergence of so-called “pure” data-driven modeling “black
boxes”, in which a model is created on the basis of deep learning using big data. While
the possibility of obtaining such data has been growing in recent times, the cost of storing
and processing data has increased along with a rise in data volumes. In addition, for some
complex industrial and technological processes, the acquisition of a large amount of data
itself can be accompanied by high expenditure and, sometimes, a lack of measurement
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possibilities. In these cases, the data can be utilized to verify a model built by classical
modeling methods based on the physics of an object, including numerical methods for
solving corresponding problems of mathematical physics.

The intention to preserve the advantages and eliminate the disadvantages of both types
of methods is reflected in the new classifications of existing modeling paradigms [2–4].
Physical laws provide interpretability and extrapolation properties to data-driven models
which, in turn, connect theoretical models to real objects. We do not aim at repeating or
improving the overviews of different models. However, the description of various model-
ing classes seems essential. Ref. [2] reviews the concepts of DT modeling and highlights
the value of the DT in the modern world and its application in various sectors of the
economy. Among the models combining physics and data-based modeling, [2] points out
four categories formed by the mutual integration of the following modeling approaches:
physics-based modeling, data-driven modeling, and big data methods. A similar classi-
fication can be found in [5]. The article [3] focuses on the CPS application and provides
a detailed classification of hybrid models, distinguishing among physics-based machine
learning modeling classes of algorithms that differ in the nature of interaction between
physics-based and machine learning (ML) approaches to modeling. Firstly, these are the
methods that utilize physics theory for the preprocessing of data, which then arrive at
an input of a neural network in ML. The second type of model comprises those in which
prior knowledge of the physics of an object is reflected in an architecture of a network.
Thirdly, one of the most popular hybrid modeling methods is underlined, which consists
of using physics equations as an additional regularization term in the loss function of
an ML model. Similar classes are described in [6]. In [3], models in which activation
functions are physically interpretable also act as a separate class. In [4,7], in addition to
those mentioned above, embedding approaches are pointed out, in which data-driven
models are used as components of classical physics-based models to speed up, simplify, or
replace a numerical solution.

The authors of one of the most cited recent papers on hybrid modeling of complex
systems [8] mention that, among others, they have been inspired by the work [9] dedicated
to the use of neural networks to solve ordinary and partial differential equations. Let
us note that in our work [10], published in 2005, we talk about solving problems of
mathematical physics by using both neural networks and real measurements. From the
point of view of modern classification, we can regard this approach as a hybrid model with
physics-based regularization.

In this article, we consider our previously developed methods of hybrid modeling and
their modifications in the context of the modern classification of paradigms for modeling
complex dynamic systems. We present the principles of building physics-based network
models naturally capable of further adaptation and refinement using measurement data
and other additional data.

We have chosen the problem of modeling a system described by a boundary value
problem with an unknown parameter as a specific issue of this paper. Problems involving
differential equations with unknown parameters frequently arise in the modeling and
control of CPS. These parameters can be regarded as dynamic and changing with time
according to an unknown law. When describing complex systems, the parameter can
characterize the conditions in which the object exists, or a specific part of this object. Thus,
the parameter can influence a type of the differential problem under question. It can
be considered a hard problem, an ill-posed problem, a problem with a small parameter
at the highest derivative, and, accordingly, a problem with a boundary layer, and other
types. Let us note that, when solving a problem with an unknown parameter, we do
not set to ourselves the task of identifying this parameter, dubbed data-driven discovery
of differential equations. As a result of applying methods described below, we obtain a
parametric solution that is universal for various parameter values belonging to a predeter-
mined interval that is used in the construction and training of a neural network solution.
The resulting pre-trained model can be further adapted by training on the measured data.
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Based on these measurements, unknown parameters can also be estimated by any means
or adjusted using additional training of the network. A similar problem is solved in [11],
where simulating a lake’s temperature is considered. The authors of [11] use the loss
function with physics-based regularization to pre-train a recurrent neural network model
before adapting it by means of measurements of a certain lake. They also suggest using the
finite element method data as a training dataset.

It is necessary to make a remark about the accuracy of a solution to the problem.
Nowadays, there are two fundamentally different approaches to mathematical modeling.
The first one is traditional and involves passing from a simulated object to a model in the
form of a differential equation (system of equations) with additional conditions (initial,
boundary, etc.). Further, this model is considered the object itself and an approximate
solution is constructed based on it. The higher the accuracy of such a solution, the more
accurate the model of the original real object appears to be. The second approach, which
we adhere to, is that the differential model built on the basis of physical principles is
certainly approximate. For real complex technical objects, the accuracy of similar models
is often low. Therefore, the solution of differential equation(s) with high accuracy has no
practical sense. More promising is the construction of an adaptive model that corresponds
to the differential equation and additional conditions with reasonable accuracy and the
subsequent adaptation of this model to the data of object observations. This approach
is especially relevant in a situation when the properties of an object can change during
its operation.

The paper [12] considers hybrid systems, which are a class of problems that cycli-
cally switch between two phases: the first is described by a stiff system of differential
algebraic equations of motion (interaction with the ground), the second corresponds to
the flight phase and is specified by a non-stiff system. Using a specific problem (hopping
single-legged robots) as an example, the authors of [12] compare various ODE (ordinary
differential equation) solvers, including those common in the Matlab package. It is noted
that although different solvers work well for different types of problems, due to the con-
stant restart of the numerical solver, the accuracy of the solution diminishes and the cost of
computation increases. This problem could be solved with a simple universal approach.
Ref. [13] considers the need to solve a parameterized problem that also arises when study-
ing a wide range of complex physical phenomena, when, while modeling many different
possible implementations of the system, large requirements for computational resources
lead to the forced use of the apparatus for reducing parametric models. The authors
underline the importance of such parametric models in global problems of design, control,
optimization, and quantification of uncertainty. The development of a controller that works
effectively for all values of model parameters is regarded as an urgent task. Ref. [14]
proposes a solution to a parameterized differential problem by the FEM for an interval
parameter based on interval arithmetic. However, as a result they obtain only the cor-
responding interval boundaries of the solution. Earlier, the authors of the given article
studied the construction of a unified solution to one parameterized differential problem,
which, for some values of the parameter, is stiff [15]. The unified neural network approach
was applied using various additional information of heterogeneous types to improve the
quality of an approximate solution. In [16], we successfully applied this approach to solve
various types of problems with parameters. A stiff differential problem and a differen-
tial algebraic problem with different numbers of solutions were solved. In the catalyst
problem, we solved the problem in a region that is wider than the domain of existence
of the solution to the differential equation. The authors of [17] also used trainable neural
networks with a single hidden layer to obtain a differentiable closed-form solution for a
class of parameterized initial-value systems with varying degrees of stiffness. Ref. [18]
highlights the growing interest in the development of numerical methods for solving
similar problems and suggests a method based on a rational spectral collocation. Adaptive
grid methods are considered in [19–22]. Ref. [23] proposes a special neural network for
solving linear singularly perturbed differential equations with initial and boundary values.
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We note the advantage of low computational costs of the application of neural network
models after the training phase. However, when describing systems with uncertainty,
the structure of the differential problem itself may often be unknown in advance. Thus,
the need arises for building an analytical solution that does not require real-time training
and reflects the model under consideration for different parameter values. This approach
related to physics-based network architectures is presented in this paper as an extension of
the multilayered techniques [24].

We have planned the structure of this manuscript as follows. Section 2 discusses the
methods of constructing the models of systems described in the form of a classical non-
parameterized boundary value problem. Through expansion in basis functions, the basic
principles of the finite element method (FEM) [25] as one of the “pure” physics-based
modeling methods, and the general neural network approach [10] as a variant of ML
modeling with physics-based regularization, are presented. In Section 2.3, the ML model
is proposed to be improved by using prior knowledge of the physics of an object in the
form of a training data set. The values of an FEM solution in the nodes are utilized
instead of measurement results for additional training of the neural network model. A
less popular modeling class, named physics-based network architectures, is suggested in
Section 2.4 as a special multilayered model based on classical numerical methods. Section 3
is devoted to methods of constructing models in cases where the parameters included
in the corresponding equations may not be known. In particular, guidance for using the
methods described in Sections 2.3 and 2.4 for parameterized problem setting is discussed.
We want to emphasize that this certain problem statement is our major interest in this
work. Approaches to solving the problem with a fixed parameter are presented to facilitate
an understanding of methods for solving parameterized problems. Section 4 features the
parameterized singular perturbation problem and presents the results of applying the
previously described methods to the model construction. Section 5 contains conclusions
and considerations for future research.

2. Materials and Methods. Ordinary Problems

To clarify the methods, let us formulate as an example a boundary value problem{
Au = g, u = u(x), x ∈ Ω ⊂ Rp;

Bu|Γ = f ;
(1)

where A is a differential operator, i.e., an algebraic expression containing derivatives of an
unknown function u, B is some operator specifying the boundary conditions, and Γ is the
boundary of some domain.

We seek an approximate solution in the form of an expansion in basis functions vi

uN(x) =
N

∑
i=1

civi(x). (2)

Searching for a solution in form (2) is usually called the Galerkin method. Its special
cases include different variants of the FEM and neural network models, in which equations
based on physics are used as an additional term for the regularization of the loss function.
In this case, this models differ in the features of the selection of basis functions and
parameters ci.

2.1. Methods with Fixed Basis Functions

First, let us distinguish a group of methods in which basis functions vi(x) are fixed
and only parameters ci are adjusted. The extreme learning machine (ELM) algorithm [26]
for single hidden layer feedforward neural networks (SFLNs) randomly chooses internal
weights and biases of basis functions and then analytically obtains the output weights
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ci. Ref. [27] proposes the incremental method for SFLNs and also shows its efficiency for
SLFNs with piecewise continuous basis functions.

A similar approach is typical for the simplest version of the FEM. There are two
conventional approaches to finding the parameters ci. The first, the most common of
them, is that the space with the dot product a(x) · b(x) is regarded as the space in which
the solution is sought. The simplest version of such a dot product is the product in the
integral form a(x) · b(x) =

∫
Ω a(x)b(x)dx. In this way, the parameters ci are found from

the condition of orthogonality of the residual of Equation (1) to all the basis functions

(AuN(x)− g(x)) · vi(x) = 0. (3)

It is easy to ascertain that they can be found as a solution to the system

N

∑
i=1

ci Avi(x) · vj(x) = g(x) · vj(x). (4)

If the integral cannot be calculated explicitly, it can be calculated by using cubature
formulas or through the mean value

a(x) · b(x) ∼=
1
M

M

∑
j=1

a(ξ j)b(ξ j). (5)

Basis functions usually satisfy the homogeneous boundary condition Bvi|Γ = 0 .
To satisfy the inhomogeneous boundary condition, additional term v0(x) is added to sum
(2). This term satisfies the inhomogeneous boundary condition Bv0|Γ = f . The sum takes
the form uN(x) = v0(x) + ∑N

i=1 civi(x).
Accordingly, the substitution uN(x) into (3) yields a linear system of the form

N

∑
i=1

ci Avi(x) · vj(x) = (g(x)− Av0(x)) · vj(x), j = 1, . . . , M. (6)

Or, for the discrete form of the loss function,

N

∑
i=1

ci

M

∑
k=1

Avi(ξk) · vj(ξk) =
M

∑
k=1

(g(ξk)− Av0(ξk)) · vj(ξk), j = 1, . . . , M. (7)

This approach is referred to as the collocation method.
The above basis functions are usually chosen so that their supports intersect only for a

small number of functions, while the matrix of system (4) is sparse, which greatly speeds
up the solution procedure.

The second approach is that the quality of the solution to problem (1) is characterized
by a loss function (dubbed the error functional or error function) J, the minimization of
which leads to the needed parameters ci.

As shown above, we can use the integral form of the loss function, for example,
(AuN(x)− g(x)) · (AuN(x)− g(x)).

If it is difficult to calculate the dot product explicitly, then we can use the discrete form

J =
M

∑
j=1

(AuN(ξ j)− g(ξ j))
2. (8)

The finite element method is characterized by using basis functions (elements) with a
compact support localized in small subdomains of Ω . In this case, the supports of the basis
functions intersect and cover the entire domain Ω. With this method, if the supports of the
basis functions intersect only with a small number of supports of other basis functions,
the matrix of the system turns out to be sparse.
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For piece-wise linear elements, direct application of Formula (4) may be impossible
due to the absence of derivatives of the required order. In several cases, this problem can be
solved by applying the Stokes formula or by the corresponding version of the integration
by parts formula.

2.2. Physics-Based Neural Network Approach

When solving stiff problems, the previously considered approach with fixed basis
functions does not work well, and these functions have to be adjusted during the solving
process. In [28], the ELM learning algorithm with a tunable basis function is studied.

At first glance, the general neural network approach is similar to the previous ones,
only expansion (2) is specified by the expression

uN(x) =
N

∑
i=1

civ(x, ai). (9)

By solving the optimization problem for a certain loss function, both linear parameters
ci and vector parameters (weights and biases) ai are adjusted. Functions typical of neural
networks are used as basis functions. These are usually radial basis functions (RBFs) or
perceptron-type functions with sigmoid basis functions.

2.2.1. Multilayer Perceptron

This type of neural network is the most widely used and researched. Let us describe its
structure. Let the input be an m-dimensional vector. Linear combinations of coordinates of
the input of the form (w, x) are fed to the input of the first layer of neurons. The coefficients
of these combinations are named the weights of the first layer. Each neuron acts as a
one-dimensional non-linear function dubbed an activation function. Linear combinations
of outputs of neurons are fed to the next layer, and linear combinations of outputs of
neurons of the last layer form the output of the network. An additional neuron, whose
output always equals 1, is often added to all or some of the layers. Its meaning is the
same as adding bias to linear regression, i.e., in fact, the subtraction of a constant value.
Experience has shown that this greatly improves network training. In addition, an input
is often added, whose value always equals 1. Usually, an activation (basis) function is
a function that approximates in form to sign(x). Its meaning is to split the space into
two half-spaces by hyperplanes (w, x) = 0 and (w, x) + w0 = 0 as long as a bias is used.
In one of the half-spaces, the output of the neuron is equal to +1; in the other it is equal to
−1. If we take not only one neuron, but a layer of neurons, the entire space is divided by
hyperplanes into subsets, each of which corresponds to its own set of outputs of neurons
of this layer. In this way, the network output is obtained as a piecewise constant function.
Usually, instead of function sign(x), smooth functions are used, which makes it possible
to calculate the derivatives and apply gradient methods to train the network. In this case,
it is advisable that the calculation of the derivatives of the activation function requires a
minimum of additional operations. For such functions, the network does not produce a
piecewise constant, but a smoothed dependence. Here are some examples.

The activation function recommended in the works of A.N. Gorban and his students
has the form ϕ(x) = x

1 + |x| and ϕ′(x) = 1
(1 + |x|)2 = (1− |ϕ(x)|)2. One function is more

commonly used, namely ϕ(x) = th(x). Here, ϕ′(x) = 1
ch2(x)

= 1− ϕ2(x). An asymmetric

version of this function is sometimes used ϕ(x) = exp x
1 + exp x , where ϕ′(x) = exp x

(1 + exp x)2 =

ϕ(x)(1− ϕ(x)). Other functions are also applied, for example, ϕ(x) = arctan(x) , ϕ′(x) =
1

1 + x2 .
Let us describe the functioning of the multilayer perceptron more formally. Denote

the vector of inputs of the l-th layer yl−1, and the vector of outputs xl . Then the network is
described by recurrence relations yl = Wlxl , xl = ϕl(yl−1). Here x0 = x is a network input
and yL = f(x) is a network output. Wl is a matrix of weights of the l-th layer, and ϕl is the
activation function, which acts coordinate-wise.
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Application of gradient methods of network training, i.e., minimizing the error, re-
quires calculating the derivatives of the network output with respect to the weights, which
are easy to obtain using the formula for differentiating a complex function.

To determine the desired derivatives, calculations are performed using the formula

∂f

∂w(l)
ij

= WLZLWL−1ZL−1 · · ·Wl+1
∂Wl

∂w(l)
ij

x. (10)

Matrices ZL are calculated by counting the network outputs. In accordance with
(10), computations begin at the last layer and move to the first. In the literature on
neural networks, the calculation of derivatives by this algorithm is often combined with
calculations by the gradient descent method, and this hybrid is called the back-propagation
method. This algorithm is generalized in the form of automatic differentiation and is
widely used in training neural networks, including in [8].

2.2.2. Radial Basis Function Networks

The main difference between this type of network and the perceptron is that each
neuron is responsible for local approximation in the vicinity of some point, and not for the
difference between the values of the function in half-spaces, as in the case of the perceptron.
Hence the conclusion that the perceptron is best used to simulate problems with jumps,
such as phase transitions and shock waves. RBF networks are preferred for applications
where a sufficiently smooth solution is to be expected.

In this case, the activation function has the form vi = ϕ(αi||x− xi||). Here, xi is the
center weight, αi is a scale parameter for each neuron of a hidden layer, and || ∗ || is some
metric on R. Parameters ci, αi, and xi are selected during network. Two fundamentally
different approaches can be applied to the adjustment of centers.

We consider fixed centers in the distribution domain of the input. They can be
chosen regularly in this area according to certain principles or randomly due to some
probabilistic law. Each xi acts the same as parameters ci and αi included in the process of
loss function optimization.

There are also two options for choosing parameters αi. First, αi = α, where α is a
certain size of the considered domain. This method is utilized, as a rule, if the centers
are selected in a regular way. Alternatively, αi is defined by some method of non-linear
optimization in conjunction with other parameters. We can apply an intermediate option
assuming that αi = α and adjusting α as one of the optimized parameters. There are a
few options left for ci. If they are found separately, then a linear system is obtained. If we
mutually select all the coefficients, then we can use some non-linear optimization algorithm.

To solve problem (1) it is natural to choose the loss function in the form J = J1 + δJ2,
where J1 corresponds to obeying the equation and J2 to obeying the boundary condition.
Usually, due to the impossibility of calculating integrals explicitly, a discrete form is used.
Thus, J1 = ∑M

j=1(AuN(ξ j)− g(ξ j))
2 and J2 = ∑K

k=1(BuN(ξ
′
k)− f (ξ ′k))

2.
Our experience of applying neural networks [29] allows making some remarks about

the choice of points {ξ j}M
j=1 and {ξ ′k}

K
k=1. They can be chosen inside Ω (or in a wider set

Ω̃ ⊃ Ω if it is necessary to ensure sufficient smoothness of an approximate solution up to
the boundary) and on the boundary in a regular way; for example, uniformly in the case of
a bounded domain or according to the normal probability law if it is unbounded.

It is often more appropriate to utilize a set of points selected according to the probabilis-
tic distribution law and re-generated after a certain number of learning epochs (optimiza-
tion steps) using a constant (or other) probability density. This ensures more stable learning.

We had previously shown (see, for example, [15]) that the optimal number of steps in
the learning process between point regeneration is from 3 to 5. In addition, this approach
allows us to control the quality of training using standard statistical procedures. In this
way, the number of sample points can be significantly reduced without compromising
accuracy [29]. At the same time, the learning process becomes more stable and does not get
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stuck in local minima. In fact, not one function but a sequence of functions is optimized,
and each is a discrete approximation to the integral form of the loss function.

If the model must satisfy additional conditions, for example, measurement data
u(ξ ′′l ) = ul , a term δ̃J3 is added to the loss function. Thus, J = J1 + δJ2 + δ̃J3, where
J3 = ∑L

l=1
(
u(ξ ′′l )− ul

)
.

We have dedicated a number of works to the study of modeling problems using
physics-based neural networks, see [10–30]. A detailed description of the methods can be
found in [29]. In recent years, physics-based ML modeling methods have included different
types of neural networks. Ref. [11] considers recurrent neural networks and applies physics-
based regularization. Ref. [31] solves the problem of modeling non-linear dynamical
systems described by partial differential equations without initially given training sets.
They utilize data generated on the basis of equations to train auto-regressive networks.

Note that the FEM can be regarded as a special case of the RBF network method (ELM).
Most often, when using the FEM, piece-wise linear approximation is applied. In this case,
triangulation is performed; that is, the domain is divided into triangles (the boundary is
approximated by a broken line) and a linear function is constructed on each triangle. On the
boundary of the triangles, the functions are continually joined. To obtain a representation of
the solution in the form of an expansion in basis functions (2), one can consider the behavior
of the function along the rays emanating from a certain center ci. In the two-dimensional
case, we have vi = vi(ρ, ψ), where (ρ, ψ) are the polar coordinates of the vector x − ci,
and x(ρ, ψ) is the current point. If the position of the boundary of the support of the
basis function relative to its center is characterized by some function ρ = ai(ψ), we can
utilize ϕi = (1− ρ/ai(ψ))+, where w+ = w(sign(w) + 1)/2. In this case, for the polygonal
boundary, we obtain a piecewise linear function, for which ai(ψ) is calculated from the
polar equations of the corresponding straight lines, i.e., at the corresponding intervals of
the variation of ψ we obtain ai(ψ) = ρi/ cos (ψ− ψi). If we want the basis function on
the boundary to have a zero derivative, we can use ϕi =

(
(1− ρ/ai(ψ))+

)2. For a basis

function of the form ϕi = (1 + 2ρ/ai(ψ))
(
(1− ρ/ai(ψ))+

)2, we obtain a smooth vertex.
Some more complicated form of a basis function allows obtaining a smooth surface with a
polygonal base, but we will not go into that.

In the multidimensional case, we can use vi = vi(ρ, v), where ρ = x− ci and v is a
vector on the unit sphere, which can be parameterized by the corresponding coordinates.

2.3. Physics-Based Neural Network Approach with FEM Smoothing

Both physics-based models considered, the FEM and ML with physics-based regular-
ization, have their advantages and disadvantages. Higher degrees of polynomial elements
lead to an increase in the cost of computation, although we obtain a solution with higher
smoothness. In any case, it is not possible to obtain a solution of infinite smoothness as
for neural networks.The FEM is long and more extensively applied. It is implemented
in numerous commercial software products. However, the FEM using piecewise linear
functions leads to an insufficiently smooth solution. In addition, if the number of elements
of the method is small, the accuracy is not high enough; if it is large, the system of lin-
ear equations may require large computational resources even with a sparse matrix of
system (4).

The FEM is poorly suited to solving problems in which additional data are used
to build a model. This is especially the case for tasks in which the model must adapt
to the newly received data, taking into account changes in the modeling object. This
is largely due to the local nature of the basis functions, which leads, in turn, to a local
restructuring of the solution when trying to adapt it by minimizing the loss function J3.
The neural networks, by their nature, are capable of being used in the problem of adapting
a solution to new data. This is evidenced by the extensive utilizing of neural networks to
extract the information hidden in noisy data. However, the direct application of the above
neural network approach often leads to a computationally complex problem of non-linear
optimization. If only parameters ci of a neural network solution are adjusted, a system
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of linear equations with a dense matrix is obtained, which dramatically increases the
complexity of its solution. A more efficient approach is to first optimize the loss function
J = J1 + δJ2, and then train the neural network when new data arrive by minimizing J3.
However, this method is also very resource-intensive.

Alternatively, we propose the following hybrid approach. First, a solution to problem
(1) is constructed using the FEM. Further, this solution is smoothed by means of a neural
network. For the approach discussed above, all the basis functions except one are equal
to zero at each nodal point, and this type of model is the easiest to build. It consists of
optimizing J3 in which the values of the FEM solution at the nodes are used instead of the
measurement results. The neural network approximate solution obtained can be adapted
to the newly received data in the same way as described above. Let us emphasize that in
this hybrid model several physics-based modeling classes are combined.

In [32], a FEM solution is also used as training data in the problem of structural damage
identification. However, in that work, the values at nodes are not used directly, but the loss
function includes two terms with the corresponding weight factors. The first is responsible
for a cross-entropy loss and the second corresponds to normalized damage probabilities.

2.4. Physics-Based Multilayer Network Architecture Method

The expressions of approximate solutions constructed by using the above methods
are rather cumbersome. If we write them out analytically, they turn out to be poorly
visible. Much more compact approximations are obtained through an approximate series
expansion or various kinds of asymptotic methods [33]. However, these methods make
it possible to build an acceptable solution only in a sufficiently small neighborhood of
the point at which the expansion is constructed or for sufficiently small values of the
parameter over which the expansion is carried out. In [24] we propose another approach,
which has an essentially broader area of applicability. From the point of view of the
modern modeling classification, we can attribute this method to physics-based network
architectures. The resulting analytical models are fairly compact.

Let us consider the initial value problem

y(n)(x) = f (x, y(x), y′(x), . . . , y(n−1)(x)),

y(x0) = y0,

y′(x0) = y′0,

. . .

y(n−1)(x0) = y(n−1)
0 ,

x ∈ [x0, x0 + a]. (11)

Using the replacement, one can go from a higher-order system to a first-order multi-
dimensional problem {

y′(x) = f(x, y(x)),

y(x0) = y0,
x ∈ [x0, x0 + a]. (12)

To solve (12), many numerical methods have been developed [34]. A significant part
of them consists of the partition of a given interval by points xk into intervals of length hk,
k = 1, . . . , n, and applying the recurrence formula

yk+1 = yk + F(f, hk, xk, yk, yk+1), (13)

where operator F defines a specific method. If in (13) the function F depends on yk+1, it is
necessary to accurately or approximately solve (13) with respect to yk+1.

Applying formula (13) iteratively n times to an interval with a variable right end
[x0, x] ⊂ [x0, x0 + a] we obtain function y(x), which can be considered an approximate
solution of system (12). Let us underline that, in this case, hk = hk(x), y0 = y0(x),
yk = yk(x).
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For constructing multilayer solutions, we can choose one of the classical numerical
methods [34], for example:

• the implicit Euler method, where

F(f, hk, xk, yk, yk+1) = hkf(xk+1, yk+1); (14)

• the trapezium method, where

F(f, hk, xk, yk, yk+1) =
1
2

hk(f(xk, yk) + f(xk+1, yk+1)); (15)

• the midpoint method, where{
yk+2 = F(f, h, xk, yk, yk+1),
F(f, h, xk+1, yk, yk+1) = yk + 2hf(xk+1, yk+1).

(16)

or one of many other methods of this kind.
If function f(x, y) is a neural network (for example, it was obtained by modeling some

related process), the result is an arbitrarily accurate solution to the original problem. In this
case, we refer the entire modeling procedure to the hybrid methods mentioned in the
Introduction as the embedding approach. Otherwise, it can be approximated by a neural
network (for sufficiently wide classes of functions, this can be done with arbitrarily high
accuracy) and the equation can be solved with the replacement of the right-hand side by
its approximation.

The resulting models can be regarded as physics-based pre-trained multilayer net-
works, the numerical parameters of which can be further trained using measurement data.

Let us consider the boundary value problem{
y′(x) = f(x, y(x)),

u(x0) = u0, v(x0 + a) = v0,
x ∈ [x0, x0 + a]. (17)

Here, vectors v and u are composed of the coordinates of vector y; their total dimen-
sion is equal to the dimension of y.

The following approach turned out to be an effective way to solve this problem. We
choose arbitrary point t ∈ (x0, x0 + a) and build a solution to the system{

y′(x) = f(x, y(x)),

y(t) = µ,
x ∈ [x0, x0 + a]. (18)

where parameter µ is adjusted based on the boundary conditions{
u(x + 0) = u0,

v(x0 + a) = v0.
(19)

Parameter t remains undefined. It can be chosen so that a solution satisfies the
original system with the highest accuracy. For the problems of modeling real objects and
constructing DT, it is more natural to adjust t based on the best fit to the measurement data.

These multilayer models can easily adapt to new data about an object. For this purpose,
we can change t and µ or only µ and minimize the loss function ∑L

l=1 ||yn(ξ ′′l )− yl ||2. || ∗ ||
takes into account only those coordinates of yl for which measurement data are available.
We have also studied the adaptive properties of the multilayer model in [35].

In [36], another scheme for imposing physics constraints on the neural network
architecture is applied. They introduce a method that converts different types of equations
into linear constraints and utilize them to build the output layer of a neural network.
For inequality conditions, [36] suggests using positive definite activation functions.
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3. Materials and Methods. Parameterized Problems

The formalization of parameterized problems is that some parameter r appears in the
formulation of problem (1) in that A = A(r), B = B(r), Γ = Γ(r), Ω = Ω(r). It is required
to find a solution u(r) for which{

A(r)u = g, u = u(x), x ∈ Ω(r) ⊂ Rp;

B(r)u|Γ(r) = f ;
(20)

holds for all r from a given set.

3.1. FEM and Physics-Based Neural Network Approach

Direct application of the FEM to solving problem (20) leads to replacing (2) by an
expansion

uN(x, r) =
N

∑
i=1

ci(r)vi(x, r), (21)

and system (4) is replaced by system

N

∑
i=1

ci(r)A(r)vi(x, r) · vj(x, r) = (g(x, r)− A(r)v0(x, r)) · vj(x, r). (22)

As a result, we have a system of linear equations with coefficients depending on the
parameter. There are three possibilities among physics-based methods to solve it. The first
one is analytical. The second approach uses interval analysis. These techniques work in
a reasonable amount of time only when the number of items is small. Thus, acceptable
accuracy is only achieved for simple tasks. Thirdly, if the problem is solved for a sufficiently
representative set of parameters, this can allow estimating a solution for the entire set
of parameters. At the same time, computational complexity increases many times over,
and we cannot be sure that the chosen set of parameters is sufficiently representative.

The neural network approach can also be applied to a problem with parameters.
In this case, the parameters are included in the number of inputs of the neural network [29].
We have successfully solved a number of similar tasks [15,16]. A modification of the neural
network approach to problem (20) consists of finding an approximate solution in the form
of the output of an artificial neural network of a given architecture as sum

uN(x, r) =
N

∑
i=1

civi(x, r, ai), (23)

where weights ci, ai are determined in the process of step-by-step network training based
on minimizing the loss function of the form J = J1 + δJ2. Here,

J1 =
M

∑
j=1

(A(rj)uN(ξ j, rj)− g(ξ j, rj))
2 (24)

and

J2 =
K

∑
k=1

(B(r′k)uN(ξ
′
k, r′k)− f (ξ ′k, r′k))

2 (25)

Regeneration of points is performed as follows: first, rj and r′k are re-generated from a
parameter change domain and then ξ j ∈ Ω = Ω(rj) and ξ ′j ∈ Γ = Γ(rj).

If additional data are available, for example, measurements, J3 = ∑L
l=1(uN(ξ

′′
l , r′′l )−

ul)
2 is added to the loss function. Here, ul is a measurement corresponding to the value of

a required solution at point ξ ′′l and parameter value r′′l .
Despite the natural ability of neural network models to adapt to data, the process of

constructing them often has a high computational complexity.
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3.2. Parametric Physics-Based Neural Network Approach with FEM Smoothing

In order to combine the advantages of the FEM and neural network method for
problems with a parameter, we propose the following hybrid method. Suppose we have
constructed a finite element solution for a set of parameter values

uN(x, rj) =
N

∑
i=1

ci,jvi(x, rj), j = 1, . . . , M. (26)

Further, we construct neural network approximations for the coefficients ci

ci(r) =
n

∑
k=1

dk,i ϕk(r, ak,i), (27)

where ϕk(r, a) are neural network basis functions. We can apply the previously dis-
cussed RBF or perceptron-type functions. Our experience [10,29] shows that the lat-
ter perform significantly better in these tasks. Weights (parameters) of all neural net-
works are selected by minimizing corresponding loss functions, for example, in the form
∑M

j=1(ci,j −∑n
k=1 dk,i ϕk(rj, ak,i))

2. The obtained solution

uN(x, r) =
N

∑
i=1

n

∑
k=1

dk,i ϕk(r, ak,i)vi(x, r) (28)

can be utilized not only for interpolation in the range of parameters for which the FEM
was used. It is also applicable for extrapolation to the region in which the FEM solution is
difficult due to the ill-conditioned matrix.

3.3. Parametric Physics-Based Multilayer Network Architecture Method

As mentioned above, in the multilayer method physics defines network architec-
ture. This technique can be applied to solving parameterized problems virtually without
any modifications.

Let us consider the Cauchy problem of the form{
y′(x) = f(x, y(x), r);

y(t(r)) = y0(r);
(29)

and apply the same recurrence formulas to it as for the problem without a parameter.
As a result, we have an approximate solution yn(x, r). A separate issue is the selection of
dependencies t(r). In simple problems we can use, for example, a linear dependence on r.
In tasks with measurements, we can select this dependence in the form of a neural network.
In this case, t(r) = ∑n

k=1 pk ϕk(r, ak) and y0(r) = ∑n
k=1 qk ϕk(r, bk).

At the first stage, we again write down the formula for approximate solution
yn(x, r, t(r), y0(r)). At the second stage, we adjust parameters pk, ak, qk and bk by minimiz-
ing the loss function ∑L

l=1 ||yn(ξ ′′l , rl , t(rl), y0(rl))− yl ||2.
The study of the ability of a multilayer model to learn upon receipt of additional

information about an object has been started in [37]. In [8], an arbitrarily accurate implicit
Runge–Kutta time stepping scheme with an unlimited number of stages is utilized as the
basis for one of two algorithms for constructing data-driven models based on physical
constraints described by general non-linear partial differential equations. In addition,
the problem of the data-driven discovery of partial differential equations is solved. How-
ever, the authors acknowledge the complexity of the proposed algorithms in comparison
with classical numerical methods.
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4. Results

We have studied the application of methods described above for solving the bench-
mark parameterized boundary value problem [33]{

u′′(x) + a(s)u′(x) + b(s)u(x) = 0;

u(0) = 0, u(1) = 1;
x ∈ [0, 1]. (30)

with coefficients a(s) = 1/s + s and b(s) = 1/s− s.
For small values of s, problem (30) is stiff and can be regarded as a parameterized

singular perturbation problem with a boundary layer in the vicinity of zero. This problem
has an analytical solution that allows comparing the results of different methods clearly.

4.1. Physics-Based Neural Network Approach

Let us apply the neural network technique to solving Problem (30). The task is solved
for fixed values of parameter s; a solution also has the form (9). The weights of the neural
network are selected by minimizing the loss function

m

∑
i=1

(u′′(xi) + a(s)u′(xi) + b(s)u(xi))
2 + δ1u2(0) + δ2(u(1)− 1)2. (31)

Test points {xi} are randomly chosen on the interval [0, 1] with regeneration every 5
steps of the optimization process. RProp is used as a minimization algorithm [38]. It is
known [39,40] that neural networks with one hidden layer are universal approximators.
With regard to the solution accuracy control, there are two different options. The first one
is for setting the threshold value for the optimized loss function and the second one is for
setting the limit on the number of network learning epochs. In the second case, among the
results obtained, the one for which the loss function has the smallest value is selected.
In addition, the residual based on real data about the object can be taken into account.

To solve the problem, we use two types of basis functions, sigmoids and Gaussians,
and a different number of hidden layer neurons. For each neural network solution the plot
of training loss history is presented. One epoch corresponds to 100 training point regen-
erations. Between each two regenerations, 5 steps of the RProp algorithm are conducted.
The number of training points at each step equals 100. Figure 1 represents a solution to (30)
for fixed s = 0.1 in the case of a Gaussian neural network with 5 neurons in the hidden
layer. The correspondent error is shown in Figure 2. The analytical solution has the form

nn5(x) = 0.6934e−1.0151(−0.9445+x)2
+ 0.5966e−30.8231(0.0819+x)2

+

0.4256e−63.199(0.1164+x)2
+ 2.1744e−1.3991(0.1815+x)2 − 46.4433e−8.6259(0.5628+x)2

.
(32)

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

y
u(x) nn5(x)

Figure 1. Plots of neural network solution nn5(x) (9) (number of layers n = 5; Gaussian activa-
tion functions) as applied to problem (30) and its exact solution u(x) (parameter value s = 0.1),
corresponding to dashed and solid lines, respectively.
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Figure 2. Plot of the error of neural network solution nn5(x) (9) (number of hidden layer neurons
n = 5, Gaussian activation functions) as applied to problem (30) (parameter value s = 0.1).

The training loss history is shown in Figure 3.

Figure 3. Plot of training loss J history of neural network solution nn5(x) (9) to problem (30),
parameter value s = 0.1, with respect to number N of training epochs. The number of hidden layer
neurons n = 5; Gaussian activation functions.

For sigmoid basis functions, the solution, and error plots are shown in Figures 4 and 5.
The analytical solution, in this case, looks like

n5(x) = 2.9401tanh(0.1548(−1291.23 + x))− 0.2423tanh(2.8222(−0.5127 + x))

− 3.4427tanh(0.2677(−0.4512 + x)) + 0.8904tanh(6.6248(−0.0469 + x))

+ 3.7422tanh(9.4914(0.0895 + x)).

(33)
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Figure 4. Plots of neural network solution n5(x) (9) (number of layers n = 5; sigmoid activation func-
tions) as applied to problem (30) and its exact solution u(x) (parameter value s = 0.1), corresponding
to dashed and solid lines, respectively.

Figure 5. Plot of the error of the neural network solution n5(x) (9) (number of layers n = 5; sigmoid
activation functions) as applied to problem (30), parameter value s = 0.1.

Figure 6 illustrates the training loss history for solution (33) as the decimal logarithm
with respect to the training epoch.

Figure 6. Plot of training loss J history of neural network solution nn5(x) (9) to problem (30),
parameter value s = 0.1, with respect to number N of training epochs. Number of hidden layer
neurons n = 5; sigmoid activation functions.
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For a problem in a stiff statement, for example, at s = 0.01, without additional effort,
it is possible to obtain an acceptable solution only using a network with 20 hidden layer
neurons and sigmoid basis functions. The corresponding plots of the approximation and
its error are shown in Figures 7 and 8.

Figure 7. Plots of neural network solution n20(x) (9) (number of layers n = 20; sigmoid activa-
tion functions) as applied to problem (30) and its exact solution u(x) (parameter value s = 0.01),
corresponding to dashed and solid lines, respectively.

Figure 8. Plots of the error of neural network solution n20(x) (9) (number of layers n = 20; sigmoid
activation functions) as applied to problem (30), parameter value s = 0.01.

In this case, the neural network solution has a more cumbersome form. Figure 9 shows
the training loss history.
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Figure 9. Plot of training loss J history of neural network solution nn10(x) (9) to problem (30),
parameter value s = 0.01, with respect to number N of training epochs. Number of hidden layer
neurons n = 20; sigmoid activation functions.

In [41,42], physics-informed deep neural networks with adaptive activation func-
tions are presented. Activators allow increasing the learning rate of neural networks.
We have considered a network with one hidden layer and a global adaptive Gaussian
activation function. However, the dynamic change in the loss function topology has not
been observed.

The approximation of a parametric solution by a neural network requires a long
training process. For a small number of layers, a result with a large approximation error
can be obtained.

Based on the results for various basis functions in the case of the fixed-parameter
problem statement, we have chosen a perceptron network with 100 hidden layer neurons
and sigmoid activation functions to build a parametric neural network solution. Test
points {xi, si} are randomly chosen on the domain [0, 1]× [0.03, 0.1]. RProp is used as a
minimization algorithm [38]. One epoch corresponds to 10 training point regenerations.
Between each two regenerations, 5 steps of the RProp algorithm are conducted. The number
of training points at each step equals 200.

Figure 10 illustrates the training loss history.

Figure 10. Plot of training loss J history of neural network solution nn100(x, s) (9) to problem (30),
parameter value s = 0.01, with respect to number N of training epochs. Number of hidden layer
neurons n = 20; sigmoid activation functions.
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A 3D plot of the approximation error is shown in Figure 11.

Figure 11. 3D plot of error of neural network parametric solution nn100(x, s) (9) to problem (30)
with respect to x ∈ [0, 1] and s ∈ [0.05, 0.1]. Number of hidden layer neurons n = 100; sigmoid
activation functions.

4.2. Physics-Based Neural Network Approach with FEM Smoothing

To solve the parameterized problem, we use a neural network approach to smooth
the FEM solutions constructed for fixed values of the parameter. The peculiarities of our
method require utilizing a single set of FEM basis functions regardless of the parameter
value. Thus, we do not use a FEM with adaptive grids (adaptive basis functions).

To start, we have solved system (30) by using the FEM with different values of a
number K of equidistant vertexes xk and various values of a parameter s. For simplicity,
instead of u(x), we have sought an approximate solution to the problem with homogeneous
boundary conditions, i.e., an approximation for u(x)− x.

It is the one-dimensional case, so an approximate solution to this system takes the form

uN(x) = c(s) · u, (34)

where vector u consists of K piecewise linear functions uk(x)

uk(x) =



x− xk−1
xk − xk−1

, x ∈ [xk−1, xk];

xk+1 − x
xk+1 − xk

, x ∈ [xk, xk+1];

0, otherwise;

(35)

the coefficients c(s) = {ck(s)} are obtained by solving the corresponding systems of
linear equations.

Thus, we have calculated the values of coefficients ci(sl) of FEM solutions (34) for sl =
0.05, . . . , 0.1 with step 0.01 and K = 10 nodes. In the end, we have obtained training sets
{sl , ci(sl)} which are utilized for the neural network approximations of FEM coefficients
depending on parameter s

pi(s) = a1i + a2itanh(a3i(s− a4i)). (36)

After approximating each of the coefficients, we have a general parametric solution

znn(s, x) =
K−1

∑
i=1

pi(s)ϕi(x). (37)
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This solution, in turn, can be considered a neural network output with piecewise-
specified activation functions

ϕi(x) =

1− |K(x− i
K
)|, |x− i

K
| < 1

K
;

0, otherwise.
(38)

The neural network (37) is a hybrid version of an RBF network with preselected
centers and widths and a perceptron with one hidden layer.

Figure 12 represents neural network extrapolations of the solution to problem (30) for
parameter s value 0.01, which is not included in the training set. Parametric solution (37)
obtained in this way shows a fairly good approximation of a solution to problem (30) for
small values of parameter s. In order to compare, Figure 12 shows the FEM solution with
the same number K = 20 of non-adaptive basis functions (35), which reflects the stiffness of
problem (30) at small values of the parameter. In addition, simple smoothing of this FEM
solution, from which the term x is subtracted, by a network with 3 hidden layer neurons

zn(x, p, q, r) = p0 +
3

∑
i=1

pitanh(qi(x− ri)), (39)

also improves the quality of the solution (see Figure 12, red and orange lines).
The parameters p, q, r are selected by optimizing the standard loss function using the

RProp method.

Figure 12. Plots of parametric FEM neural network solution znn20(x) (37) as applied to parameterized
problem (30), FEM solution fem20(x) and neural network FEM solution smoothing zn20(x) (39) as
applied to problem (30) (parameter value s = 0.01; number of elements K = 20), and its exact solution
u(x), corresponding to dashed lines and solid line, respectively.

4.3. Physics-Based Multilayer Network Architecture Method

To apply an idea described in subsection Physics-Based Multilayer Network Archi-
tecture Method, we represent a solution of system (30) as a linear combination of two
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boundary problem solutions ϕ(x) = (ϕ1(x), ϕ2(x)) and ξ(x) = (ξ1(x), ξ2(x)). The first
problem is 

y′(x) = z(x);

z′(x) = −a(s)z(x)− b(s)y(x), x ∈ [0, 1];

y(x0) = 1;

z(x0) = 0.

(40)

and the second one is 
y′(x) = z(x);

z′(x) = −a(s)z(x)− b(s)y(x), x ∈ [0, 1];

y(x0) = 0;

z(x0) = 1.

(41)

Here, optimal point x0 depends on a parameter s and can be selected by a researcher.
Throughout this article, an optimal point is considered a point minimizing the maximum
error of the approximate solution on the segment [0, 1].

Solutions to Problems (40) and (41) can be obtained by means of the multilayer method.
Then a solution of system (30) is

u(x) = c1 ϕ1(x) + c2ξ1(x). (42)

Coefficients c1,2 are determined by the boundary conditions of system (30){
c1 ϕ1(0) + c2ξ1(0) = 0;

c1 ϕ1(1) + c2ξ1(1) = 1.
(43)

To solve problems (40) and (41), different types of function F (see (13)) have been
considered. In the case of using the implicit Euler method (14) as a basis for a multilayer
solution, systems (40) and (41) are transformed to{

y′k(x) = yk−1 + hzk;

zk = zk−1 − h(a(s)zk + b(s)yk).
(44)

This system can be solved with respect to yk and zk. As a starting point x0, we
considered 0 and the optimal point. The resulting multilayer solution to problem (30) for
n = 10 layers and optimal point x0 = 0.151 has the analytical form

yn(x, 0.151, 10) =
58.9 + 303x + 850x2 + 1940x4 + 1680x5 + 100x6 + 391x7 + 90.6x8 + 9.44x9

10−9x−1(8.59 + 9.9x + x2)10 . (45)

Corresponding multilayer solutions based on the implicit Euler method for x0 = 0
and x0 = 0.151 at s = 0.1 are shown in Figure 13.

If function F from (13) corresponds to the trapezoidal method, systems (40) and (41)
are reduced to the form

yk = yk−1 +
1
2

h(zk + zk−1);

zk = zk−1 −
1
2

h(a(s)zk + b(s)yk + a(s)zk−1 + b(s)yk−1).
(46)



Computation 2021, 9, 97 21 of 26

Figure 13. Plots of multilayer solutions yie(x, 0, 10), yie(x, 0.151, 10) (42) based on the implicit Euler
method (number of layers n = 10) as applied to problem (30) and its exact solution u(x) (parameter
value s = 0.1), corresponding to dashed lines and solid line, respectively.

At the same time, for parameter s = 0.1, a three-layer network gives a solution with
an error less than 0.02 even without selecting the optimal point. This fact is illustrated in
Figure 14. It also shows how the selection of the starting point has a significant effect on a
two-layer network result.

Figure 14. Plots of multilayer solutions ytr(x, 0, 2), ytr(x, 0.168, 2), ytr(x, 0, 3) (number of layers
n = 2, 2, 3) as applied to problem (30) and its exact solution u(x) (parameter value s = 0.1), corre-
sponding to dashed lines and solid line, respectively.

Let us consider a more stiff formulation of the problem when the parameter s value
is equal to 0.001. In this case, it is possible to obtain a sufficiently accurate approximate
solution by using a two-layer network by selecting the optimal point (see Figure 15), and
Formula (13) leads to a simple form of the solution

ytr(x, 0.0046, 2) =
x(−0.0498 + 44.7x− 22.5x2 + 2.79x3)

(0.00238− 3.99x− x2)2 . (47)

Increasing the number of layers maintains the effect.
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Figure 15. Plots of multilayer solutions ytr(x, 0, 2), ytr(x, 0.0048, 2) (number of layers n = 2) as applied
to problem (30) and its exact solution u(x) (parameter value s = 0.001), corresponding to dashed
lines and solid line, respectively.

Let us solve parameterized problem (30) by a multilayer method. In this case, parame-
ter s is naturally contained in a solution,

y(x, s) = c1(s)ϕ1(s, x) + c2(s)ξ1(s, x). (48)

Thus, a one-layer solution based on the trapezium method and for x0 = 1.7s has the
form

y1(x, s) =
x(−1.04 + 0.969s− 1.35s2 + s4)(0.059x + s3 − 0.56s2x− s− 1.39)(s3 − 0.59s2 − s− 0.796)−1

s4 + 1.18(1− x)s3 − (0.692x + 0.346x2) + s(1.18x− 0.208) + s2(0.346x2 − 0.692x− 1)
(49)

In this case, the point x0, as mentioned earlier, depends on s but should not be beyond
the considered interval.

Despite problem (30) being stiff for small s, we obtain a fairly good solution for
all values of s from the interval [0.001, 0.1] using the multilayer technique based on the
trapezium method with 8 layers. This is confirmed by the 3D plot of the approximation
error in Figure 16.

Figure 16. 3D plot of the error of the multilayer parametric solution y8(x, s) (48) (trapezium method;
number of layers n = 8; initial point x0 = max(5s, 1)) as applied to problem (30), with respect to
x ∈ [0, 1] and log(s), s ∈ [0.1, 0.001].
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Figure 17 illustrates that choosing the required number of layers allows us to obtain
an approximation of any accuracy.

Figure 17. Plots of multilayer parametric solutions y8(x, 5s), y1(x, 1.7s) with optimal initial points,
as applied to problem (30), and its exact solution u(x) (parameter value s = 0.001), corresponding to
dashed lines and solid line, respectively.

The above results of the multilayer method in solving a parameterized problem
singularly perturbed by a small parameter make it possible to consider this method as
promising in the modeling and control of complex systems. It is important to note that,
if the problem of constructing a preliminary model of a real object is considered, a fairly
good approximation for small values of the parameter gives a solution with a single layer.
In addition, the known estimates of approximation errors of the basic recurrence relations
can be used to define the number of layers to obtain a solution with a preselected accuracy.
The construction of a multilayer solution takes little time and can immediately be used for
different values of the parameter. Unlike various neural network approaches, a multilayer
model does not require training. At the same time, the subsequent adjustment of the
parameters of such a solution using the apparatus of neural networks is not excluded in the
case of additional data appearing. On this occasion, the general neural network approach
should show itself well, which is confirmed by both the results of our previous article [15]
and the hybrid neural network models constructed in this work using the “poor” results of
the classical FEM.

In the context of new challenges facing the modern control theory and, in particular,
the methodology for creating CPS, problems are often ill-posed and poorly formalized, and
are set using various heterogeneous data, parameterized differential equations of unclear
structure, or without them. Requirements for the speed of processing such data and solving
dynamic equations are growing. Thus, the development of versatile low-cost methods
presented in this work is an important challenge.

5. Discussion

For modeling CPS, an urgent issue is the transition from differential models to func-
tional ones. At the same time, an important factor is a possibility to adapt these models
according to the observation data of the object. Our computational experiments allow
drawing preliminary conclusions about what kind of models may be more suitable for
further adaptation.

The main advantage of finite element models is that they are well studied. Accordingly,
there are a large number of software packages and libraries. At the same time, with the
appearance of stiffness in the problem being solved, the number of necessary functions to
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obtain acceptable accuracy increases sharply. Moreover, difficulties in adapting the solution
increase, since it becomes unstable against data errors. This problem is aggravated by the
local nature of the basis functions. Neural network models are more capable of adaptation.
However, the process of their construction has a high computational complexity that
also greatly increases with the appearance of stiffness. This situation allows us to look
prospectively at the hybrid approaches we have considered. Even more interesting are
multilayer models, which are the most compact for a given accuracy. We have already
studied their adaptive properties on one problem [37]. We intend to continue this study in
further research.

Another important issue is computational costs. The fastest are multi-layered methods
as they do not require training. The next ones are methods with constant basis (activation)
functions but, as a result of their application, larger models are obtained. It also takes more
time to adapt them further. The training of neural networks can be accelerated, but this
is relevant for the stage of adaptation from measurements in real time. In the future, we
intend to compare the adaptive properties of multilayer models and neural networks with
different acceleration options: structure adaptation, faster methods, and the introduction
of hyperparameters.

The issue of the extension of the presented results to nonlinear problems is worth
specific discussion. For these problems, the advantages of the FEM are substantially leveled,
since the construction of a FEM solution is no longer reduced to solving a linear system.
At the same time, the complexity of building a neural network and a multilayer solution
changes only slightly.
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