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Abstract: Tissue-engineered scaffolds are an effective method for the treatment of bone defects, and
their structure and function are essential for bone regeneration. Digital light processing (DLP) printing
technology has been widely used in bone tissue engineering (BTE) due to its high printing resolution
and gentle printing process. As commonly used bioinks, synthetic polymers such as polyethylene
glycol diacrylate (PEGDA) and Pluronic F127 diacrylate (F127DA) have satisfactory printability and
mechanical properties but usually lack sufficient adhesion to cells and tissues. Here, a compound BTE
scaffold based on PEGDA, F127DA, and gelatin methacrylate (GelMA) was successfully prepared
using DLP printing technology. The scaffold not only facilitated the adhesion and proliferation
of cells, but also effectively promoted the osteogenic differentiation of mesenchymal stem cells in
an osteoinductive environment. Moreover, the bone tissue volume/total tissue volume (BV/TV)
of the GelMA/PEGDA/F127DA (GPF) scaffold in vivo was 49.75 ± 8.50%, higher than the value
of 37.10 ± 7.27% for the PEGDA/F127DA (PF) scaffold and 20.43 ± 2.08% for the blank group.
Therefore, the GPF scaffold prepared using DLP printing technology provides a new approach to the
treatment of bone defects.

Keywords: biomaterials; bone regeneration; bone tissue engineering; digital light processing

1. Introduction

Bone defects caused by tumors, infections, and trauma are difficult and critical to treat
clinically and thus require effective therapeutic initiatives [1–3]. Bone tissue engineering
(BTE) scaffolds have been widely used in bone repair because they are capable of filling the
defective area, providing mechanical support, and guiding the growth of new tissues in
the early treatment of bone defects [4–6].

With recent developments in 3D printing technology, it has become possible to prepare
scaffolds according to a predesigned (computer aided design, CAD) structure and achieve
more precise control over the macroscopic structure of the scaffold [7–9]. Digital light pro-
cessing (DLP) technology is a representative lithography-based 3D bioprinting technology
characterized by a layer-by-layer based printing pattern, the core of which is the digital
micromirror device (DMD), which provides superior image stability, fidelity, and reliability.
Visible or ultraviolet light can be used to cross-link bioinks and complete the liquid–solid
conversion in DLP printing [10–14]. Thus, some traditional natural and synthetic materials,
which previously could only be printed by extrusion printers, are now available for printing
via DLP, a gentler printing method, as long as the bioinks can be endowed with light-curing
properties (e.g., Gel-GelMA, PEG-PEGDA, and F127-F127DA) [15–19].

Polyethylene glycol (PEG), which exhibits high biocompatibility and almost no im-
munogenicity, can be chemically modified to form polyethylene glycol diacrylate (PEGDA),
which possesses photo-crosslinking properties, low viscosity, and high solubility, making it
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an ideal biomaterial for DLP bioprinting [18,20,21]. Despite its many advantages, PEGDA
is generally inelastic and brittle, which makes it more likely to be used in combination with
other materials rather than alone for bone tissue engineering [22]. It has been shown that
PEGDA can be mixed with materials such as nanohydroxyapatite [23–25], nanoclay [26],
and extracellular matrix [27] to form bioinks for the preparation of BTE scaffolds, which
play an important role in the treatment of bone defects. However, the mechanical proper-
ties, printability, and bioactivity of these scaffolds still need to be improved. Pluronic F127
diacrylate (F127DA), modified with Pluronic F127 (F127), exhibits low swelling properties,
fatigue resistance, and proper elastic modulus, which complement the shortcomings of
PEGDA [28–30]. Bioinks combined with F127DA and PEGDA may possess excellent print-
ability and mechanical properties. However, this combination has not been widely used in
BTE perhaps due to the lack of cell adhesion [31–33].

Gelatin methacrylate (GelMA), as one of the most commonly used photosensitive
hydrogel materials in bone tissue engineering, has good biocompatibility [34]. Unlike
PEGDA and F127DA, GelMA can significantly promote cell adhesion and proliferation [35].
Thus, based on this, a new GelMA/PEGDA/F127DA bioink was developed in this study
and a GelMA/PEGDA/F127DA scaffold was prepared using DLP printing technology;
the scaffold not only possessed good mechanical properties similar to synthetic materials
and played a supporting role in early implantation, but the porous structure created by 3D
printing also actively promoted the growth of bone tissue. Moreover, the addition of GelMA
greatly increased the cell adhesion of the scaffold, which is crucial for osteoconduction
and bone regeneration. Therefore, the composite scaffold consisting of natural (GelMA)
and synthetic materials (PEGDA-F127DA) prepared using DLP technology represents a
promising approach for the treatment of bone defects (Figure 1).
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Figure 1. Schematic of the GelMA/PEGDA/F127DA scaffold for bone regeneration.

2. Materials and Methods
2.1. Materials

Gelatin from porcine skin was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Methacrylic anhydride (MA, 97%) and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate
(LAP) were purchased from J&K (Beijing, China). PEGDA and F127DA were purchased
from Engineering for Life (EFL) (Suzhou, China). Cell counting kit-8 (CCK-8), a live/dead
viability assay kit, phalloidin, Alizarin Red S, and an alkaline phosphatase (ALP) assay kit
were purchased from Beyotime (Shanghai, China).
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2.2. Preparation of Bioinks

The preparation of GelMA was carried out as described previously [36]. In brief,
gelatin was dissolved in phosphate buffered saline (PBS) at 40 ◦C to prepare a 10% gelatin
solution. After adding methacrylic anhydride (MA) dropwise into the gelatin solution,
the solution was stirred with magnetic force for three hours at 40 ◦C and 300 rpm; then, a
white porous foam was prepared after dialysis against distilled water for 5 days at 40 ◦C
and lyophilized.

GelMA (5% (w/v)), PEGDA (10% (w/v)), and F127DA (5% (w/v)) were dissolved
in PBS supplemented with lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP,
0.25% (w/v)) and tartrazine (0.05% (w/v)). Then, a bioink composed of 5% GelMA/10%
PEGDA/5% F127DA (GPF) was prepared. The preparation method of another bioink
containing 10% PEGDA/5% F127DA (PF) was the same.

2.3. Fabrication of Scaffolds

The CAD model was designed as a cylinder with interconnected pores, with a diameter
of 6 mm, height of 8 mm, and pore size of 600 µm. Then, a DLP printer (BP8601 Pro, EFL,
Suzhou, China) was used to prepare the scaffolds and the parameters were adjusted
for printing. Then, the scaffolds were strengthened under ultraviolet light for 3 min
(kernel parameters: layer height, 100 µm; light intensity, 20 mW/cm2; exposure time, 4 s;
temperature, 29 ◦C).

2.4. Characterization
2.4.1. Microstructure of the 3D-Printed Scaffolds

The scaffolds were observed using a scanning electron microscope (SEM, SU8100,
HITACHI, Hitachi, Japan) after lyophilization (K850, Quorum, East Sussex, UK) and
gold/palladium sputter-coating (MC1000, HITACHI, Hitachi, Japan). The pore size of
the printed scaffolds was calculated using the ImageJ software (V1.8.0, NIH, Bethesda,
MD, USA); three images were selected for each sample, and five pores were measured for
each image.

2.4.2. Compressive Tests

A compression test was performed using a universal tensile machine (3365, Instron,
Boston, MA, USA) at room temperature. The compression modulus was defined as the
initial slope of the linear region of the stress–strain curve. The mechanical indexes (com-
pressive stress and modulus) were acquired according to the software (n = 3).

2.4.3. Swelling

The different scaffolds were placed into PBS and soaked for 24 h at 37 ◦C, and their
weights (Ws) were measured after sufficient swelling. Then, the scaffolds were freeze-dried
to obtain their dry weight (Wd). The swelling ratio was calculated as

Swelling ratio =
Ws − Wd

Wd
(1)

2.4.4. Degradation

The different scaffolds were lyophilized, and their weights (W0) were measured. Then,
the lyophilized scaffolds were placed in PBS solution and soaked at 37 ◦C. The PBS was
changed every two days and the samples were removed on the 3rd, 6th, 9th, 12th, 15th,
20th, 25th, 30th, 40th, and 50th day. After rinsing twice with deionized water, the samples
were lyophilized and weighed (Wt). The remaining weight was calculated as

Remaining weight (%) =
Wt
W0

× 100% (2)
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2.5. Cell Culture

The mouse embryo osteoblast precursor cells (MC3T3-E1 subclone 14) and rabbit bone
marrow mesenchymal stem cells (rBMSCs) used in this experiment were obtained from the
Orthopedic Laboratory of the PLA General Hospital. The original generation of cells was
expanded to the 3rd generation with medium containing α-MEM, fetal bovine serum (FBS,
10%) and penicillin–streptomycin (1%) for experiments. Both types of cells were cultured
in this medium—refreshed every 2 days—in a 37 ◦C and 5% CO2 environment.

2.6. Cell Viability
2.6.1. Extracts of Different Scaffolds

The scaffolds were soaked in medium for 48 h at 37 ◦C. For different scaffolds, 100%
extracts were prepared according to the standard of 1.25 cm2/mL and diluted to different
concentrations of 75%, 50%, and 25%.

2.6.2. CCK-8

MC3T3-E1 cells were cultured in extracts with different concentrations of different
scaffolds for 1–5 days. After the color deepened for 1 h with the addition of CCK-8
(10%), the cell viability was analyzed using a microplate reader (Thermo Fisher, Waltham,
MA, USA).

2.6.3. Live/Dead Staining of Cells Cultured with Extracts

MC3T3-E1 cells were cultured for 48 h in the extracts at the optimal concentration
obtained via the CCK-8 assay. The cells were incubated with live/dead dye for 15 min, and
then observed under a fluorescence microscope (Ni-U, Nikon, Tokyo, Japan), where green
represented living cells and red represented dead cells.

2.6.4. Phalloidin Staining of Cells Cultured with Extracts

MC3T3-E1 cells cultured for 48 h in the extracts were fixed in 4% paraformaldehyde
solution for 30 min. After three washes with PBS, the cells were stained with phalloidin
for 30 min and DAPI for 5 min. The morphology of the cytoskeleton was observed with a
confocal microscope (FV3000, Olympus, Tokyo, Japan).

2.6.5. Live/Dead Staining of Cells Cultured on Scaffolds

Sterile scaffolds were soaked in medium for 15 min in 24-well plates; following their
removal from the medium, 1 mL of cell suspension (5 × 104 cells) was added. MC3T3-E1
cells were seeded on different scaffolds and cultured in medium for 48 h. The cells were
incubated with live/dead dye for 15 min, and then observed under a confocal microscope
(Olympus, FV3000, Tokyo, Japan), where green represented living cells and red represented
dead cells.

2.7. Effect of the Scaffold on Osteogenic Differentiation In Vitro
2.7.1. Extracts of Different Scaffolds

To distinguish the promotive effect of the scaffolds on osteogenesis under osteoin-
ductive conditions (OIC) and non-osteoinductive conditions (non-OIC), osteoinductive
extracts were prepared in a similar way to the normal extracts.

rBMSCs cultured for 5 (non-OIC) and 7 (OIC) days were fixed in 4% paraformaldehyde
solution for 30 min. After three washes with PBS, they were stained with an ALP assay kit
for one hour and observed with a stereomicroscope (SMZ25, Nikon, Tokyo, Japan).

2.7.2. Alizarin Red S

rBMSCs cultured for 5 (non-OIC) and 21 (OIC) days were fixed in 4% paraformalde-
hyde solution for 30 min. After three washes with PBS, they were stained with Alizarin Red
S for ten minutes and observed with a stereomicroscope (SMZ25, Nikon, Tokyo, Japan).
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2.7.3. Quantitative Real-Time PCR

The scaffolds were soaked in medium for half an hour and then removed. A total
of 105 cells were seeded on the surface of the scaffolds and cultured for 24 h in normal
medium, which was then replaced with osteoinductive medium (50 µg/mL ascorbic acid,
10 mM β-phosphoglycerol, and 10 nM dexamethasone) or osteoinductive extracts. After
5 days of culture, total RNA was extracted from the cells for real-time PCR using Trizol
reagent (G3013, Servicebio, Wuhan, China); each sample was repeated three times.

2.8. Effect of the Scaffold on Bone Regeneration In Vivo
2.8.1. Ethics Statement

All animals used in this study were obtained from the Animal Experiment Center of
the PLA General Hospital and approved by the Ethics Committee (2022-x18-51).

2.8.2. Implantation in Rabbit Femoral Condyle Defects

New Zealand white rabbits (2.5 kg ± 0.5 kg, male, 3 in each group) were used in this
experiment. Briefly, the rabbits were anesthetized, and the distal femur was shaved and
disinfected. After cutting the skin and subcutaneous tissue, a cylindrical defect 6 mm in
diameter was created, without penetrating the contralateral cortex in the distal femur, using
a surgical drill. The sterile scaffolds were inserted into the defect site and the subcutaneous
tissue and skin were sutured layer by layer. The rabbits were sacrificed at week 4 and week
12 postoperatively for the next step of treatment.

2.8.3. Micro-CT Analysis

The Inveron MM System (Siemens, Munich, Germany) was used to evaluate the
amount of new bone in each group of rabbits via micro-CT scans. The scanning parameters
were an effective pixel size of 17.34 µm, a current of 500 µA, a voltage of 80 kV, and
an exposure time of 1500 ms. The 2D images were reconstructed into 3D images using
Inveron Research Workplace (Siemens) to calculate the bone regeneration parameters:
BMD, bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular
spacing (Tb.SP).

2.8.4. Histology Analysis

Samples were decalcified in 10% EDTA, dehydrated in a stepped concentration of
ethanol, and cleared using xylene. The samples were then embedded in paraffin and cut
into 10 mm slices using a microtome for staining.

2.9. Statistical Analysis

The results between two groups were analyzed using a paired t test. The results
among three groups were analyzed using a one-way analysis of variance (ANOVA) with a
Tukey–Kramer multiple comparison analysis using the GraphPad Prism software (version 8,
GraphPad, San Diego, CA, USA). The data are expressed as the mean ± standard deviation
(SD) and all experiments were performed at least three times. A value of p < 0.05 was
regarded as statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results
3.1. Characterization

Two scaffolds with different compositions, 10% PEGDA/5% F127DA (PF) and 5%
GelMA/10% PEGDA/5% F127DA (GPF), were successfully prepared. As predicted, the
printed scaffolds possessed a favorable porous structure, with a pore size of 508.13 ± 21.28 µm
for the GPF scaffold, which was lower than the 564.04 ± 17.56 µm found for the PF scaffold
and 600 µm for the CAD (Figure 2A–E). However, as shown in Figure 2H–J, the addition
of GelMA did not significantly change the compressive strength of the scaffolds, but
the modulus decreased from 127.4 ± 12 kPa to 92.34 ± 6.80 kPa as the scaffold became
more elastic. In addition, when the scaffolds were soaked in PBS for 24 h to reach swelling
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equilibrium, the swelling ratios of PF and GPF were 3.35 ± 0.88 and 3.90 ± 0.62, respectively.
The remaining weight of GPF at day 50 was 57.81 ± 3.64%, which may be more suitable for
bone regeneration than the weight of 67.10 ± 4.30% observed for PF (Figure 2F,G).

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 6 of 15 
 

 

printed scaffolds possessed a favorable porous structure, with a pore size of 508.13 ± 21.28 
μm for the GPF scaffold, which was lower than the 564.04 ± 17.56 μm found for the PF 
scaffold and 600 μm for the CAD (Figure 2A–E). However, as shown in Figure 2H–J, the 
addition of GelMA did not significantly change the compressive strength of the scaffolds, 
but the modulus decreased from 127.4 ± 12 kPa to 92.34 ± 6.80 kPa as the scaffold became 
more elastic. In addition, when the scaffolds were soaked in PBS for 24 h to reach swelling 
equilibrium, the swelling ratios of PF and GPF were 3.35 ± 0.88 and 3.90 ± 0.62, respectively. 
The remaining weight of GPF at day 50 was 57.81 ± 3.64%, which may be more suitable for 
bone regeneration than the weight of 67.10 ± 4.30% observed for PF (Figure 2F,G). 

 
Figure 2. Characterization of scaffolds. (A) Image of 3D modeling. (B,C) Images of the GPF scaffold. 
(D) SEM image of the GPF scaffold. (E) Pore size of the CAD and scaffolds. (F) Swelling ratio of 
different scaffolds. (G) In vitro degradation behavior of the two scaffolds in PBS (37 °C, pH = 7.4). 
(H) Compressive stress–strain curves of the scaffolds. (I) Compressive modulus of the scaffolds. (J) 
Compressive strength of the scaffolds. Data were analyzed using a paired t test and are shown as 
the mean ± standard deviation (** p < 0.01, n = 3). 

3.2. Biocompatibility 
Good biocompatibility is the basis for the clinical application of bone tissue engineer-

ing. To investigate the cytocompatibility of PF and GPF, the extracts were prepared at 
different concentrations (100%, 75%, 50%, and 25%) for cell culture according to the stand-
ards of extract preparation. As shown in Figure 3A, there was no obvious effect of either 
scaffold on cell proliferation when the extract concentrations were 100%,75%, or 50%, 
while GPF significantly improved cell proliferation after day 4 compared to PF when the 
extract concentration was 25%. Moreover, cells were cultured in the 25% extract for 48 h 
and stained with a live/dead viability assay kit, and phalloidin, and similar cell numbers 
and morphologies were observed for PF, GPF, and normal medium (Figures 3B,C and 4). 

Figure 2. Characterization of scaffolds. (A) Image of 3D modeling. (B,C) Images of the GPF scaffold.
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3.2. Biocompatibility

Good biocompatibility is the basis for the clinical application of bone tissue engi-
neering. To investigate the cytocompatibility of PF and GPF, the extracts were prepared
at different concentrations (100%, 75%, 50%, and 25%) for cell culture according to the
standards of extract preparation. As shown in Figure 3A, there was no obvious effect of
either scaffold on cell proliferation when the extract concentrations were 100%,75%, or 50%,
while GPF significantly improved cell proliferation after day 4 compared to PF when the
extract concentration was 25%. Moreover, cells were cultured in the 25% extract for 48 h and
stained with a live/dead viability assay kit, and phalloidin, and similar cell numbers and
morphologies were observed for PF, GPF, and normal medium (Figure 3B,C and Figure 4).

For further observation of the growth condition of the cells on the scaffold surface,
MC3T3-E1 cells were inoculated on the scaffolds and cultured for 48 h. After staining with
a live/dead viability assay kit, it was found that the number of cells on the surface of the
PF scaffolds was low and most were dead, and the cells exhibited a spherical shape. In
contrast, cells on the surface of the GPF scaffolds were observed to be well proliferated,
with a low number of dead cells; in addition, MC3T3-E1 cells could extend their tentacles
on the surface of the GPF scaffolds (Figure 5).
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3.3. Capacity for Osteogenic Differentiation In Vitro

To distinguish the osteogenic promotion of the scaffolds under OIC and non-OIC, we
performed an in vitro validation of osteogenic differentiation in each of the two conditions.

The rBMSCs were stained with an ALP assay kit and Alizarin Red S after 5 days of
culture in normal extracts. The osteogenic differentiation of rBMSCs was not promoted by
either the PF or GPF scaffolds (Figure 6A,B), and the expression of osteogenic genes such
as Col-1, OPN, OCN, and Runx2 was similar in each group after seeding the cells on the
scaffolds for 5 days (Figure 6C).
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Figure 6. Effect of scaffolds on osteogenic differentiation under non-osteoinductive conditions.
(A) ALP staining after 5 days of culture in normal extracts. (B) Alizarin Red S staining after 5 days of
culture in normal extracts. (C) Expression of osteogenic-related genes determined using quantitative
real-time PCR. Data were analyzed via a one-way ANOVA and are shown as the mean ± standard
deviation (n = 3).

However, when rBMSCs were cultured in osteogenic extracts, a clear difference was
observed between ALP staining on day 7 and Alizarin Red S staining on day 14, where
GPF possessed a greater ability to promote osteogenic differentiation than PF (Figure 7A,B).
Similarly, the expression of osteogenic-related genes was higher in cells seeded on GPF
rather than PF scaffolds (Figure 7C).
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3.4. Bone Regeneration In Vivo

To explore the effect of the different scaffolds on the treatment of bone defects, PF
and GPF scaffolds were implanted at the distal femoral defect site and a micro-CT was
performed at week 4 and week 12 postoperatively. The results suggested that without
intervention, there was only a small amount of new bone at the defect site at week 12.
However, greater regeneration of bone tissue was observed with both the PF and GPF
scaffolds, mostly from cancellous bone toward cortical bone, and the new bone took on a
scaffold-like meshed shape. At week 12, the new bone latticed off, which could be related
to degradation inside the scaffold (Figure 8A). Similar results to the CT images can be
observed in Figure 8B, with the GPF scaffold achieving better efficacy in BMD, BV/TV, Th.
Tb, and Th. Sp.

Subsequently, a histological analysis of the samples was performed at week 12. It was
observed from HE and Masson staining that a gap existed between the PF scaffolds and the
new bone organization, which was consistent with the in vitro study where the PF scaffolds
lacked cell and tissue adhesion. In contrast, the new bone could adhere to the surface of
the GPF scaffold and grow into the pores, exhibiting good osteoconductivity (Figure 9).



J. Funct. Biomater. 2023, 14, 96 10 of 15J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. Micro-CT analysis of new bone formation at 4 weeks and 12 weeks. (A) Reconstructed 3D pat-
terns from micro-CT images of femur defects at 4 weeks and 12 weeks. (B) Micro-architectural parame-
ters of the newly formed bone. BMD-bone mineral density; BV/TV-bone tissue volume/total tissue vol-
ume; Tb.Th-trabecular thickness; Tb.Sp-trabecular separation. Data were analyzed via a one-way 
ANOVA and are shown as the mean ± standard deviation (* p < 0.05, ** p < 0.01, *** p < 0.001, n = 3). 

 
Figure 9. Histological evaluation of newly formed bone at 12 weeks. NB-new bone; HB-host bone; 
IM-implanted materials. 

  

Figure 8. Micro-CT analysis of new bone formation at 4 weeks and 12 weeks. (A) Reconstructed 3D
patterns from micro-CT images of femur defects at 4 weeks and 12 weeks. (B) Micro-architectural
parameters of the newly formed bone. BMD-bone mineral density; BV/TV-bone tissue volume/total
tissue volume; Tb.Th-trabecular thickness; Tb.Sp-trabecular separation. Data were analyzed via a one-way
ANOVA and are shown as the mean ± standard deviation (* p < 0.05, ** p < 0.01, *** p < 0.001, n = 3).
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4. Discussion

DLP printing technology is widely used in bone tissue engineering owing to its good
printing accuracy and gentle printing process, which requires bioink with photosensitive
properties [37–39]. At this stage, the materials used mainly consist of natural materials
(GelMA, HAMA, etc.), synthetic materials (PEGDA, F127DA, PPF, etc.), and inorganic
materials (TCP, HA, metals, etc.). Among them, natural and synthetic materials can
be chemically modified to endow them with photosensitive properties for direct DLP
printing [40,41], while inorganic materials need to be mixed into a photosensitive resin
for printing and sintered (1200 ◦C) to remove organics [42]. Greeshma et al., prepared
GelMA-based bioink from autologous bone particles (BPs) and determined the appropriate
printing parameters, revealing that 3D-printed GelMA/BP-based composite scaffolds
could effectively promote bone regeneration by improving the proliferation, migration,
and osteogenic differentiation capacity of cells [16]. Zhang et al., prepared Haversian
bone-mimicking scaffolds using the DLP printing technique with bioceramics; the scaffolds
were found to induce osteogenesis, angiogenesis, and neural differentiation in vitro and
accelerate the growth of blood vessels and new bone formation in vivo [43].

Natural materials with good bioactivity have some disadvantages such as poor me-
chanical properties and rapid degradation [44]. Inorganic ceramic and some metallic
materials (e.g., titanium, steel, etc.) with strong mechanical properties possess slow degra-
dation rates, and are generally brittle [45]. In addition, some metals with weak rigidity, such
as magnesium, can promote vascular and bone regeneration; however, some studies have
demonstrated that the dynamic in vivo environment can lead to the accelerated fatigue
of magnesium materials, making the magnesium scaffold lose its abilities as described
earlier [44]. In addition, high-temperature sintering during the preparation of scaffolds
using inorganic materials can lead to the inactivation of active substances in bioink; these
disadvantages limit the application of these materials in BTE. Therefore, synthetic polymers
need to be further explored for use in DLP-printed bone tissue engineering. PEGDA (brittle
material) and F127DA (elastic material) are the most common synthetic polymers used
for modification, possessing photo-crosslinking and complementary mechanical proper-
ties. Shen et al., prepared a tissue adhesive with good histocompatibility using PEGDA
and F127DA; the adhesive was expected to repair wounded tissues without suturing [45].
However, neither material has been proposed for the preparation of BTE scaffolds via DLP.

In this study, PEGDA and F127DA were added to bioink and showed satisfactory
printing and mechanical properties, while no obvious cytotoxicity of the printed scaffolds
was observed. However, cells exhibited difficulty in adhering after seeding on the surface
of the PF scaffold, which may be a hindrance for its application in BTE. Therefore, the
addition of materials with stronger adhesion properties is needed to increase the bioactivity
of synthetic polymers. Wang et al., prepared an injectable hydrogel by adding GelMA to a
PEGDA-based bioink. Although the compressive strength of the scaffold (approximately
300 kPa) still needs to be improved and its injectable properties imply the abandonment of
the macroscopic porous structure, the addition of GelMA improved the bioadhesion of the
bioink [25,46]. Therefore, GelMA, with its good biocompatibility and adhesion support,
was added to the PEGDA/F127DA bioink in this study to promote cell adhesion and
proliferation. It can be clearly observed in Figure 5 that cells on the surface of the GPF
scaffolds can extend their tentacles for better adhesion and proliferation than the spherical
cells on the surface of the PF scaffolds. In addition, while retaining the good mechanical
properties of the PF scaffold, the GPF scaffold had a faster degradation rate, which could
help new bone to better replace the material, facilitating the regeneration of bone tissue.

In addition to the choice of material, pore size is also crucial for cell proliferation and
differentiation. From the literature, pore sizes larger than 300 µm show better vasculariza-
tion and osseointegration in BTE [47,48]. Zhang et al., showed that the optimal pore size
for osteogenic capacity is approximately 600–700 µm, and pore sizes that are too small or
too large affect cell behavior and bone regeneration [49]. Chen et al., demonstrated that a
pore size of 500 µm showed the best cell proliferation and differentiation and inward bone
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growth [50]. Luo et al., concluded that porous scaffolds with a pore size of 400–600 µm
better promote osteogenesis and osseointegration [51]. Although some scholars believe
that a small pore size (188 µm) is more favorable for the osteogenic differentiation of cells
in vitro [52], more studies have demonstrated that 400–700 µm is a good choice for the
preparation of bone tissue engineering scaffolds [49–51,53]. In this study, the standard pore
size of the scaffold was 600 µm, while the printed PF scaffold had a pore size of approx-
imately 564 µm and the pore size of the GPF scaffold was approximately 508 µm. The
addition of GelMA increased the bioadhesion of the scaffold but reduced the printability
of the bioink; nevertheless, both scaffolds had a good pore size structure and exhibited
satisfactory bone regeneration.

The conditions under which GPF promotes bone regeneration were also investigated in
this study. There are various ways for materials to enhance bone regeneration, one of which
is to induce the osteogenic differentiation of rBMSCs when there is no exogenous induction;
another is to use a scaffold to accelerate the osteogenic differentiation of rBMSCs when an
inductive environment exists. The GPF scaffolds in this study represent the second option,
which can be observed from the in vitro experiments. When rBMSCs were cultured in
normal medium, the GPF scaffolds and PF scaffolds did not exhibit osteogenesis-promoting
effects, whereas when cultured in osteogenesis-inducing medium, the effect of the GPF
scaffolds in promoting osteogenesis was significantly greater than that of the PF scaffolds.
Combined with the 3D images of the defect site from the CT reconstruction, these results
indicated that GPF can play a facilitating role in promoting bone regeneration when an
osteogenesis-inducing environment exists in vivo. In addition, the lattice-like new bone
showed that the bone was growing and crawling along the pore structure. At 12 weeks, the
reduction of the lattice-like structure indicated the degradation of the scaffold, leading to
the loss of its original aperture which was replaced by new bone tissue. Our histological
observations, shown in Figure 9, were consistent with the in vitro structure. A lack of
adhesion of the PF scaffold to the cells and tissues resulted in a significant gap between
them in vivo. In contrast, the tightly adherent growth of bone tissue could be observed
around the GPF scaffold containing GelMA, indicating that the GPF scaffold could guide
the adhesion and regeneration of new bone.

Our results clearly indicate that GPF possesses a satisfactory porous structure (508.13 ±
21.28 µm) and mechanical properties (829.59 ± 89.21 kPa) to promote osteogenic differ-
entiation under osteoinductive conditions and guide bone growth in vivo. However, the
following limitations may exist. First, the accuracy of the universal tensile machine is 0.5%,
which means the mechanical results may have an error of 0.5%. Second, the differential
effects of GPF scaffolds on osteogenic differentiation in diverse environments still require
further investigation. Third, the establishment of a 3D finite element model to simulate
3D physiological loading has made significant progress in the design of implants [54],
which has given us great insight to predict the state of BTE scaffolds in vivo through
computational simulations for developing an optimal structure.

5. Conclusions

GPF scaffolds prepared using DLP printing technology not only possess satisfactory
mechanical properties, but also an appropriate degradation rate that is more compatible
with the time course of bone regeneration. By improving the disadvantages of traditional
synthetic polymers that are not conducive to cell adhesion, these scaffolds exhibit excellent
histocompatibility, guiding the new bone tissue to grow inside the defect when implanted
in vivo. Furthermore, GPF scaffolds can effectively promote the osteogenic differentiation
of rBMSCs in an osteoinductive but not a non-osteoinductive environment. The reasons
for such different results will be the focus of further research. In summary, GPF-based
composite scaffolds prepared using DLP printing technology provide a new approach to
the clinical treatment of bone defects.
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