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Abstract: Distractors might display discriminatory power with respect to the construct of interest
(e.g., intelligence), which was shown in recent applications of nested logit models to the short-form of
Raven’s progressive matrices and other reasoning tests. In this vein, a simulation study was carried
out to examine two effect size measures (i.e., a variant of Cohen’s ω and the canonical correlation
RCC) for their potential to detect distractors with ability-related discriminatory power. The simulation
design was adopted to item selection scenarios relying on rather small sample sizes (e.g., N = 100 or
N = 200). Both suggested effect size measures (Cohen’sω only when based on two ability groups)
yielded acceptable to conservative type-I-error rates, whereas, the canonical correlation outperformed
Cohen’s ω in terms of empirical power. The simulation results further suggest that an effect size
threshold of 0.30 is more appropriate as compared to more lenient (0.10) or stricter thresholds (0.50).
The suggested item-analysis procedure is illustrated with an analysis of twelve Raven’s progressive
matrices items in a sample of N = 499 participants. Finally, strategies for item selection for cognitive
ability tests with the goal of scaling by means of nested logit models are discussed.

Keywords: Raven’s progressive matrices; intelligence; distractors; item analysis

1. Introduction

Distractors are a fundamental part of the item content in multiple-choice items (Thissen et al. 1989;
Guttman and Schlesinger 1967). That fact is taken into account in both traditional and contemporary
distractor analysis (Gierl et al. 2017). An approach that falls in the category of contemporary distractor
analysis is Myszkowski and Storme (2018) nested logit model application to the latest short form of
Raven’s Progressive Matrices. The nested logit model family (Suh and Bolt 2010) concurrently uses
accuracy and distractor choice information from each item to improve ability estimation. That is, item
responses to multiple-choice items are modeled in terms of solution behavior (i.e., solved vs. not-solved)
by means of a logistic item response theory (IRT) model for binary items (e.g., 1PL, 2PL or 3PL) at the
first place. Then, given the item has not been solved, distractor choices are modeled by Bock’s nominal
response model (NRM) (Bock 1972). Hence, nested logit models, as used by Myszkowski and Storme
(2018), include varying discrimination parameters for each distractor. Traditional distractor analysis,
as part of a thorough item analysis, does not necessarily focus on this aspect of distractor choices.

The primary focus on solution behavior and a secondary focus on distractor choices is one
advantage of nested logit models for the modeling of figural matrix items as compared to other
polytomous IRT models. Indeed, there is clear evidence in the literature that using constructive
matching [i.e., a strategy focused on constructing the correct solution (Snow 1980; Bethell-Fox et
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al. 1984)] is positively correlated with cognitive ability. This was found for constructive matching
indicators (e.g., self-reported strategy use, estimated latent strategy classes, or the proportion of overall
time spent on the item content) derived from the paperfolding test (Snow 1980), figural analogies
(Bethell-Fox et al. 1984; Schiano et al. 1989), and figural matrices (Vigneau et al. 2006; Mitchum and
Kelley 2010; Hayes et al. 2011; Gonthier and Thomassin 2015; Gonthier and Roulin 2019). In addition,
analogous indicators for usage of distractor elimination strategies (e.g., the proportion of overall time
spent on the response alternatives or back and forth eye movements between the item content and the
response alternatives) were found to be negatively correlated with test performance (Bethell-Fox et al.
1984; Schiano et al. 1989; Vigneau et al. 2006; Hayes et al. 2011; Jarosz and Wiley 2012; Arendasy and
Sommer 2013; Gonthier and Thomassin 2015; Gonthier and Roulin 2019). In line with these findings,
(Myszkowski and Storme 2018) pointed out that nested logit models which take into account solution
behavior, as well as distractor choice, are perhaps best suited to model solution processes starting
with constructive matching, and given that a solution, cannot be reached, shifting towards distractor
elimination strategies at a later stage. Indeed, Gonthier and Roulin (2019) reported results in line with
the idea that both constructive matching and response elimination might be used on the same item.

In addition, the idea that distractor choice provides useful psychometric information existed even
before the invention of IRT models for polytomous scoring (Guttman and Schlesinger 1967; Davis and
Fifer 1959), and hence, informativeness of distractors has been studied by other approaches than IRT.
This is evident in early studies that examined gender in relation to certain error patterns, such as failing
to discriminate between the correct option and a distractor designed by rotating the correct solution
(Sigel 1963; Vejleskov 1968). In a similar vein, Jacobs and Vandeventer (1970) found that the proportion
of choosing distractors that either take into account solely the horizontal or solely the vertical facet
was positively correlated with performance on the Coloured Progressive Matrices. Moreover, Vodegel
Matzen et al. (1994) found that choosing distractors that share features with the solution or distractors
that were a repetition of one of the adjacent entries to the missing element in the matrix discriminated
best between children with varying levels of performance [for a complete overview of studies focusing
on error analysis in figural matrix items see Kunda et al. (2016)]. Finally, IRT approaches were also
found to reveal discriminatory power of distractors with respect to ability (Myszkowski and Storme
2018; Thissen 1976; Storme et al. 2019).

To sum up, evidence on strategy use and informativeness of distractors in figural matrix items
seemingly adhere to the idea behind nested logit models. Hence, in combination with the use of
rule-based distractor generation (Guttman and Schlesinger 1967; Hornke and Habon 1986; Matzen et al.
2010; Blum et al. 2016; Blum and Holling 2018) to construct items with discriminating distractors, this
item family appears to be promising for test development based on nested logit models. In particular,
this allows the construction of tests with higher measurement precision at the lower end of the ability
range because differentiated information about the ability of those who did not solve the item is
taken from distractor choices (Myszkowski and Storme 2018; Storme et al. 2019). To date, however,
proper distractor evaluation tools for such item development are not available. In addition, direct
use of nested logit models with small sample sizes (e.g., N = 200) seems not feasible in light of the
many parameters that need to be estimated. In this vein, it is especially unclear which descriptive
statistics are informative to allow item pre-selection based on criteria in line with the idea of distractor
discrimination at an early stage in the item selection process when candidate items are tested in small
samples. Thus, the goal of the current work is to examine Cohen’s ω (Cohen 1992) based on ability
groups and distractor choice and the canonical correlation (Thompson 1984; Klecka 1980) between test
performance and distractor choice for their potential to detect items with discriminatory distractors.
First, we review the potential of traditional distractor analysis tools to reveal the discriminatory power
of an item’s distractor set and propose Cohen’sω and the canonical correlation as useful effect sizes
that correspond with similar approaches found in the literature. Second, we evaluate how well these
effect sizes perform as a detection method for item pre-selection in a simulation study. Finally, we
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apply the proposed effect sizes for distractor analysis to the dataset around which this special issue is
organized to evaluate the distractors’ potential to be used for nested logit models.

1.1. Distractor Analysis as Part of Traditional Analysis of Multiple-Choice Items

Item analysis refers to a set of descriptive statistics that are useful during the process of developing
an item pool for a new psychological test (e.g., for the measurement of intelligence). These statistics
are most often used in pilot studies in which the item pool (or a subset thereof) is administered to a
relatively small sample (say N = 50 to N = 300) for the purpose of informed item selection. In this
process, item analysis is used to provide the first evidence of each item’s psychometric properties, such
as difficulty, dimensionality, or discrimination (Henrysson 1971). In this work, we will focus on item
discrimination which refers to the relationship between a person’s ability and item performance (Lord
1980; Yen and Fitzpatrick 2006). A highly discriminating item results in a higher solving probability
for persons with higher ability level and in lower solving probability for persons with lower ability
level (i.e., as compared to a low discriminating item in which solving probabilities are more evenly
distributed across the range of ability levels). More specifically, we will focus on ability-related
discriminatory power of distractors in multiple-choice items, but not at the level of solution behavior
(i.e., accuracy). That is, in case that an item has not been solved correctly by a test-taker it might be the
case that choosing a particular distractor vs. choosing one of the other distractors is more likely for
persons with higher ability, whereas, persons with lower ability are less likely to choose this distractor.
Distractor discrimination parameters are indeed included in certain IRT models, such as the NRM
or nested logit models. However, here we focus on more simple item effect sizes that can potentially
reveal if items have discriminative distractors in pilot studies which usually have small sample sizes.
Pilot studies for scale development can have goals of varying complexity. For example, the smallest
sample sizes have been proposed for very early checks of instruction or item wordings (Johanson and
Brooks 2010). Pilot studies with a focus on more complex properties of psychological tests, such as
latent variable profiles (Von der Embse et al. 2014), for example, may have even sample sizes as large
as 1000 participants. For the purpose of this work, we consider reasonably large sample sizes that
reflect practice in cognitive ability research (Arendasy et al. 2006). On this basis, items can be selected
for a test that, in the next step, could be scaled by means of a nested logit model. This would increase
the reliability for low ability test takers (Myszkowski and Storme 2018; Suh and Bolt 2010; Storme et al.
2019).

Perhaps the best-known index of discrimination in item analysis is the item-scale correlation
(Henrysson 1971; Cureton 1966) and its various corrections for part-whole overlap (Henrysson 1971) or
lack of reliability (Cureton 1966). Conceptually, the same information is captured by factor loadings in
factor analytical methods (Henrysson 1962) and discrimination parameters included in IRT models,
such as the 2PL to 4PL models (Barton and Lord 1981) or the generalized partial credit model
(Muraki 1992), for example. Hence, simple item-scale correlations can be considered as the pilot study
counterpart of model parameters included in more complex approaches used for the final scaling of
the test. For traditional item analysis, cut-offs exist to decide if items from a pilot study are retained in
the item pool for final test calibration. Several suggestions for such cut-offs have been made in the
literature, such as item-scale correlations >0.30 (Nunnally and Bernstein 1994) or at least >0.20 (Crocker
and Algina 1986). In addition, similar cut-offs exist for standardized factor loadings (Kline 2000)
taken from factor analytical approaches which are also used in pilot studies. However, comparable
complementary sets of item statistics and model parameters for item selection and final scaling of the
test, respectively, along with commonly used item-scale correlation cut-offs for item selection are not
available for items with potentially discriminative distractors.

To illustrate traditional distractor analysis statistics, we created two example datasets, and used
the first item from each of these datasets. To facilitate illustration below, we simply refer to the
first item from the first dataset to as Example-Item 1 and to the first item from the second dataset
to as Example-Item 2. These two items were simulated with three distractors and according to the
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same population model despite the distractor discrimination parameters. For both items, correct
solution behavior was modeled by means of the 2PL with moderate discrimination and difficulty
parameters ranging from −1.15 to −0.85 for a set of difficult items (see the setup for the simulation
study in Section 2.1.2). When participants did not solve the item, their distractor choice was simulated
according to NRM intercept parameters as described below, and for Example-item 1 the discrimination
parameters were fixed at zero, whereas, for Example-Item 2, high discrimination parameters were
simulated. Software code to replicate these data are available in the Open Science Framework repository
for this work (https://osf.io/9tp8h/). All statistics introduced below are illustrated for these two items
in Table 1 and interpreted in more detail in the respective sections and subsections below.

Table 1. Distractor specific statistics for Example-item 1 and Example-item 2.

Distractor

Relative
Choice

Frequency
< 0.05

PBD PBDC ωD γ

Item 1/Item 2 Item 1/Item 2 Item 1/Item 2 Item 1/Item 2 Item 1/Item 2

Distractor 1 0/0 −0.18/−0.21 −0.54/−0.58 0.57/0.68 1/1
Distractor 2 0/0 −0.29/−0.08 −0.56/−0.47 0.55/0.39 1/1
Distractor 3 0/0 −0.13/−0.36 −0.50/−0.68 0.58/0.97 1/1

Relative choice frequency < 0.05 = Number of distractors with a relative choice frequency below 0.05; PBD =
point-biserial correlation for the contrast between participants who chose D vs. participants who chose any other
option (including the correct option) with respect to test performance; PBDC = point-biserial correlation for the
contrast between participants who chose D vs. participants who chose the correct option with respect to test
performance; ωD—Haladyna-Downing approach (Haladyna and Downing 1993) = Cohen’s ω based on choice
frequencies restricted to D as a function of 5 ability groups based on equi-distant quantiles; γ = Goodman-Kruskal γ
for the relationship between test performance based on all other items and the probability to choose the correct
response as estimated based on a 2 × J contingency table (with J is the number of possible performance scores)
which has been suggested by (Love 1997) as an index for the evaluation of rising selection ratios.

1.1.1. Distractor Choice Frequency

The distractor choice frequency is often applied as the first criterion for distractor evaluation
with the recommendation that useful distractors should be chosen by at least 5% of the participants
(Haladyna and Downing 1993). Distractors not fulfilling this criterion in a pilot study would be
considered as non-functioning and need revision. Hence, we conclude that distractors in pilot studies
should in the first place pass the 5% frequency criterion before subjecting them to an evaluation of
their potential to discriminate individuals with respect to the target latent trait. For Example-item 1
and Example-item 2, there were no distractors with choice frequencies below 5%.

1.1.2. The Point-Biserial Correlation

Several indexes have been suggested that connect test performance (i.e., ability estimates) with
distractor choice. Perhaps, the most popular index is the point-biserial correlation PBD (Gierl et al. 2017;
Attali and Fraenkel 2000) that contrasts test performance between participants who chose distractor D
with the participants who did not choose D (i.e., the participants who chose either the correct solution
or one of the other distractors):

PBD =
MD −M

S

√
PD

1− PD
. (1)

MD is the average performance of participants who chose D, M is the average performance of all
participants, S is the standard deviation of the performance of all participants, and PD is the proportion
of participants who selected D. Well-functioning distractors show a negative PBD (Attali and Fraenkel
2000). However, Attali and Fraenkel (2000) pointed out that the groups of participants contrasted by
PBD do not yield the relevant information for developers in every situation. For example, a positive
PBD can be found for rather difficult items even when the average score of participants choosing D is
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substantially lower than the average score of participants solving the item (i.e., M is also affected by
participants who chose one of the other distractors). Hence, they suggest an alternative index PBDC
that contrasts the group choosing D only with the group who solved the item:

PBDC =
MD −MDC

SDC

√
PD

PC
. (2)

MDC is the average sum correct score of the participants who either chose D or the correct solution
C, SDC is the standard deviation of the sum correct score of the group choosing either D or C, and PC is
the proportion of participants choosing the correct solution. It is clear that this index provides better
contrast between distractor choice and item solution in terms of ability. However, both contrasts are
not informative for the aim of detecting distractors with discriminatory power with respect to ability
because this would require a contrast between participants choosing distractor D and participants
choosing any other distractor. For Example-item 1 and Example-item 2, there were on average no
differences observable for both PBD and PBDC. This is indeed expected given that both indices focus on
a different aspect of discrimination as compared to the distractor discrimination parameters in nested
logit models (see Table 1).

However, a corresponding variant of the point-biserial correlation is possible and could be
calculated for each distractor, but this approach has two disadvantages: (a) Given that only participants
who did not solve the item would be contrasted, such an index would be more prone to lacking
empirical substance (i.e., very small group sizes for some of the distractor contrasts), and (b) looking at
as many effect sizes as there are distractors in an item is expected to suffer from cumulative type-I-error
(i.e., selecting an item for its discriminatory distractors when the true model behind the item has zero
to negligible distractor discrimination). Consequently, we propose a different approach in Section 1.2
that circumvents these issues and relies on effect sizes at the item level.

1.1.3. Trace Line Plots and χ2 Statistics

An alternative index connecting the ability with distractor choice extends a graphical tool labeled
option characteristic curve by Levine and Drasgow (1983)—also known as option trace lines as it was
labeled by Wainer (1989) or simply trace line plot (Gierl et al. 2017). For instance, choice frequency
is plotted as a function of ability groups based on raw scores and the item options (i.e., the correct
solution and each of the distractors). Figure 1 displays two trace line plots for Example-item 1 and
Example-item 2. Clearly, in both plots, frequency of choosing the correct option was a positive function
of ability (we used five ability groups here) with nearly the same trace line. For the distractors on the
left side, it can be seen that they possessed varying attractiveness for the participants. Furthermore,
distractor choice was a monotonically decreasing function of ability for all distractors. Haladyna and
Downing (1993) suggested a χ2

D statistic for each distractor to test whether distractor choice frequencies
follow a uniform distribution across ability groups.

However, this statistic again focuses on each distractor in separation from the others and does not
reveal anything about an interaction effect between distractor choice and ability group, which would
be the crucial characteristic of the discriminatory power of distractors. This is also highlighted by
Cohen’s ω results based on the Haladyna-Downing approach (explicitly labelled ωD to distinguish it
from the effect size measureωG that will be introduced below) for Example-Item 1 and Example-Item
2 (see Table 1). On average ωD was comparable in this case. One might argue that the variation of ωD
across distractors could be sensitive for the discriminatory power of distractors, but using a dispersion
index (e.g., SD ofωD across distractors) would yield a measure with a rather non-intuitive metric (as
compared to commonly used effect size metrics). Thus, in this work, we aim at a direct effect size
quantification of the discriminatory power of distractors. In addition, there were no intersections of
the trace lines for the distractors between the ability groups in the left plot of Figure 1 (Example-Item
1). The χ2

D statistic, however, would nonetheless be significant for all distractors in this plot (see
also the largeωD values in Table 1). In this vein, it has been conjectured by Garcia-Perez (2014) that
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non-monotonic empirical trace lines are required (such as those ones depicted for Example-Item 2 in
the right plot of Figure 1) to allow effective modeling by polytomous IRT models. Hence, effect sizes
are needed, which are sensitive for the detection of distractor trace lines that display distractor-ability
interaction effects. In this work, we will use an effect size based on the χ2 statistic using ability groups
(as shown in Figure 1). In this approach, however, all distractors are considered (i.e., participants
solving an item will be discarded from analysis); for a comparable implementation see Levine and
Drasgow (1983). However, they used a less intuitive metric as the one that we will introduce in
Section 1.2.
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Figure 1. Trace line plots (Gierl et al. 2017; Wainer 1989) of two simulated items (N = 10,000 each)
when distractors were simulated as non-discriminating in a 2PL (left plot) and when distractors were
simulated with moderate NRM (nominal response model) discrimination in a 2PNL.

1.1.4. Rising Selection Ratios

Love (1997) suggested the criterion of rising selection ratios as a basic property of multiple-choice
tests subjected to polytomous scoring. This criterion implies that the odds for choosing the correct
option vs. distractor D is a monotone increasing function of ability. It is noteworthy, that this criterion
does not require relative frequency of choosing D to be a monotone decreasing function of ability,
because the probability of choosing the correct option relative to choosing D (i.e., the criterion of rising
selection ratios) can be fulfilled with choice frequencies of D being a non-monotone function of ability
[see Revuelta (2005) for applying this criterion to the 3PL and various polytomous IRT models]. Hence,
primarily, the criterion of rising selection ratios is in accordance with modeling accuracy in the first
place as a function of ability as it is put forth in nested logit models. At the same time, this criterion
allows for interactions between ability and distractor choice behavior, due to the non-monotonicity
of distractor choice in ability. Love (1997) suggested to use Goodman and Kruskal’s γ coefficient
(Goodman and Kruskal 1979) between test performance calculated by the sum total scores on all the
other items (i.e., not the item under consideration for testing rising selection ratios) and the probability
estimated from a 2 × J contingency table with J as the number of possible test performance scores. The
two rows include the frequencies for choosing the correct option and the frequencies for choosing D and
the probability for choosing probability is then calculated by dividing the entries in the correct-option
row by the respective column sums (Love 1997). However, this approach to evaluate data for rising
selection ratios does not tap into potential interaction effects between ability and distractor choice. This
is illustrated by the findings in Table 1. Goodman-Kruskal γ was found to be 1 for every distractor
in Example-item 1 and Example-item 2, and hence, was not sensitive to the difference between these
items in terms of distractor discrimination.
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1.2. Effect Sizes for the Detection of Discriminatory Distractors

1.2.1. Cohen’sω Based on Ability Groups and Distractor Choice

We suggest Cohen’s ω effect size based on the χ2 derived from a contingency table in which
the rows represent the distractors and the columns represent ability groups. Hence, this effect size
is analogous to the above-mentioned approach used by Levine and Drasgow (1983), but it has a
normed range that is easier to interpret. They also scale the χ2 statistic for better interpretability.
In particular, the χ2 should be independent of the number of participants who did not solve the item
under consideration because the raw χ2 statistic would clearly depend on item difficulty otherwise
(Levine and Drasgow 1983). Cohen’sω (Cohen 1992) can be calculated by

ωG =

√√
χ2

G∑k
i=1 NDk

. (3)

G is the number of ability groups (e.g., as built by quantiles), χ2
G is the χ2 statistic based on the

G ability groups and all K distractors, and
∑k

i=1 NDk is the number of all participants who did not
solve the item under consideration. In this study, we will examine Cohen’s well-known interpretation
guideline for ωG (Cohen 1992). Specifically, we will use 0.10 (small effect size), 0.30 (medium effect
size), and 0.50 (large effect size) as cut-offs for the detection of items with discriminatory distractor sets.
Example-Item 1 hadω2 = 0.02 andω5 = 0.04, whereas, Example-Item 2 hadω2 = 0.24 andω5 = 0.34.
This illustrates that the discriminatory power of distractors could potentially be detected with this
variant of Cohen’sω.

1.2.2. Canonical Correlation Based on Ability and Distractor Choice

Coefficient η has been suggested by Haladyna (2004) to be indicative of discriminatory power of
item distractors. Accordingly, distractors with comparable choice means (implying a rather small η
coefficient) render an item potentially less suitable for polytomous scoring as compared to an item
with varying choice means. However, for reasons of a better conceptual fit, we will shift away from
the η coefficient to the canonical correlation coefficient. The canonical correlation coefficient is known
to be mathematically identical with coefficient ηwhen one set of variables comprises of a number of
binary indicator variables (i.e., the dummy variables also used for the calculation of η) and the other set
includes only one continuous variable (Klecka 1980). However, the canonical correlation does not make
the distinction between dependent and independent variable as it is the case for the η coefficient. The
calculation of η is well aligned with the idea of mean comparisons of a continuous dependent variable
(i.e., ability estimates) between groups that are defined by a categorical independent variable (i.e.,
distractor choices). However, in nested logit models, the relationship between ability and distractor
choice is modeled vice versa: Distractor choice is modeled as a function of ability. Hence, we argue
in favor of the canonical correlation because it does not suffer from this conceptual confusion, while
simultaneously maintaining its potential for the detection of item-wise distractor discrimination.

In the context of this work, the canonical correlation is based on two sets of variables: (a) A matrix
X1, including k binary indicator variables with an entry of 1 in the kth column and vth row when
person v chose distractor k and zero otherwise, and (b) a vector x2 that includes the total scores for all
participants who did not solve the item under consideration. Then, r12 is the column vector, including
the correlations between each column from X1 and x2, and H1 is the Cholesky decomposition (Harville
2008) of the correlation matrix between all binary indicator variables in X1. With these terms in mind,
the canonical correlation can be expressed as

RCC = d11, (4)
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with d11 is the only element from the D matrix resulting from a singular value composition (Harville
2008) of W = r′12H−1

1 . For the canonical correlation the same cut-offs for the detection of items
with discriminatory distractors are suggested as it was the case above for Cohen’sωG (small—0.10;
medium—0.30; and large—0.50). Example-Item 1 had RCC = 0.01, whereas, Example-Item 2 had
RCC = 0.34. This illustrates that the discriminatory power of distractors could also be detected by
means of RCC.

1.3. Aim of the Current Study

In the current work, a thorough simulation study was undertaken to examine the potential of
Cohen’sω and RCC (as outlined above) to detect items for their potential to discriminate individuals
with respect to their latent trait based on distractor choice behavior. To this aim, we first simulated
conditions in which distractors did not possess discriminatory power with respect to the latent trait to
assess the type-I-error of the used statistical indices (i.e., effect sizes passing the effect size threshold,
when the population model did not include discriminatory distractors). Second, we simulated
conditions based on a population model with discriminatory distractors to examine the power to detect
items that are suitable for nested logit modeling. A final aim of this work is to illustrate the suggested
item-analytical strategy by means of the data taken from Myszkowski and Storme (2018).

2. Simulation Study

2.1. Method

2.1.1. Data Generating Model

The data were simulated according to a 2PNL (Suh and Bolt 2010) in which the probability that
person j solves item i is modeled by the following logistic model:

P(xi j = u|θ j) =
1

1 + e−(βi+αiθ j)
. (5)

u is the correct option, θj is the ability parameter, βi is the item difficulty parameter, and αi is the
discrimination parameter. Then, in case that an item has not been solved the probability to choose
distractor v among the set of the remaining mi distractors is modeled by the nominal response model
with intercept parameters ζiv and distractor discrimination parameters λiv:

P(xi j = v|θ j) =
[
1− P(xi j = u

∣∣∣θ j
)
]

 eζiv+λivθ j∑mi
k=1 eζik+λikθ j

. (6)

2.1.2. Facets of the Simulation Design

Several factors were manipulated to allow a thorough investigation of the usefulness to detect
items with discriminatory distractors for nested logit modeling:

1. Sample size (three levels): N = 100; N = 200; and N = 500.
2. Number of items (three levels): I = 10; I = 20; and I = 50.
3. Number of distractors (two levels): D = 3; and D = 7.
4. 2-PL difficulty (three levels): Moderate [βi ~ U(−0.15, 0.15)]; difficult [βi ~ U(−1.15, −0.85)]; and

very difficult [βi ~ U(−2.25, −1.85)].
5. 2-PL discrimination (three levels): Low [αi ~ U(0.25, 0.55)]; moderate[αi ~ U(0.85, 1.15)]; and high

[αi ~ U(1.60, 1.90)].
6. NRM discrimination parameters (four levels) are depicted in Table 2.
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Table 2. NRM discrimination parameters used in the simulation study.

Distractor Level 1—Zero Level
2—Moderate Level 3—High Level 4—Very

High

3 distractors/7
distractors

3 distractors/7
distractors

3 distractors/7
distractors

3 distractors/7
distractors

λi1 0.00/0.00 −0.40/−1.20 −1.00/−3.00 −1.75/−5.25
λi2 0.00/0.00 0.00/−0.80 0.00/−2.00 0.00/−3.50
λi3 0.00/0.00 0.40/−0.40 1.00/−1.00 1.75/−1.75
λi4 -/0.00 -/0.00 -/0.00 -/0.00
λi5 -/0.00 -/0.40 -/1.00 -/1.75
λi6 -/0.00 -/0.80 -/2.00 -/3.50
λi7 -/0.00 -/1.20 -/3.00 -/5.25

NRM discrimination
(step size) 0.00 0.40 1.00 1.75

See DeMars for a comparable approach to simulate items with discriminating distractors according to the NRM
(DeMars 2003). NRM discrimination (step size): This is the step size between the consecutive λi parameters that can
be used as a general indicator of NRM discrimination.

NRM intercepts ζiv were further sampled for all design cells from a U(−1, 1) distribution. Further
facets resulted from the used effect size threshold and the type of effect size (but these facets did not
imply additionally generated datasets):

7. Effect size threshold (three levels): Small: Effect size > 0.10; moderate: Effect size > 0.30; and
large: Effect size > 0.50.

8. Type of effect size (three levels): Cohen’sω based on two ability groups; Cohen’sω based on five
ability groups; and the canonical correlation coefficient.

2.1.3. Dependent Variables

The main dependent variable was: (1) The proportion of effect sizes that were larger than the effect
size threshold. In addition, we examined the following dependent variables related to the empirical
substance of the simulated datasets: (2) the proportion of distractors with relative choice frequencies
smaller than 5%; (3) the proportion of missing effect sizes; (4) the proportion of missing effect sizes
resulting from too many distractors with relative choice frequencies smaller than 5%; and (5) the
proportion of ability groups occurring in the simulated data. For example, a value of 0.99 for Cohen’s
ω based on five ability groups and in case of 10 simulated items implies that 0.99 × 5 × 10 = 4950
groups were simulated out of 5000 possible groups.

2.1.4. Simulation Setup

All simulations and analysis were carried out by means of the statistical software R (R Core
Team 2019). The simulation of the datasets was performed with the simdata() function included in
the R package mirt (Chalmers 2012). The design for the dataset generation was based on crossing
all facets of the simulation design (see 1. to 6. presented in Section 2.1.2). Hence, it was a
sample-size × number-of-items × number-of-distractors × 2-PL-difficulty × 2-PL-discrimination ×
NRM-discrimination design with 3 × 3 × 2 × 3 × 3 × 4 = 648 cells. For each of these 648 cells, we
generated 1000 datasets and aggregated the dependent variables across these datasets for each cell. All
R code files and simulated data are available in the OSF repository for this work (https://osf.io/9tp8h/).

https://osf.io/9tp8h/
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2.2. Simulation Results

2.2.1. Type-I-Error Results

Results with respect to type-I-error revealed a clear picture of findings. First, an effect size
threshold of 0.10 appeared to be far too liberal regardless of any other design facet. In fact, for all cells
in the design, the type-I-error rate for the 0.10 threshold was clearly above the conventional 0.05 level
(see Figure 2). Second, the worst performance in terms of type-I-error rate was observed for Cohen’sω
based on five ability groups. This effect size measure reached only acceptable type-I-error rates for
very specific conditions (see Figure 2). For example, with three distractors and a 0.30 threshold,ω5 was
adequate only when the sample size was N = 500. Moreover, for seven distractors, a 0.30 threshold, and
a sample size of N = 500 acceptable type-I-error rates were reached only for very difficult items. The best
performance of Cohen’sω based on five ability groups was found for the three-distractor condition
and a threshold of 0.50 (i.e., only type-I-error for moderately difficult items was too large). However,
both other effect size measures (Cohen’s ω based on two ability groups and the canonical correlation)
yielded highly conservative type-I-error rates (i.e., type-I-error rates that are notably smaller than 0.05)
when the effect size threshold was 0.50 regardless of any other design facet. Moreover, Cohen’s ω
based on two ability groups and the canonical correlation coefficient yielded acceptable to conservative
type-I-error rates with three distractors and a threshold of 0.30 when 2PL-difficulty was at least difficult.
The same was observed for these two effect size measures for seven distractors, but only when the
sample size was at least N = 200 (see Figure 2). Finally, we found that 2PL-difficulty was inversely
related to type-I-error rates as in several simulated conditions moderate 2PL-difficulty resulted in the
highest type-I-error rate (see Figure 2), whereas, the level of 2PL-discrimination and the number of
items did not show any specific relationship with a type-I-error rate (see Appendix A).

Based on these findings, we refrain from any power examinations for conditions with an effect
size threshold of 0.10. It is further noteworthy that for all other effect size thresholds Cohen’s ω2

(85%) and RCC (84%) comparable numbers of cells with acceptable type-I-error rates resulted, whereas,
Cohen’sω5 displayed acceptable type-I-error rates only for 48% of the simulated cells. Thus, Cohen’s
ω5 appeared to have only a very narrow range of scenarios in which this statistic is advisable for
the detection of discriminatory distractors. Cohen’s ω2 and RCC, however, were found to function
comparably well (see also Table 3).
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distractors = top-row; seven distractors = bottom-row), 2PL-difficulty (diff_level: Moderate vs. difficult vs. very difficult), and effect size measures combined with
effect size thresholds (see explanation) (p10_cc = canonical correlation with a 0.10 threshold; p10_cw2 = Cohen’sω based on two ability groups with a 0.10 threshold;
p10_cw5 = Cohen’sω based on five ability groups with a 0.10 threshold; p30_cc = canonical correlation with a 0.30 threshold; p30_cw2 = Cohen’sω based on two
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Table 3. Percentages of cells in the simulation design with adequate type-I-error rate and
empirical power.

Threshold = 0.30 Threshold = 0.50

RCC ω2 ω5 RCC ω2 ω5

Adequate type-I-error rate
All 69 70 25 100 100 72

Adequate power

NRM Discrimination = 0.40
All 23 17 5 0 0 7

M(γ) > 0.30 17 3 4 - - 6
M(PBDC) < −0.30 16 3 4 - - 3

NRM Discrimination = 1.00
All 61 45 23 35 24 23

M(γ) > 0.30 39 31 16 25 17 14
M(PBDC) < −0.30 41 30 16 24 15 15

NRM Discrimination = 1.75
All 65 62 26 65 41 54

M(γ) > 0.30 38 38 14 41 25 36
M(PBDC) < −0.30 40 41 15 44 24 40

Percentages are rounded to integers. The threshold-specific best-performing statistic is highlighted in bold. When
two effect sizes performed equally well, both were highlighted. The total number of cells for each of the respective
levels of NRM discrimination was 162 (please note that the cells for checking type-I-error rates had zero NRM
discrimination). M(γ) > 0.30: In addition to adequate empirical power (≥0.80) the boundary condition that the
average of Goodman-Kruskal’s γ to check rising selection ratios had to be greater than 0.30. M(MPDC) < −0.30: In
addition to adequate empirical power the boundary condition that PBDC to check discrimination between item
solvers and participants who chose a certain distractor had to be smaller than −0.30. Frequencies in bold font refer
to the best performing effect sizes under the respective threshold conditions.

2.2.2. Power Results

Prior to power analysis, all results for conditions that yielded unacceptable type-I-error rates were
removed. Given that effect size measures are studied for their potential usefulness in the context of
test-development, it is unlikely that other important item statistics, such as Goodman and Kruskal’s γ
to test for rising selection ratios or PBDC would be ignored. Hence, we checked all conditions that had
both acceptable type-I-error and sufficient power (i.e., power ≥ 0.80) for their power under additional
boundary conditions. First, the power of effect size measures was reevaluated under the additional
condition that the average γ is greater than 0.30. Second, another reevaluation of the power of effect
size measures took PBDC as a boundary condition into account. Here we tested the additional condition
that the average PBDC had to be smaller than −0.30. Table 3 displays the percentages of design cells
with adequate empirical power with and without boundary conditions.

Across various conditions, the percentage of design cells with adequate power was highest for
the canonical correlation (see Table 3). The only exception to this pattern was the moderate NRM
discrimination condition paired with an effect size threshold of 0.50. However, in these conditions
the best-performing statistic wasω5 and adequate power was only achieved for less than 10% of the
design cells, which was still surpassed by RCC paired with a 0.30 threshold (see Table 3). Results
indicated further, as expected, a positive relationship between NRM discrimination and empirical
power. That is, the higher the NRM discrimination was in the data-generating model; the higher was
the percentage of design cells with adequate power to detect discriminatory distractors (see Table 3).
This pattern was rather robust across effect size thresholds and the used effect sizes. Restricting the
findings to RCC as the overall best-performing statistic, however, revealed that power gains from high
to very high NRM conditions were negligible (even non-existent when boundary conditions were taken
into account) with a 0.30 threshold. Comparing further the RCC results between the 0.30 and the 0.50
threshold, independent of NRM discrimination, suggested that the power advantage of the lower
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0.30 threshold as compared to the 0.50 threshold vanishes for very high NRM discrimination. The
differences between power analyses without and with boundary conditions increased with the level
of NRM discrimination. Generally, the overall impression of empirical power results was supported
regardless of the presence of additional boundary conditions.

In Figure 3, the power simulation results are split according to NRM discrimination conditions
between panels and according to the number of items. We found that empirical power was positively
related to the number of items and the number of distractors, indicating that more items and more
distractors increase empirical power to detect informative distractors. The simulation results might give
further the impression that for most of the conditions, sample size was negatively related to empirical
power. However, when comparing Figure 3 with Figure 5, it becomes clear that this impression
occurs, due to the influence of the low 2PL discrimination conditions on sample-size-specific empirical
power (i.e., there seems to be an interaction between sample size and 2PL discrimination level).
Otherwise, some conditions revealed a positive relationship between empirical power and sample size.
For example, for high NRM discrimination, three distractors, at least 20 items, and for a threshold of
0.30, empirical power was a positive function of sample size for both the canonical correlation coefficient
and Cohen’s ω based on two ability groups (see Figure 3). For these conditions, empirical power
also surpassed the 0.80 level for sufficient power. Moreover, detection of moderately discriminate
distractors was possible by means of the canonical correlation, but only with seven distractors, at least
20 items and a threshold of 0.30. Under the same conditions, Cohen’sω needed at least 50 items for
sufficient power. Detection of discriminatory distractors with three distractor items required at least a
high NRM discrimination with again the best findings for the canonical correlation that required at
least 20 items for adequate power (as compared to at least 50 items for Cohen’sω).

In Figure 4, the boxes of the boxplots are depicted in different colors depending on 2PL difficulty.
While recognizing that item easiness is negatively associated with the available data for participants
choosing one of the distractors, this plot also suggests a picture in line with the idea that the effect
sizes are subject to an upward bias. Here again, we suggest a cautious interpretation, because this
impression was driven by low 2PL-discrimination conditions (see Figure 5) that were presented among
the other findings for the varying difficulty conditions. Again, under these various 2PL difficulty
conditions, the canonical correlation combined with a 0.30 threshold displayed the best findings with
respect to empirical power across various conditions. The exceptions from this pattern can be inferred
from Figure 5 to be caused by conditions in which 2PL discrimination was low (see the skyblue
boxplots in the subplots for p30_cc). Hence, one might conclude that after a check of item-scale
correlations, the canonical correlation combined with a 0.30 threshold seems to be the best choice for
the task of pre-selecting items with discriminatory distractors from a pilot study (please note that
this conclusion also takes type-I-error into account, because power was only examined for conditions
with acceptable type-I-error rates). The detailed power findings presented in Figures 3–5 replicated
well under additional boundary conditions as it was the case for the results aggregated in Table 3.
Appendix B provides detailed figures of power findings under boundary conditions.
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Figure 3. Number-of-items split of empirical power analysis: Depiction of the empirical power (y-axis)
as a function of NRM discrimination (0.40 = top-row; 1.00 = middle-row; and 1.75 = bottom-row), sample
size (x-axis), number of distractors (three distractors = top-row in each sub-plot; seven distractors
= bottom-row in each sub-plot), number of items, and effect size measures combined with effect
size thresholds. The horizontal red dashed line represents the target power level of 0.80. For more
explanations, see Figure 2.
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Figure 5. 2PL-discrimination split of empirical power analysis: Depiction of the empirical power (y-axis)
as a function of NRM discrimination, sample size (x-axis), number of distractors, 2PL-discrimination
(disc_level: Low vs. moderate vs. high), and effect size measures combined with effect size thresholds.
The horizontal red dashed line represents the target power level of 0.80. For more explanations, see
Figures 2 and 3.

2.2.3. Empirical Substance Examination

We further examined the empirical substance for each of the simulation conditions. First, the
percentage of distractors with relative choice frequencies smaller than 5% increased with NRM
discrimination (9.62%, 10.34%, 15.56%, and 21.33% for NRM discrimination levels of 0, 0.40, 1.00,
and 1.75, respectively). The percentage of missing effect sizes, due to distractor choice frequencies
< 5%, however, was rather small in conditions (the maximum was < 1% for zero and moderate
NRM discrimination; and maximally 1.67% or 3.96% for NRM discrimination levels of 1.00 and 1.75,
respectively). The overall percentage of missing effect sizes was then examined, and across all 648 cells
of the simulation design, we found 17 cells with percentages of missing effect sizes larger than 1%.
An amount of 1% of missing effect sizes implies, for example, that for 1000 replications and 10 items the
number of missing effect sizes would be 100. The largest percentage of missing effect sizes was found
to be 4% for the condition with N = 500, I = 10, D = 7, moderate 2PL-difficulty, high 2PL-discrimination,



J. Intell. 2020, 8, 11 17 of 36

and the highest level of NRM discrimination. All 17 cells had in common that D = 7, 2PL-difficulty
was moderate, 2PL-discrimination was high, and that NRM discrimination was at least high. For all
other design cells, the percentage of missing effect sizes was below 1%, and for most of the cells, this
percentage was zero or negligible. The minimal proportion of occurring group sizes in the data was
99.99% forω2 in all conditions and 79.95% forω5 in all conditions. Hence,ω5 was affected the most by
empirical substance loss, which in turn might explain its inferior performance in the simulation study.

2.2.4. Discussion of Simulation Study Findings

In this simulation study, we thoroughly investigated the type-I-error rates and empirical power of
RCC, ω2, andω5 effect sizes to detect the discriminatory power of distractors. The power examination
was also carried out under additional boundary conditions defined by effect sizes with a focus on
solution behavior (i.e., γ and PBDC). The simulation was further flanked by an empirical substance
investigation to reveal the amount of information loss when, for example, distractors are chosen by
less than 5% of the participants or creation of ability groups did not result in the target number of
groups. The aim of this simulation was twofold: (a) We wanted to identify the best-performing effect
size for the detection of discriminatory distractors, and (b) we wanted to explore potential factors that
influence type-I-error and empirical power.

Results suggested that RCC andω2 yielded comparable performance with respect to type-I-error.
RCC and ω2 displayed acceptable type-I-error for a far greater variety of simulated conditions as
compared to ω5. Hence, ω5 was found to be clearly limited in its range of application. In terms of
empirical power, however, it was found that RCC clearly outperformedω2 in most of the simulated
conditions with few design cells in which RCC andω2 performed comparably well. In relation to this, it
is further important that using RCC in combination with a 0.30 threshold yielded better empirical power
findings in conditions with moderate or high NRM discrimination. For very high NRM discrimination
conditions RCC combined with a 0.30 threshold and RCC combined with a 0.50 threshold were found
to be comparable with respect to empirical power findings. Thus, for a wide range of simulated
conditions in this study, RCC in combination with a 0.30 threshold would be the best choice.

A more fine-grained analysis of influencing factors on type-I-error and empirical power revealed
that it is not generally recommended to use sample sizes of N = 100 for the detection of discriminatory
distractors. Based on type-I-error findings, the sample size should be at least N = 200 when items
include three distractors. When items include seven distractors, however, sample sizes below N = 500
cannot be recommended without further considerations, due to unacceptable type-I-error rates. In
relation to this, it needs to be noted that type-I-error rates for a threshold of 0.50 were acceptable for all
conditions when RCC as the generally best-performing effect size measure is used (i.e., ω2 also had
acceptable type-I-error rates for all conditions with a 0.50 threshold, but did not perform on par with
RCC with respect to power). However, in terms of empirical power, it is important to take further
into account that 2PL-discrimination needs to be at least moderate and NRM discrimination had to
be very high to yield largely acceptable detection power (with better findings for seven distractor
items). When NRM discrimination is only high, detection of discriminatory distractors was only
feasible for seven distractor items when at the same time 2PL-discrimination was at least moderate.
Empirical power, with a 0.50 threshold to detect items with moderate NRM discrimination, was found
to be unacceptable.

Importantly, the presented findings on the detection of ability-related discriminatory distractors
suggest that there is no simple rule to increase the power analogous to experimental study planning
(e.g., the more participants, the higher the power to detect a certain assumed mean difference between
experimental groups). Simply raising sample size or the number of items (or even both) did not
generally increase empirical power in the simulation. For example, with increasing sample sizes or
increasing difficulty, it was found that variation in empirical power increased for low 2PL-discrimination
conditions (see Figures 3–5). Hence, 2PL-discrimination seems to be a precondition before power
follows the commonly known “the-more-the-better” rule of thumb. In light of these specificities of
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the simulation findings, we, thus, recommend researchers to formulate their expectations (e.g., based
on previous empirical studies) about a potential item pool with respect to important parameters that
were found to be influential in this study, such as 2PL item difficulty (items should be difficult or very
difficult) and 2PL item discrimination (items should have at least moderate 2PL discrimination) and
run their own customized simulation to guide scale development. For example, scale development
must be efficient sometimes, and it could be the case that only N = 150 participants are available for a
first examination of the ability-related discriminatory power of distractors. Then, with the simulation
code of this study as a starting point (the code is openly available at https://osf.io/9tp8h/), it is possible
to explore different thresholds (i.e., also thresholds between 0.30 and 0.50) with respect to type-I-error
and empirical power in combination with other characteristics (e.g., number of items or number of
distractors) to choose the best design for scale development. Most likely, a design with N < 100
will not be applicable which prevents usage of the suggested approach at very early stages of scale
development in which items are tested for clear instructions or the wordings of item content (Johanson
and Brooks 2010).

3. Empirical Illustration

3.1. Method

3.1.1. Dataset

The studied dataset was taken from Myszkowski and Storme (2018). This dataset includes N = 499
participants from a French business school (undergraduates; 285 females and 214 males; age: M = 20.70,
SD = 0.93). All participants worked on the last series of Raven’s Standard Progressive Matrices
(SPM-LS) without any imposed time limit. The instructions further encouraged the participants to
provide a response even when they were unsure about the correct solution (Myszkowski and Storme
2018). Thus, no missing data are present in this dataset. The SPM-LS consists of twelve items with
seven distractors each. Hence, this dataset closely mimics the design in the simulation study above
with N = 500, I = 10, and D = 7.

3.1.2. Analytical Strategy

This empirical illustration will apply the effect size measures introduced in this work. Based on
the findings of the simulation study, we calculated RCC as effect size with a threshold of 0.30 because it
displayed acceptable type-I-error rates and reasonable empirical power under comparable conditions
as given for the given dataset in the simulation study above. In addition, the number of distractors
with relative choice frequencies < 0.05, PBDC and γ were calculated. Finally, we re-estimated the
2PL-parameters to facilitate interpretation of the findings in connection with the simulation study
presented above.

3.2. Results and Discussion

The findings presented in Table 4 revealed that for items 1 to 5 distractor choice frequencies
were too sparse to use the RCC. As expected, this sparsity of distractor frequencies was associated
with 2PL-difficulty estimates. These five items were indeed among the easiest items according to
the estimates in Table 4. Moreover, the estimates, in particular those for items 1 to 5, were much
higher as compared to the difficulties simulated above. In fact, only items 10 to 12 were found to
be in the range of simulated 2PL-difficulty values used above. The values for items 8 and 9 were
closer to the moderate difficulty level used in the simulation, whereas, the estimates for items 6
and 7 were clearly easier. The 2PL-discrimination estimates, however, were inside the range of
the simulation study and were even higher for several items. The latter observation is particularly
important, because even for the detection of moderate NRM discrimination it was found that RCC
had adequate power levels with seven distractors and a sample size of N = 500 (which are conditions

https://osf.io/9tp8h/
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resembling the Myszkowski-Storme dataset). Given that 2PL-discrimination was identified in the
simulation as an important influencing factor on the detection power, one could reasonably assume
that higher 2PL-discrimination can compensate for lower 2PL-difficulty as compared to the used
simulation setup. This reasoning applies particularly to item 6, which was found to have a much
larger 2PL-discrimination parameter estimate as compared to the values used in the simulation (and a
much lower difficulty estimate). Nonetheless, caution is needed when interpreting these findings with
parameter estimates outside the simulated values.

Table 4. Distractor choice frequency, 2PL-parameter estimates, and distractor effect size measure
findings on the Myszkowski-Storme dataset.

Item

Number of
Distractors with
Relative Choice

Frequency < 0.05

2PL-Difficulty 2PL-Discrimination RCC M(PBDC) 2 M(γ) 3

Item 1 6 1.32 0.85 NA 1 NA 1 NA 1

Item 2 7 3.56 2.01 NA 1 NA 1 NA 1

Item 3 6 2.07 1.69 NA 1 NA 1 NA 1

Item 4 6 4.11 4.10 NA 1 NA 1 NA 1

Item 5 7 5.51 4.97 NA 1 NA 1 NA 1

Item 6 5 2.13 2.38 0.46 −0.38 0.48
Item 7 4 1.23 1.55 0.28 −0.36 0.40
Item 8 1 0.50 1.61 0.34 −0.47 0.65
Item 9 3 0.40 1.27 0.34 −0.39 0.37
Item 10 1 −0.70 2.20 0.36 −0.61 0.77
Item 11 1 −0.82 1.51 0.21 −0.48 0.21
Item 12 1 −0.91 1.14 0.31 −0.43 0.23

1 Distractor effect size measures were not calculated when the number of distractors with relative choice frequency
< 0.05 exceeded a value of five (i.e., when only one distractor remained for analysis). 2 The average of all PBDC
values for all available distractors of an item is reported—the lower the average PBDC, the better. 3 The average of
all γ values for all available distractors of an item is reported—the higher the average γ, the better. The R code to
reproduce the findings in this table can be found in Appendix C.

Analysis of distractor effect size measures revealed five items (6, 8, 9, 10, and 12) with canonical
correlation coefficients > 0.30. Hence, we would suggest that the items flagged for distractors with
discriminatory power by means of the canonical correlation are most likely the ones driving the
reliability gain at the low-ability range, as reported by Myszkowski and Storme (2018). Moreover,
these items are expected to fit a nested logit modeling approach well in a larger sample.

To secure these observations, we further calculated the PBDC for items 6 to 12 to examine if
the correct solution was associated with higher ability levels as compared to choosing one of the
distractors. In addition, γ was used to check the rising selection ratio property. Table 4 displays
the average PBDC across all distractors for each of the items. These values ranged from moderate to
large effect sizes implying rather well-functioning distractors in this regard. Importantly, some items
displayed comparable RCC values (items 9 and 10), but clearly varying PBDC values. This highlights
the importance to study ability-related discrimination of distractors and discrimination with respect
to solution behavior at the same time. PBDC and also γ focus on solution behavior, but RCC focus on
distractors that are more often chosen by participants with higher ability levels as compared to other
distractors (i.e., not in comparison to the correct solution). These aspects of discrimination are not
necessarily expected to covary. This is further illustrated by the RCC and PBDC findings for item 11,
which had the lowest RCC value, but the second strongest PBDC (see Table 4).

The average γ findings were in the range from small to large, with an average γ smaller than 0.30
for items 11 and 12. This highlights that for an item not all boundary conditions might be fulfilled
(in these cases average PBDC was below −0.30, but γ was not larger than 0.30). To decide if this
pattern is problematic for the detection of ability-related discriminatory distractors, new simulations to
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understand the interplay of PBDC and γ as boundary conditions are clearly needed. Hence, results for
items 11 and 12 should also be treated with caution. These findings largely support the feasibility of
nested logit modeling with its primary focus on solution behavior and distractor choices as additional
information used for ability estimation.

4. Overall Discussion

In our study, we suggest an item-analysis procedure to detect items with potentially discriminating
distractors that can be used for trait estimation in models, such as nested logit models which take both
accuracy and distractor choices into account. We thoroughly examined the usefulness of different effect
sizes for distractor discrimination by a simulation study, and illustrated our findings by an application
to an empirical dataset with participants who worked on the short form of Raven’s Progressive matrices
test. As such, our analysis had a different focus as compared to traditional distractor analyses which
are usually concerned with distractor choice frequency and variants of biserial correlations to evaluate
distractor quality (Gierl et al. 2017; Haladyna and Downing 1993; Attali and Fraenkel 2000; Haladyna
2004). Instead, Cohen’s ω was examined as an effect size that can potentially reveal interactions
between ability groups and distractor choice frequencies, which are indicative of the discriminatory
power of distractors for the trait under consideration. As a second effect size, the canonical correlation
was studied as a measure for the detection of the discriminatory power of item distractors in terms of
the latent trait variable. The simulation revealed that in contrast to Cohen’sω, the canonical correlation
coefficient seems to be most promising for the task of detecting items with discriminatory distractors.

Limitations

This work is limited to the simulation conditions chosen. For example, Myszkowski and Storme
(2018) highlight the importance of taking item guessing into account. That is, they suggest relying on
the 3PNL instead of relying on the 2PNL as we used in the simulation. Likewise, the 4PNL was not
studied here to reduce the complexity of the simulation design. We argue that for a starting point to
understand mechanisms behind item selection based on distractor effect size measures, the design was
already rather complex. Future studies are clearly required in this regard.

In the empirical illustration, the suggested effect sizes for distractor discrimination were flanked
by the average PBDC, and the average γ and this approach seems to be most promising. In particular,
the PBDC can further reveal if choosing the correct solution is more strongly related to the ability as
compared to any other distractor. This is crucial for a model that puts solution behavior in the first
place. Moreover, average γ ensures that the assumption of rising selection ratios holds for a set of
candidate items which is further useful to guide item pre-selection. In our simulation, we found that
using these two statistics as boundary conditions is useful, but for simplicity, these two item statistics
were studied in isolation. Obviously, other more complex item-analysis strategies could be used in
which also a combined cut-off for both statistics is used. It is further possible to consider scenarios in
which item-selection is carried out in multiple consecutive steps, and the current work does not shed
much light into the question which statistic should be consulted first (e.g., testing discrimination in
the sense of item-scale correlations first, testing for rising selection ratios second, and screening for
ability-related discriminatory power of distractors as a final step).

5. Conclusions

Overall, the potential of nested logit models to construct measures with higher measurement
precision at lower ability levels by means of exactly the same items is highly attractive not only for
cognitive ability constructs as intelligence, but especially for measures that need to be very short and
efficient. However, the long tradition of, for instance, figural matrix items and available theories with
respect to solution behavior, item-, and distractor generation principles seem to be a key requisite for the
construction of such a measure. The canonical correlation as an effect size for distractor discrimination
seems to be a promising statistical tool for pre-selecting useful items for scale construction in this regard.
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In fact, the canonical correlation can be interpreted analogously to classical item-scale correlations (i.e.,
test developers can rely on a familiar 0.30 cut-off). Moreover, it fits the idea of item response models in
which observable behavior (i.e., distractor choice) is modeled as a function of ability.

Author Contributions: Conceptualization, B.F.; Methodology, B.F.; Software, B.F.; Validation, B.F.; Investigation,
B.F.; Resources, E.S.; Data Curation, B.F.; Writing-Original Draft Preparation, B.F., N.F., B.S.; Writing-Review &
Editing, B.F., N.F., B.S., K.H., J.F., M.T.P., E.S.; Visualization, B.F., N.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, further simulation results on the type-I-error rate are displayed in Figures A1
and A2.
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distractors = top-row; seven distractors = bottom-row), 2PL-discrimination (disc_level: Low vs. moderate vs. high), and effect size measures combined with effect size
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distractors = top-row; seven distractors = bottom-row), number of items and effect size measures combined with effect size thresholds. The horizontal red dashed line
represents the target type-I-error rate of 0.05. For more explanations, see Figure 2.
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Appendix B

In this appendix, further simulation results on the empirical power under boundary conditions
are displayed. Figure A3 shows the findings for average γ as a boundary condition when the boxes in
the boxplots are grouped by the levels of simulated 2PL discrimination. The power findings replicated
well even with this boundary condition. Only low 2PL discrimination conditions were associated with
clearly decreasing levels of power far below the target level of 0.80. The same observation was made
with average PBDC as a boundary condition (see Figure A4). 2PL discrimination was found to be the
strongest influencing factor on these examinations of boundary conditions. For 2PL difficulty, a similar
pattern was revealed with the lowest power for moderately difficult items (in some cases even dropping
below the 0.80 target level) and the highest power for very difficult items (see Figures A5 and A6).
When structuring the boxes in the boxplots according to the number of items, it was further revealed
that the number of items was inversely related to the dispersion of power results (see Figures A7
and A8). With ten items power findings were pretty homogenous for all studied effect size measures,
but for 50 items, the power results were strongly scattered.
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Figure A3. 2PL-discrimination split of empirical power analysis: Depiction of the empirical power
(y-axis) under the boundary condition that the average γ is greater than 0.30. Power is depicted as a
function of NRM discrimination, sample size (x-axis), number of distractors, 2PL-discrimination, and
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discrimination effect sizes combined with effect size thresholds (p30_cc_p30_m_g = canonical correlation
with a 0.30 threshold; p30_cw2_p30_m_g = Cohen’sω based on two ability groups with a 0.30 threshold;
p30_cw5_p30_m_g = Cohen’sω based on five ability groups with a 0.30 threshold; p50_cc_p30_m_g
= canonical correlation with a 0.50 threshold; p50_cw2_p30_m_g = Cohen’s ω based on two ability
groups with a 0.50 threshold; p50_cw5_p30_m_g = Cohen’s ω based on five ability groups with a
0.50 threshold). The horizontal red dashed line represents the target power level of 0.80. For more
explanations, see Figures 2 and 3.
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Figure A4. 2PL-discrimination split of empirical power analysis: Depiction of the empirical power
(y-axis) under the boundary condition that the average PBDC is smaller than −0.30. Power is depicted
as a function of NRM discrimination, sample size (x-axis), number of distractors, 2PL-discrimination,
and discrimination effect sizes combined with effect size thresholds (p30_cc_p30_m_pb = canonical
correlation with a 0.30 threshold; p30_cw2_ p30_m_pb = Cohen’sω based on two ability groups with a
0.30 threshold; p30_cw5_ p30_m_pb = Cohen’sω based on five ability groups with a 0.30 threshold;
p50_cc_ p30_m_pb = canonical correlation with a 0.50 threshold; p50_cw2_ p30_m_pb = Cohen’sω
based on two ability groups with a 0.50 threshold; p50_cw5_ p30_m_pb = Cohen’s ω based on five
ability groups with a 0.50 threshold). The horizontal red dashed line represents the target power level
of 0.80. For more explanations, see Figures 2 and 3.
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Figure A5. 2PL-difficulty split of empirical power analysis: Depiction of the empirical power (y-axis)
under the boundary condition that the average γ is greater than 0.30. Power is depicted as a function of
NRM discrimination, sample size (x-axis), number of distractors, 2PL-difficulty, and discrimination
effect sizes combined with effect size thresholds. The horizontal red dashed line represents the target
power level of 0.80. For more explanations, see Figures 2 and 3.
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Figure A6. 2PL-difficulty split of empirical power analysis: Depiction of the empirical power (y-axis)
under the boundary condition that the average PBDC is smaller than −0.30. Power is depicted as
a function of NRM discrimination, sample size (x-axis), number of distractors, 2PL-difficulty, and
discrimination effect sizes combined with effect size thresholds. The horizontal red dashed line
represents the target power level of 0.80. For more explanations, see Figures 2 and 3.
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Figure A7. Number-of-items split of empirical power analysis: Depiction of the empirical power
(y-axis) under the boundary condition that the average γ is greater than 0.30. Power is depicted
as a function of NRM discrimination, sample size (x-axis), number of distractors, number of items,
and discrimination effect sizes combined with effect size thresholds. The horizontal red dashed line
represents the target power level of 0.80. For more explanations, see Figures 2 and 3.
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Figure A8. Number-of-items split of empirical power analysis: Depiction of the empirical power
(y-axis) under the boundary condition that the average PBDC is smaller than −0.30. Power is depicted
as a function of NRM discrimination, sample size (x-axis), number of distractors, and discrimination
effect sizes combined with effect size thresholds. The horizontal red dashed line represents the target
power level of 0.80. For more explanations, see Figures 2 and 3.

Appendix C

In this appendix, the R code to reproduce the analysis for the Myszkowski-Storme dataset
is presented. Two additional packages were used: Psych (Revelle 2018) for the scoring of the
multiple-choice items, and mirt (Chalmers 2012) for estimation of the 2PL parameters. The complete R
code, including also the simulation study is available in the OSF repository: https://osf.io/9tp8h/.

### load data

#

### downloaded from

# https://data.mendeley.com/datasets/h3yhs5gy3w/1

dataset <- read.csv(“dataset.csv”, stringsAsFactors=FALSE)

### install required packages (if needed)

https://osf.io/9tp8h/
https://data.mendeley.com/datasets/h3yhs5gy3w/1
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### remove # to make this code run

#install.packages(c(“psych”,”mirt”))

### get results function

### includes also the effect size measures that were

### studied in the simulation and also more useful

### descriptive statistics

get_results <- function(data,keys=“sim”){

### keys for scoring

if(length(keys)==1){keys <- rep(0,ncol(data))}else{

keys <- keys

}

### quantiles for two ability groups

p2 <- .5

### quantiles for five ability groups

p5 <- c(.2,.4,.6,.8)

### load psych library

require(psych)

### score all items

scored <- score.multiple.choice(key=keys,data=data,score=F)

### ability groups

abil2.c <- rep(0,nrow(scored))

for(i in 1:length(p2)){

if(i < length(p2)){

abil2.c[rowSums(scored)>quantile(rowSums(scored),p=p2[i])

& rowSums(scored)<=quantile(rowSums(scored),p=p2[i+1])] <- i

}else{abil2.c[rowSums(scored)>quantile(rowSums(scored),p=p2[i])] <- i

}

}

### ability groups

abil5.c <- rep(0,nrow(scored))

for(i in 1:length(p5)){

if(i < length(p5)){

abil5.c[rowSums(scored)>quantile(rowSums(scored),p=p5[i])

& rowSums(scored)<=quantile(rowSums(scored),p=p5[i+1])] <- i

}else{abil5.c[rowSums(scored)>quantile(rowSums(scored),p=p5[i])] <- i

}

}

### list distractors with relative frequency < .05

rf05 <- list()

for(j in 1:ncol(data)){

rf05[[j]] <- table(data[,j][data[,j]!=keys[j]])/length(data[,j])<.05

}

### general Cohen’s w, 2 ability groups

chi_g2 <- list()

cw_g2 <- list()

tab_c2_l <- list()

zero_columns2 <- list()

for(k in 1:ncol(data)){

tab_c2 <- matrix(table(data[,k][data[,k]!=keys[k]],abil2.c[data[,k]!=keys[k]])

[!rf05[[k]],],ncol=length(unique(abil2.c[data[,k]!=keys[k]])))
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zero_columns2[[k]] <- colSums(tab_c2)==0

tab_c2 <- tab_c2[,colSums(tab_c2)>0]

tab_c2_l[[k]]<-tab_c2

if(sum(!rf05[[k]])>=2){chi_g2[[k]] <- chisq.test(tab_c2)}else{

chi_g2[[k]] <- NA

}

### Cohen’s w - general

if(sum(!rf05[[k]])>=2){cw_g2[[k]] <- sqrt(sum(((chi_g2[[k]]$observed/sum(tab_c2)

-chi_g2[[k]]$expected/sum(tab_c2))ˆ2)/(chi_g2[[k]]$expected/sum(tab_c2))))}else{

cw_g2[[k]] <- NA

}

}

### general Cohen’s w, 5 ability groups

chi_g5 <- list()

cw_g5 <- list()

tab_c5_l <- list()

zero_columns5 <- list()

for(k in 1:ncol(data)){

tab_c5 <- matrix(table(data[,k][data[,k]!=keys[k]],abil5.c[data[,k]!=keys[k]])

[!rf05[[k]],],ncol=length(unique(abil5.c[data[,k]!=keys[k]])))

zero_columns5[[k]] <- colSums(tab_c5)==0

tab_c5 <- tab_c5[,colSums(tab_c5)>0]

tab_c5_l[[k]]<-tab_c5

if(sum(!rf05[[k]])>=2){chi_g5[[k]] <- chisq.test(tab_c5)}else{

chi_g5[[k]] <- NA

}

### Cohen’s w - general

if(sum(!rf05[[k]])>=2){cw_g5[[k]] <- sqrt(sum(((chi_g5[[k]]$observed/sum(tab_c5)

-chi_g5[[k]]$expected/sum(tab_c5))ˆ2)/(chi_g5[[k]]$expected/sum(tab_c5))))}else{

cw_g5[[k]] <- NA

}

}

### canonical correlation

can_cor <- list()

ncol_mmat <- list()

for(k in 1:ncol(data)){

ncol_mmat[[k]] <- if(sum(!rf05[[k]])>=2)

{ncol(model.matrix(rowSums(scored[scored[,k]==0,-1])~-1+factor(data[,k]

[scored[,k]==0]))[,!rf05[[k]]])}else{

NA

}

can_cor[[k]] <- if(sum(!rf05[[k]])>=2)

{cancor(rowSums(scored[scored[,k]==0,-k]),model.matrix(rowSums(scored[scored[,k]

==0,-1])~-1+factor(data[,k][scored[,k]==0]))[,!rf05[[k]]])$cor}else{

NA

}

}

### point-biserial coefficient PB_DC

pb_dc <- list()

### Goodman-Kruskal gamma
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gkg <- list()

gkg_tab <- list()

### start loop

for(v in 1:ncol(data)){

pb_dc_d <- list()

gkg_d <- list()

gkg_tab_d <- list()

### function to calculate

### Goodman-Kruskal gamma

### taken from here:

### https://stat.ethz.ch/pipermail/r-help/2003-March/030835.html

goodman <- function(x,y){

Rx <- outer(x,x,function(u,v) sign(u-v))

Ry <- outer(y,y,function(u,v) sign(u-v))

S1 <- Rx*Ry

return(sum(S1)/sum(abs(S1)))}

### start loop

non_key <- unique(data[,v])[!unique(data[,v])%in%keys[v]]

for(w in non_key){

MDC <- mean(rowSums(scored)[data[,v]%in%c(keys[v],w)])

SDC <- sd(rowSums(scored)[data[,v]%in%c(keys[v],w)])

MD <- mean(rowSums(scored)[data[,v]%in%w])

PD <- mean(data[,v]%in%w)

PC <- mean(data[,v]%in%keys[v])

### r-PB_D

### r-PB_DC

pb_dc_d[[w]] <- (MD-MDC)/SDC*sqrt(PD/PC)

### Goodman-Kruskal gamma

score_other_items <- factor(rowSums(scored[,-v]))

tab_gkg_d <- table(data[data[,v]%in%c(keys[v],w),v],score_other_items[data[,v]

%in%c(keys[v],w)])

### exclude ability levels with zero frequency

tab_gkg_d <- tab_gkg_d[,colSums(tab_gkg_d)>0]

gkg_d[[w]] <- goodman(as.numeric(colnames(tab_gkg_d)),

tab_gkg_d[as.numeric(rownames(tab_gkg_d))%in%keys[v],]

/colSums(tab_gkg_d))

gkg_tab_d[[w]] <- tab_gkg_d

}

pb_dc[[v]] <- pb_dc_d

gkg[[v]] <- gkg_d

gkg_tab[[v]] <- gkg_tab_d

}

### return results

res <- list(rf05 = rf05,

tab_c2_l = tab_c2_l, zero_columns2 = zero_columns2,

tab_c5_l = tab_c5_l, zero_columns5 = zero_columns5,

cw_g2 = cw_g2, cw_g5 = cw_g5,

can_cor = can_cor,

pb_dc = pb_dc,

gkg = gkg,
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gkg_tab = gkg_tab,

ncol_mmat = ncol_mmat)

return(res)

}

### frequencies of distractor usage

### including correct response

apply(dataset,2,table)

### load psych library

library(psych)

### score all items

scored <- score.multiple.choice(key=c(7,6,8,2,1,5,1,6,3,2,4,5),data=dataset,score=F)

### does choosing a certain other distractor

### imply better overall scores?

#

### run suggested distractor analysis

ms_res<-get_results(dataset,keys = c(7,6,8,2,1,5,1,6,3,2,4,5))

### show Results for Table 4

#

### show for which items the distractor choice frequencies were

### below 5%:

ms_res$rf05

### Items 1 to 5 have too many distractors with response frequencies

### below 5%.

#

### get 2PL parameters from mirt

library(mirt)

est_test2pl <- mirt(scored, 1, itemtype=“2PL”)

### show results

coef(est_test2pl)

# a1 = 2PL-discrimination

# d = 2PL-difficulty

#

### canonical correlation findings

ms_res$can_cor[6:12]

### check boundary conditions

#

### average pb_dc

lapply(ms_res$pb_dc,function(x)mean(unlist(x),na.rm=T))[6:12]

### average gamma

lapply(ms_res$gkg,function(x)mean(unlist(x),na.rm=T))[6:12]
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