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Abstract: In the last decade, alginate-based microgels have gained relevant interest as three-dimensional
analogues of extracellular matrix, being able to support cell growth and functions. In this study,
core-shell microgels were fabricated by self-polymerization of dopamine (DA) molecules under mild
oxidation and in situ precipitation of polydopamine (PDA) onto alginate microbeads, processed
by electro fluid dynamic atomization. Morphological (optical, SEM) and chemical analyses (ATR-
FTIR, XPS) confirmed the presence of PDA macromolecules, distributed onto the microgel surface.
Nanoindentation tests also indicated that the PDA coating can influence the biomechanical properties
of the microgel surfaces—i.e., σmaxALG = 0.45 mN vs. σmaxALG@PDA = 0.30 mN—thus improving
the interface with hMSCs as confirmed by in vitro tests; in particular, protein adsorption and viability
tests show a significant increase in adhesion and cell proliferation, strictly related to the presence of
PDA. Hence, we concluded that PDA coating contributes to the formation of a friendly interface able
to efficiently support cells’ activities. In this perspective, core-shell microgels may be suggested as a
novel symmetric 3D model to study in vitro cell interactions.

Keywords: atomization; core-shell; bioactive coatings; in vitro culture

1. Introduction

In the last two decades, research on biomaterials has been focused on the development
of three-dimensional (3D) scaffolds to guide the interactions among cells into a simulated
in vitro microenvironment able to mimic basic features of the tissue extracellular matrix
(ECM). For this purpose, hydrogels have been preferentially used, due to their ability to
exchange nutrients and cell metabolites across the 3D network formed by their polymer
chains [1]. In this view, microgels—that is chemically or physically crosslinked hydro-
gels with a round shape and average size on the microscale—were proposed as optimal
candidates of ECM-like models, because they are able to provide a fully interconnected fila-
mentar structure with externded surface area, tunable permeability and swelling properties
modulable as a function of external microenvironmental stimuli [2].

In the past years, several methodologies were explored for tailored manufacturing
of microgels for tissue regeneration [3]. Among them, electro-fluid dynamic atomization
(EFDA) is emerging as a versatile, low-cost, and high-throughput technology suitable
to design customized devices, with a round shape and micrometric size, able to confine
morphological and biochemical signals to support in vitro cell interactions. In comparison
with other techniques (i.e., microfluidics, emulsions), EFDA allows the manipulation of
organic polymers from a different origin—i.e., synthetic or natural one—by applying high
voltage electrical forces to them directly in the solution. An accurate control of the voltage,
in combination with other parameters (i.e., flow rate and bath composition), offers the
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opportunity to customize the morphology of particles, from the micro- to submicro- scale,
for the production of a wide pattern of devices with peculiar functional properties [4].
In the last years, different kinds of microgels based on polysaccharides such as chitosan,
cellulose, and alginate have been developed by EFDA for a wide range of biomedical
applications, from tissue engineering [5,6] to drug delivery [7–9].

Among them, recent studies have proposed the use of sodium alginates to fabricate
tailor-made microgels via EFDA to study cell behavior under simulated microenvironmen-
tal conditions, reproducing healthy [10] or cancer tissues [11]. Indeed, due to their peculiar
hydrogel-like behavior, sodium alginates can create physically cross-linked 3D networks
able to exhibit outstanding features in terms of mechanical and transport properties. These
systems can be really suitable for (i) the immobilization and protection of cells during the
encapsulation procedure and (ii) the exchange of oxygen, nutrients, metabolites, and small
molecules with the external medium—that is mandatory in supporting cells to survive
more longer in a simulated tissue microenvironment.

However, as reported in previous works, sodium alginates can present some limits
for in vitro applications, mainly due to low adhesive properties—not comparable with
those of other natural biopolymers such as gelatin or chitosan [12,13]—and the tendency to
rapidly degrade, just after few weeks in cell culture, thus compromising their chemical and
mechanical properties [14].

In order to overcome these drawbacks, an improvement in surface properties of the
alginate microgels was proposed through the implementation of a simple methodology
based on surface treatment in dilute aqueous dopamine (DA) solution under weakly
oxidative conditions. Similar approaches have been previously optimized to introduce
more and specific functionalities onto a wide range of different substrates (i.e., metals,
glass, and polymers), for potential use in the biomedical, environmental, and energy
fields [15,16]. Herein, the polymerization of DA molecules onto the microgel surface was
optimized in order to form a thin layer of mussel inspired polydopamine (PDA). This
strategy can help to improve the surface adhesion properties of the microgel, thanks to
specific functionalities of PDA—i.e., catechol and amine groups—typical of aminoacids
such as 3,4-dihydroxy-L-phenylalanine (DOPA) and L-lysine, respectively. This condition
concurs to create the physicochemical conditions basically required for efficient biological
interfacial recognition [17]. Indeed, PDA macromolecules can also work as spacer to
conjugate bioactive molecules onto the alginate surfaces without any manipulation or
chemical pre-treatment of the surrounding substrate [18,19].

Therefore, it is proposed to design core-shell microgels—inner core of sodium alginate
with a thin shell of PDA—to generate a 3D platform with cell-friendly interfaces able
to improve in vitro cell interaction studies. At this stage, process conditions will be set
to form a PDA layer with tunable biological and biomechanical properties. Moreover,
morphological chemical and biomechanical properties will be investigated to preliminarily
validate in vitro interface with hMSC.

2. Materials and Methods
2.1. Materials

Sodium alginate (SA) from brown algae (≈250 cps), anhydrous calcium chloride
(CaCl2), dopamine-hydrochloride (DA), 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris
base, buffer), and ethanol were purchased by Sigma Aldrich (Milan, Italy). To prepare the
solutions, deionized water was used, while 18 G metallic needles (18 Ga) were purchased
by BD, USA for the atomization process.

For in vitro assays, phosphate buffer solution (PBS), sodium dodecyl sulfate (SDS), hu-
man mesenchymal stem cells (hMSCs, SCC034), fetal bovine serum (FBS), BCA QuantiPro
assay kit, bovine serum albumin (BSA), Cell Counting Kit-8 (CCK-8), Cell Proliferation
Kit II (XTT, Roche, Basel, Switzerland), streptomycin, penicillin, and L-glutamine were
purchased from Sigma Aldrich (Milan, Italy).
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2.2. Synthesis of Microgels
2.2.1. Core Fabrication: Alginate Atomization

SA was dissolved in distilled water to obtain a 2% wt/v solution. SA solution was
processed via EFDA to obtain micro-sized gels according to the schematic procedure
reported in the U.S. Patent [20]. Briefly, the SA solution was placed in a 5 mL syringe
connected to a power supply by the needle to apply 20 kV. The feed rate of the syringe
pump was optimized at 5.0 mL/h, while distance was set at 15 mm to optimize the size and
shape of droplets. Droplets were collected into a CaCl2 solution (1.1% w/v) under magnetic
stirring in order to easily trigger an ionotropic crosslinking of alginate in water solutions.

2.2.2. Shell Fabrication: PDA Coating

The alginate microgels were coated with PDA by the following simple procedure: The
alginate ALG microgels (about 60 mg) were immersed and dispersed into 10 mL of Tris
base solution (10 mM, pH 8.5), and then DA (0.5 or 1.0 mg/mL) was added. The mixture
was gently stirred at room temperature for 6 h. The PDA-coated microgels (ALG@PDA)
obtained were rinsed and stably stocked in water (Figure 1).
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Figure 1. Scheme of fabrication of core-shell microgels.

2.3. Characterization of Microgels
2.3.1. Morphological Analysis

The morphology of alginate microgels and PDA-coated microgels was evaluated
by optical microscopy (DM750, Leica, Wetzlar, Germany). Optical images were used to
quantitatively estimate microgel sizes via image analysis (Image J, 1.47; NIH, Bethesda,
Rockville, MD, USA). Results were reported as mean ± standard deviation (SD). The
surface morphology of samples was investigated by images recorded by Scanning Electron
Microscopy (SEM, Quanta FEG 200 FEI, Eindhoven, The Netherlands) working at low-
voltage electron emission (2 kV) into a low vacuum range (e.g., chamber pressure < 10−2 Pa)
to avoid any sample pre-treatment via conductive metal deposition.

2.3.2. Chemical-Physical Characterization

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra of dried
samples were recorded on a Perkin Elmer Spectrum 100 FTIR spectrophotometer (Milano,
Italy) in the range of 4000 to 400 cm−1 with a resolution of 4 cm−1 and 32 scans.
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X-ray photoelectron spectroscopy (XPS) measurements were recorded with an AXIS UL-
TRA DLD (Kratos Analytical, Stretford, UK) photoelectron spectrometer using a monochro-
matic AlKα source (1486.6 eV) operated at 150 W (10 kV, 15 mA). The base pressure in the
analysis chamber was 5.3 × 10−9 torr. Survey scan spectra were recorded using a pass energy
of 160 eV and a 1 eV step. High resolution spectra were acquired using a pass energy of 20 eV
and a 0.1 eV step. In each case, the area of analysis was about 700 µm × 300 µm. During
the data acquisition, a system of neutralization of the charge has been used. Processing of
the spectra was accomplished by CasaXPS Release 2.3.16 software. The binding energy
(BE) scale was referenced to the Au 4f7/2 peak at 84.0 eV. Surface charging was corrected
considering adventitious C 1s (BE = 285 eV).

Thermal stability of dried samples was investigated by thermogravimetric analysis
(TGA) using a Q500 system by TA Instruments (New Castle, Germany) under N2 atmo-
sphere (50 mL/min) and a heating ramp of 10 ◦C/min. Sample weights of around 6 ± 0.5 mg
were used for the run test performed by heating from ambient temperature to 800 ◦C.

Swelling tests were performed on dried, uncoated, and PDA-coated alginate microgels.
To qualitatively estimate the swelling behavior of ALG and ALG@PDA microgels, swelling
tests were performed on dried samples. Microgels were placed onto glass slides in bi-
distilled water. Optical images were taken to monitor shape and size changes in the
microgels over time.

The nanoindentation technique was employed to assess the extension of dried PDA-
coated particles by comparing the attained results with corresponding alginate particles.
A Nano Test Platform (Micro Materials Ltd., Wrexham, UK) was used to measure the
force-displacement profile in a very tiny range by a controlled force mode, and the force vs.
indentation curves were analyzed assuming a different penetration behavior at particles
interface. Each test was performed at a loading ramp of 1 mN/min using a three-sided
Berkovich pyramidal diamond tip (100 µm radius) up to a maximum penetration depth of
500 nm.

2.4. In Vitro Studies
2.4.1. Protein Adsorption

The protein adsorption was analyzed using a BCA protein assay kit (QuantiPro) to
evaluate the effect of PDA coating on the absorption of BSA as a model. The microgels
(20 mg/mL) were put in a 96-well plate and incubated in 1 mg/mL of BSA solution at
37 ◦C. After 4 and 24 h the microgels were removed from the protein solution and rinsed
three times with PBS. Then, samples were incubated with 1% of SDS solution for 1 h to
extract the protein adsorbed by the samples. The protein concentration was detected using
a BCA protein assay kit as indicated in the manufacturer’s instructions.

2.4.2. Cell Culture

For in vitro assays, hMSCs were cultured in a 75 cm2 cell culture flask in Eagle’s alpha
minimum essential medium (α-MEM) supplemented with 10% FBS, antibiotic solution
(streptomycin 100 µg/mL and penicillin 100 U/mL), and 2 mM of L-glutamine, incubated
at 37◦ C in a humidified atmosphere with 5% CO2 and 95% air. hMSCs from 4 passages
were used for cell proliferation assays.

2.4.3. Cell Adhesion and Proliferation

Before the in vitro studies, ALG and ALG@PDA microgels were washed and sterilized
in ethanol (70%) for 30 min, then washed three times with PBS. Afterward, ALG and
ALG@PDA were placed in a 96-cell culture plate (20 mg/mL) and incubated with cell
culture medium. After 30 min, the cell culture media was removed and hMSCs were
seeded at 5 × 104 cells/well to perform cell adhesion and proliferation assays. For cell
adhesion, after 24 h, the medium was removed, and samples were washed with PBS to
remove the unattached cells; then, 100 µL of fresh medium with 10 µL of CCK-8 was added.
After 4 h incubation in standard conditions, the supernatant was collected and placed
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into a microplate reader to measure the absorbance at 450 nm. Results were presented as
percentage of cell adhesion with respect to the cell culture plate.

Confocal microscopy was used to observe the interaction of cells with the ALG and
ALG@PDA surfaces. hMSCs were preliminarily incubated in phenol red-free medium
with CellTracker Deep Red (Thermo Fisher scientific, Waltham, MA, USA) at 37 ◦C for
30 min. Then, the cell culture was removed, and cells were washed with PBS, and fresh
culture media was added to incubate cells for 1 h. Lastly, cells were trypsinized, placed
onto the microgels, and incubated in standard conditions for three days. After this period,
the samples were washed with PBS and fixed with 4% paraformaldehyde. Then, samples
were washed with PBS to evaluate the cell morphology via confocal microscopy (LSM510,
Carl Zeiss, Jena, Germany).

For cell proliferation, an XTT assay kit was performed after 1, 3, 7, and 14 days. Briefly,
at each time point, the cell culture media was removed and changed by 100 µL of fresh
medium with XTT working solution as indicated by the manufacturer’s instructions and
incubated for 4 h in standard conditions. The supernatant was collected, and absorbance
measured at 450 nm using a microplate reader. Results are presented as mean ± standard
error (n = 3). Analysis of variance (ANOVA) with Tukey’s post hoc test was used to detect
differences between groups. A value of p < 0.05 was considered to determine statistically
significant differences.

3. Results

Alginates are very attractive biopolymers that are growing in interest in the biomedical
field, due to their unique capability to combine well-known properties of biocompatibil-
ity with the ease of being processed in different forms (i.e., injectable gels, microbeads,
and porous scaffolds) [21]. In particular, spherical-shaped alginate gels can be simply
created by dropping a sodium alginate solution into an aqueous bath with divalent cations
(i.e., Ca2+, Cu2+, Mg2+, and Sr2+) to form stable chain agglomerates easily assembled into
3D networks by physical links mediated interaction of the charged polymer and cation
species. This makes the alginate beads particularly suitable to support in vitro cell interac-
tions for different biological and/or therapeutic approaches (i.e., cell encapsulation [22],
cell covering [23], and cell confinement into the scaffolds [24]). Recent advances in process
technologies enabled the overcoming of some intrinsic limitations in the control of the
beads’ size, by introducing the use of external electrical forces to break the polymer solution
into smaller droplets, thus promoting the formation of beads on the micrometric scale
from tens to hundreds µm [25]. However, drawbacks related to the tendency of alginate
microgels to easily degrade in vitro cannot be solved only by an accurate control of the
process conditions; it is required that chemical and/or physical signals be included to
improve some shortcomings in terms of chemical and/or mechanical properties [26].

This becomes particularly relevant for in vitro studies where the presence of mono-
valent cations such as Na+ tends to substitute bivalent ones (i.e., Ca2+) into the alginate
network, thus determining a crosslink breaking and, then, a gradual loss of the gel stability
in an aqueous solution. Consequently, the mechanical properties of microgels progressively
decay in three–four weeks until the complete dissolution of the alginate chain network.

In order to overcome this problem, a simple solution is proposed, by coating alginate
microgels fabricated via EFDA with a thin shell of PDA. In our previous work, we have
demonstrated that the use of PDA coatings can modify surface properties of porous nanos-
tructured scaffolds to improve cell adhesion and proliferation [27,28]. Herein, the proposed
strategy offers the opportunity to form core-shell systems—i.e., alginate core-PDA shell—in
a single step at room or body temperature, that may be also compatible with the use of live
cells. Indeed, alginate microgels were simply immersed into a 10 mM Tris base solution at
a pH = 8.5, and DA was added. The weakly alkaline conditions of the mixture promote the
self-polymerization of the DA monomer to PDA, which is spontaneously deposited onto al-
ginate microgels [29]. In this study, two different initial concentrations of DA in Tris-buffer
solution were used—i.e., 0.5 and 1.0 mg/mL—leading to PDA-coated alginate microgels
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named ALG@PDA05 and ALG@PDA1, respectively. Although the mechanism of PDA
formation is still a challenging discussion, it was established that a high concentration of
DA could increase the formation of some small PDA particles through self-polymerization
in solution [29]. Hence, DA concentrations ≤1 mg/mL were recognized to ensure a PDA
thin film deposition on ALG surfaces inhibiting polymer aggregate impurities. The mor-
phology of different microgel types was analysed via optical microscopy, and some images
are reported in Figure 2. The average diameters of alginate microgels—calculated by image
analysis—may significantly vary from 882.75 ± 31.7 to 401.33 ± 29.01 µm by changing
the diameter of the needle—18 G or 27 G—fixed to the ejection head, confirmed to play a
relevant role in the mechanism of fluid dynamic breaking of the droplet in the presence of
electric forces.
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Figure 2. Optical images of alginate microgels (diameter change by the use of different needle diameter,
18 and 27 G), and PDA-coated alginate microgels obtained with different initial DA concentrations:
0.5 mg/mL (ALG@PDA05) and 1.0 mg/mL (ALG@PDA1). (Mag: 4×; Scale bar: 500 µm).

Moreover, an evident color change of alginate microgels from clear to dark brown
was noted after the PDA coating, prepared with higher DA concentration (1.0 mg/mL).
However, no significant changes in the average diameter were detected after the PDA
coating deposition, independently of the DA concentration (Table 1).

Table 1. Image analysis: evaluation of the average diameters.

DA (mg/mL) Average Diameter (µm) DA (mg/mL)

0 882.75 ± 31.70 0
0.5 875.08 ± 29.38 0.5
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Further investigation of the morphological properties of PDA coatings was assessed
by SEM analysis performed in low vacuum mode to eliminate any image artifact due to
the use of conductive metal coating on the sample surface (Figure 3). In the case of ALG
(Figure 3a), a highly porous surface was observed while pores and voids seemed to be
completely covered after PDA treatment (Figure 3b). As remarked in highly magnified
images, the surface of ALG@PDA clearly shows the presence of a thin and homogeneous
coating. Although the mechanism of growth and PDA morphology characteristics are still
unclear [30], this result suggests that a highly permeable and hydrophilic surface such that
of alginates promotes a more homogeneous deposition of the PDA coating, with respect to
a dot-like deposition typically observed on hydrophobic substrates [28,31].
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Figure 3. Morphological analysis via low vacuum SEM: evaluation of the surface morphology of
(a) ALG and, (b) ALG@PDA. Scale bar: 20 µm (left) and 10 µm (right).

The presence of the PDA coating was enhanced by chemical investigations via ATR-
FTIR. Figure 4 showed ATR-FTIR spectra of PDA-coated particles (ALG@PDA) in compari-
son with neat alginate ones (ALG). In the case of the ALG spectrum (black curve), stretching
vibrations of O–H bonds of alginate appear in the range of 3600–3000 cm−1 as a narrow
band, while stretching of aliphatic C–H are weakly observable in the 2940–2840 cm−1 range.
In addition, the characteristic peaks due to -COOH and C–O–C stretching are observable
at 1594 and 1029 cm−1, respectively. After PDA deposition, the spectrum (red curve)
is very similar to that of alginate, presenting a slight shift of some characteristic peaks
(1594–1029 cm−1 range) to a lower wavelength, indicating the weakened hydrogen bond
network in ALG, due to the presence of the PDA coating. The absorption region
(3600–3100 cm−1) of stretching vibrations of O-H bonds in ALG@PDA appears broader
than in the ALG case. This could be attributed both to additional O–H groups of PDA and
key absorption of catechol groups which are included in the same range. The stretching of
indole C=C is enhanced by a slight peak at 1515 cm−1. Hence, the polymeric shell char-
acteristic peaks show a lower relative intensity than those of uncoated alginate particles,
indicating a small core–shell ratio in the formation of ALG@PDA.
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Figure 4. ATR-FTIR spectra of ALG (black curve) and ALG@PDA (red curve). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

The presence of the PDA coating was further confirmed by XPS analysis performed
on both ALG and ALG@PDA particles. Figure 5a reports the comparison on N 1s signal
recorded on both samples and evidently shows a remarkable increase on PDA-coated
microgels, due to the PDA coating layer. The recorded N 1s on ALG@PDA is centered at
about 400 eV and is ascribable to the aminic functionalities of PDA [32]. Interestingly, the
presence of the PDA coating on ALG microgels is also evidenced by the significant decrease
in Ca 2p signal (Figure 5b) due to its attenuation upon PDA deposition.
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In order to evaluate the contribution of PDA on the structural properties of ALG and
ALG@PDA particles, thermal analyses were also assessed (see all the data summarized
in Table 2). The TG spectra (Figure 6) showed similar graph profiles with a good thermal
stability for both samples. On the basis of the three main degradation mechanisms enhanced
in differential thermogravimetry (DTG) curves (top right graph), in both thermograms
the following temperature regions can be identified: the first range from 30–210 ◦C, the
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middle range from 210 ◦C to 300 ◦C, and the last region temperature above 300 ◦C. In the
ALG spectrum (black curve), the first region showed a low initial weight loss of alginate
caused by dehydration, followed by fast degradation to CaCO3 with a midpoint of thermal
degradation at 197.2 ◦C (Table 2). In the second temperature region (210–300 ◦C range),
the percent weight loss can be attributed to the breaking of the alginate backbone with the
fracture of glycosidic bonds which occurs at TII

max = 245.6 ◦C, with the loss of its abundant
hydroxyl groups in the form of water [33]. In the highest temperature range (350–500 ◦C),
a third mechanism is attributed to decarboxylation with the formation of calcium oxide
and calcium hydroxide at 700◦ leading to a residue of about 32%. The thermogram profile
of ALG@PDA (red curve) is similar to that of pure alginate, suggesting that PDA shells do
not remarkably influence the thermal stability of alginate. In addition, in this case, three
decomposition mechanisms were observed with a lower intensity and higher midpoint
of thermal degradation compared to the ALG graph (Table 2). This behaviour indicates
a higher thermal stability of PDA-coated alginate microparticles, confirmed by a higher
carbonaceous residue of ~4% occurring at 700 ◦C compared to pure alginate.

Table 2. Summary of TGA data for ALG and ALG@PDA.

Sample TImax (◦C) TIImax (◦C) TIIImax (◦C) Residue (%)

ALG 197.2 ± 0.3 245.6 ± 0.4 476.4 ± 0.4 35.4 ± 0.2
ALG@PDA 208.5 ± 0.4 255.4 ± 0.3 477.0 ± 0.3 31.8 ± 0.2
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Swelling properties of the samples were qualitatively analyzed to evaluate the effect of
the PDA coating on alginate particles, suggesting some differences in terms of re-hydration
due to the presence of the PDA coating (see supplementary data). After the dropping of a
single bi-distilled water droplet, a swelling of particles was observed for all the analysed
samples. In the case of ALG@PDA, the initial size of the particle was reached within
10 min, confirming an active role of the PDA coating on the fluid transport mechanism and
re-hydration process.

In order to investigate the mechanical properties of the PDA layer on the alginate beads,
force-controlled nanoindentation measurements were performed. It is well known that ad-
hesion interactions exerted by cells onto the substrate fall in a sub micrometric/nanometric
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range of forces. Therefore, bulk measurement for an estimation of mechanical properties
at higher size scales (i.e., micron or greater) may be not adequate, but more accurate mea-
surements by the application of local nanoNewton (nN) forces at the sub microscale are
strictly required. In this context, nanoindentation tests—typically used in material science
to collect information for macroscopically homogeneous samples, such as polycrystalline
solids, amorphous solids, and even nanocomposite structures [34–37]—were optimized to
investigate PDA surface properties in core-shell architecture, overcoming some inherent
difficulties in experimental set-up and data analysis. In particular, dry nanoparticles of
alginate with (ALG@PDA) and without (ALG) coating were immobilized on a glass slice
and indented to record the force vs. displacement curve, as reported in Figure 7. To disre-
gard the presence of the surrounding glass slide, all the tests were performed at a very low
indentation depth. The experimental nanoindentation tests (supplementary data, Figure
S2) showed two main results: (a) the profile clearly indicated that ALG particles reveal
a smooth depth curve until the maximum set penetration displacement with negligible
variation of the slope, whereas in the case of ALG@PDA, a completely different trend is
revealed with a rising curve highlighting the different stiffness interface encountered by
the loading penetrator; and (b) the 60 sec holding segment at maximum reached force,
resembling a creep loading mode of the nanoparticles and the level of displacement under
constant load is very different between the two species. The creep displacement, in the
case of core-shell nanoparticles, results 10 times higher (~1000 nm) compared with the
corresponding value in the case of ALG (~100 nm).
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According to the previous results, during the first loading stage, the interface stiffness
calculated in the case of ALG@PDA—as a function of the penetration depth—confirmed the
reinforcing role of the PDA shell surrounding the alginate core (Supplementary
data—Figure S3). This result is also corroborated by the creep test performed using
different loads (respectively, σmaxALG = 0.45 mN and σmaxALG@PDA = 0.30 mN) that
confirm a significant difference in terms of resistance in the presence of the PDA coating.
It is clearly remarked also by the force vs. depth curve recorded in the nanoindentation
tests (Figure 7). It is clearly noticeable that the PDA shell reacts differently in respect to the
alginate core and to the applied force profile for narrow displacement levels, thus ascribable
to the crossing of the synthetized PDA shell with the surrounging alginate substrate, in
agreement with data previously collected for similar substrates [16].
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Starting from the experimental data on the mechanical response, in vitro tests were
performed to investigate the interaction of the PDA shell with hMSC as a function of
biomechanical properties.

It is well known that PDA coating concurs to improve the biocompatibility and
hydrophilicity of the surrounding materials [28]. Moreover, PDA also identifies as an
efficient spacer to bridge bioactive molecules and improve biological functionalities [38].
In this study, the effect of PDA coating on cell adhesion and proliferation of hMSCs was
evaluated. In according with previous studies [39], it is demonstrated that PDA promotes
protein adsorption on the surface, assuring a good adhesive response of cells. Figure 8a
shows the amount of adsorbed protein of ALG and ALG@PDA. Results showed that
the coating of PDA increased the protein adsorption after 4 h. The amount of adsorbed
protein was larger on ALG@PDA1 microgels than on uncaoted ALG. The increased protein
adsorption of PDA-coated microgels can be related to the interaction with amine or thiol
groups through Shiff-base or Michael addition chemistry, that promote the adsorption
of serum proteins, and improvement of cell adhesion [40]. The hMSCs adhesion after
24 h onto ALG and ALG@PDA at different concentrations is reported in Figure 8b. The
percentage of cell adhesion with respect to the control—i.e., cell culture plate, TCP—is more
than 60% in the case of PDA-coated microgels, differently to alginate microgels, confirming
the higher ability of ALG@PDA to promote cell adhesion after 24 h with respect to the
ALG. Moreover, ALG@PDA showed a comparable cell adhesion to the TCP control. These
data underlined the role of catechol and amine groups that primarily contribute to the
adhesive properties of PDA, thus counteracting the lack of adhesion sequences of alginate,
in agreement with previous work [41].
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(b) Cell adhesion after 24 h of cell culture onto ALG and ALG@PDA1. Results are presented as
percentage of cell adhesion of hBMSC respect to the TCP. # statistically significant difference against
TCP (### p ≤ 0.001) * statistically significant difference between groups (* p ≤ 0.05; ** p ≤ 0.01).

This is confirmed by optical images of hMSCs after 3 days in culture (Figure 9a).
ALG tends to present cells with a rounded shape, being indicative of weak interactions
with alginate microgel, while ALG@PDA promotes a relevant spreading of cells along
the surface, strictly due to an increase in protein adsoprtion attributed to the presence of
PDA. These results are corroborated by confocal images that confirm a more prononced
spreading of cells that follows the curvature of microgels, mainly in the presence of the
PDA coating. In contrast, in hMSCs seeded onto ALG surfaces, the cells tend to maintain a
rounded shape with a limited number of branchings (Figure 9b).
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In addition, the promising use of core-shell micro-carriers for in vitro culture studies
was proved in several studies. Indeed, their high surface area is potentially suitable for
cells’ attachment, but a chemical functionalization is often required to induce a selective
recognition of cells [42]. In this case, alginate is biocompatible and not cytotoxic, but a low
cell affinity, high hydrophilicity, and high swelling ratio are fundamental constraints that
limit cell proliferation at longer times [10].

Herein, it has been verified that the addition of a PDA coating can improve the
interfacial properties—i.e., biochemical and biomechanical ones—able to support cell
interactions over the integrin-based mechanisms. The effect of PDA coating on hMSCs
proliferation was described by XTT assays. Overall, an increase in cell proliferation in the
presence of PDA was observed for up to 14 days, for all the groups (Figure 9c). This result
is in agreement with previous studies that confirm a good in vitro stability of PDA for
long-term residence in culture media [43]. Indeed, PDA promotes a higher cell proliferation,
with respect to the non-coated microgels after 3 days, progressively showing an increasing
affinity until 14 days. This can be indirectly related to changes in swelling and mechanical
properties of alginate microgels—namely, higher mechanical strength and lower water
uptake—that are strictly determined by the PDA coating able to influence both chemical
and physical properties of the surface hydrogels, thus improving the in vitro cell interface.

4. Conclusions

In this study, core-shell microgels were produced by a simple additive procedure based
on the sequential use of electrodynamic atomization and an in situ precipitation reaction.
This allowed the fabrication of ALG@PDA with core-shell architecture—i.e., core of alginate
and a shell of PDA—mechanically robust and highly stable under biological conditions,
better than alginate alone. An accurate optimization of chemical synthesis and atomization
process conditions allowed the fine tuning of the final surface properties in terms of
chemical and mechanical properties. Meanwhile, in vitro studies also confirmed an active
role of the PDA coating on hMSC response in terms of protein adsorption, cell adhesion, and
proliferation. All these results validate the idea that a PDA with peculiar biochemical and
biomechanical cues concurs to generate bio-instructive interfaces that are better recognized
by cells in vitro, with respect to alginate alone. Moreover, PDA macromolecules could
be also used as spacers to selectively bind bioactive molecules, guaranteeing an efficient
immobilization of growth factors suitable to specifically address, in perspective, cell fate in
terms of cell differentiation. In the next future, core-shell microgels could be successfully
used as advanced 3D in vitro models—with tailored features in terms of surface, fluid
transport, and mechanical properties—in order to physically and chemically mimic the
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in vivo-like microenvironment towards a suitable approach to minimize the experimental
use of animal testing in clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jfb14010002/s1, Figure S1. Optical images of (a) ALG and
(b) ALG@PDA particles for qualitative analysis of swelling behavior. Scale bar 200 nm. Images
show a swelling behavior in both particles. However, for ALG@PDA, the initial size of the particle
was reached within 10 min, while ALG particles did not recover their initial size even after a longer
time (1 h). This result confirmed an active role of the PDA coating on the mechanism of fluid transport
and the re-hydration process. Figure S2. Nanoindentation tests: (a) force and (b) depth profile to
achieve 500 nm indentation on ALG and ALG@PDA particles, respectively. Figure S2a reports the
load profile applied to both samples up to a penetration depth of 500 nm. The first noticeable result is
related to maximum force σmax (500 nm) to reach the final set penetration, which corresponds to
~0.45 mN and ~0.30 mN, respectively, for the solid alginate and the ALG@PDA particles. Figure S2b
shows the recorded depth profiles following the imposed controlled force. Figure S3. Nanoindenta-
tion test on ALG@PDA at the same locations for two fixed penetrating values: 500 nm (black curve)
and 2000 nm (green curves) along with bi-linearity of the path within the range 10–25 nm. Results
reveal that the corresponding recorded path follows a knee-like profile within the referred range
(i.e., 10–25 nm) likely due to the crossing of the synthetized PDA shell.
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