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Abstract: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality
worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for
novel therapeutic strategies. The present review explores the potential of targeted epidermal growth
factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-
targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in
tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be
an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the
nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
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1. Lung Cancer Awareness

Lung cancer, the leading cause of cancer-related mortality worldwide, continues to
show alarming incidence rates and poses complex problems for the medical community [1].

According to the Lung Cancer Research Foundation, smoking is the leading cause of
lung neoplasm in smokers, this condition alone commonly accounts for all lung cancer
patients. Furthermore, the remaining individuals may have been exposed to radon, other
air pollutants, secondhand smoke, or other common teratogenic agents [2].

According to the GLOBOCAN Lung Cancer Facts Sheet and the National Health
Service (NHS), lung cancer is strongly age-dependent, predominantly affecting individuals
over the age of 40 and especially those over the age of 75 [3–5]. Looking at the sex ratio
incidence and death worldwide, with few exceptions, males appear to be significantly more
affected, although a recent study found that this incidence paradigm is completely reversed
in young women and men due to identical smoking practices [6,7].

Detecting lung cancer at a very early stage remains difficult as significant symptoms
or signs do not manifest until the tumor has progressed. According to the National Cancer
Institute (NCI), only 18% of early-stage lung cancer cases in the US are detected when the
tumor is still localized, while 56% are detected after the cancer has spread to other parts of
the body [8–10]. However, the gratifying news is that, according to the same report, both
lung cancer incidence and mortality have been in a slight but constant decline from 1992
to 2019 in the USA, which may be attributed to new and enhanced diagnostic tools, such
as circulating microRNAs detection, ctDNA, or specific antibody identification [8,11–13].
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This general tendency to move the focus from basic diagnosis and prognosis instruments,
such as X-ray, CT, or low-dose CT (LDCT) screenings, to molecular approaches outlines
the importance and relevance of the tumor microenvironment as well as targeted nano-
therapy [14–16].

Based on the prognosis and treatment patterns, there are two main types of lung cancer:
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts
for approximately 80–85% of all lung cancer cases, while SCLC occurs in the remaining
approximately 15–20% of cases, as reported by most governmental cancer surveillance
agencies worldwide. Another sub-division of NCSLC includes adenocarcinomas (ADs),
squamous cell carcinomas (SCCs), and large cell carcinomas [17].

ADs account for approximately 40–50% of lung cancer cases. These begin in mucus-
producing cells and are strongly associated with smoking habits [18,19].

SCCs account for about 20 to 30% of all lung carcinomas and are strongly associated
with tobacco smoke as the primary causal agent [20]. It develops due to the transformation
of the squamous epithelial cells that border the airways [21].

Large cell carcinomas, accounting for only 10 to 20% of lung malignancies, are distin-
guished by the tumor’s quick growth and dissemination and are easily spotted on routine
chest radiographs because of the bulky large mass visible on the chest images [22,23].

SCLC, named for the microscopic appearance of the tumor, presents more challenges
to diagnose than NSCLC. According to the American Cancer Society, this is mainly because
of its rapid growth and spread. However, chemo- and radiotherapy have shown excellent
results in treating this type of lung cancer [24,25].

Finally, several uncommon types of lung cancer require special treatment procedures,
such as lymphomas, mesotheliomas, adenosquamous carcinoma, or large cell neuroen-
docrine carcinoma [26–28].

With a habitual occurrence in older people, the current paradigm of pulmonary
neoplasms might be drastically changed for several reasons. Considering current social
and economic tendencies, with many emergent and youth-appealing alternatives [24,25]
for tobacco use being developed in the latest years and being embraced by (but not limited
to) the young portion of the population, lung cancer remains a concerning and relevant
topic in the future [29]. The types of lung cancers are summarized in Figure 1.
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Figure 1. Lung cancer classification, according to terminology for small biopsies, cytology speci-
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(EPGN), transforming the linkage of these molecules to intra-cytoplasmic signaling cas-
cades. Thus, EGFR converts the binding of extracellular ligands into corresponding in-
tracellular responses [30,30–35]. 

The extracellular portion of the EGFR is the most significant portion, comprising 621 
amino acid residues. It also has a helical, transmembrane region consisting of only 23 
amino acids and a cytoplasmicregion, which is composed of 542 amino acids [36,37]. The 
receptor's extracellular domain will undergo homo- or heterodimerization upon ligand 
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son of sevenless (SOS), growth factor receptor-bound protein 2 (GRB2), GTPase HRas 
(RAS), A-Raf proto-oncogene serine/threonine-protein kinase (RAF), or others [30,39,40]. 
EGFR not only plays a crucial role in processes such as angiogenesis and the suppres-
sion of apoptosis but also activates and modifies important cell pathways (Figure 2) 
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In addition, Shostak and Chariot [44] hypothesized that the relationship between 
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pathway, regulates the growth of solid tumors and is common in analyzed cancerous 
tissues. 
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2. Epidermal Growth Factor Receptor in Pulmonary Pathology

The epidermal growth factor receptor (EGFR) is an essential proto-oncogene in the con-
text of NSCLC trigger and growth. Part of the receptor tyrosine kinases (RTKs) family, this
protein binds ligands such as epidermal growth factor (EGF), transforming growth factor
alpha (TGF-α), betacellulin (BTC), amphiregulin (AREG), or epigen (EPGN), transforming
the linkage of these molecules to intra-cytoplasmic signaling cascades. Thus, EGFR converts
the binding of extracellular ligands into corresponding intracellular responses [30,30–35].

The extracellular portion of the EGFR is the most significant portion, comprising
621 amino acid residues. It also has a helical, transmembrane region consisting of only
23 amino acids and a cytoplasmicregion, which is composed of 542 amino acids [36,37].
The receptor’s extracellular domain will undergo homo- or heterodimerization upon ligand
binding; particular cytoplasmic residues will further undergo autophosphorylation [38].

The primary intracellular signaling pathways will subsequently be activated by this
active phosphorylated form of the receptor, which will also attract adaptor proteins like son
of sevenless (SOS), growth factor receptor-bound protein 2 (GRB2), GTPase HRas (RAS),
A-Raf proto-oncogene serine/threonine-protein kinase (RAF), or others [30,39,40]. EGFR
not only plays a crucial role in processes such as angiogenesis and the suppression of
apoptosis but also activates and modifies important cell pathways (Figure 2) [30,41–43].
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Figure 2. EGF signaling pathway in the proliferation of NSCLC. Abbreviations: EGF, epidermal
growth factor; TGFα, Transforming growth factor alpha; HGF, Hepatocyte growth factor; ERBB2,
tyrosine-protein kinase erbB-2 receptor; EGFR, epidermal growth factor receptor; MET, proto-
oncogene tyrosine-protein kinase Met; Grb2, growth factor receptor-bound protein 2; SOS, son
of sevenless; Ras, GTPase HRas; Raf, A-Raf proto-oncogene serine/threonine-protein kinase; MEK,
mitogen-activated protein kinase 1; ERK, mitogen-activated protein kinase 1/3; cyclidinD1, G1/S-
specific cyclin-D1; KIF5B-RET, kinesin family member 5; EML4-ALK, anaplastic lymphoma kinase;
K-ras, GTPase KRas.
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In addition, Shostak and Chariot [44] hypothesized that the relationship between
EGFR and nuclear factor kappa B (NF-κB), another intracellular complex signaling pathway,
regulates the growth of solid tumors and is common in analyzed cancerous tissues.

The importance of EGFR in pathological contexts might explain the abundance of
literature resources discussing the involvement of EGFR in various biological processes.
The undeniable role of this transmembrane protein in the pathogenesis of lung cancer
underscores the significance of EGFR not only for the current review but for lung cancer
research in general, even though the range of EGFR-related health issues is not very broad.
In addition, a study found that mutations in the gene that codes for EGFR can cause
inflammatory skin and bowel disease in newborns as well as identifying its relevance in
the setting of pulmonary etiology [45].

In the UniProt database alone, there are more than 30 potential EGFR mutations that
have been linked to the development of lung cancer, distinguishing two primary types
of mutations that could lead to pro-tumorigenic activity: alterations to the extracellular
domain and accidental changes to the kinase domain.

The first category, in which EGFR has a truncated extracellular domain, implies the
formation of a so-called epidermal growth factor receptor variant III (EGFR vIII, considered
the most common and most notable mutation [46–48]). A junction between exons 1 and 8
and a novel glycine residue are both created at this junction site when 801 base pairs coding
267 amino acid residues are deleted from the EGFR gene, shortening the N-terminus of this
protein, which encodes the extracellular region of the receptor [49,50]. The resulting mutant
protein was described as constitutively active, despite having poor signaling activity and
being unable to bind any recognized ligand [46]. We can easily anticipate the unfortunate
involvement of this mutant variant of the receptor in human cancers given the significance
of EGFR signaling in normal cell proliferation and differentiation. Additionally, it was
demonstrated that EGFR vIII may co-express with the regular EGFR and might indirectly
influence its activity by inducing the production of its ligands, heparin-binding EGF and
TGF-α [51,52]. Furthermore, Pillay et al. [53] demonstrated that this mutant protein also
activates additional receptor tyrosine kinases (RTKs), such as hepatocyte growth factor
receptor (HGFR), VEGF receptor 2 (VEGFR2), or platelet-derived growth factor receptor
(PDGFR), which are crucial in the regulation of the cell cycle. Finally, EGFR vIII was also
linked to enhanced anaerobic glycolysis and lipogenesis processes, via the phosphatidylino-
sitol-4,5-bisphosphate-3-kinase catalytic subunit alpha/beta/delta/RAC serine/threonine-
protein kinase/mechanistic target of the rapamycin (PI3KCA/AKT/mTOR) pathway, a
fact that strengthens its position as a pro-tumoral mutated form of EGFR [54–57].

Even if the presence of EGFR vIII has been more intensely studied in the context of
brain cancers, studies have highlighted its emergence in pulmonary neoplasms. However,
there are slightly conflicting results, with several authors [58] stating that this mutated form
was reported only in about 5% of human lung SCCs and never in ADs, while others [46]
presented evidence for up to 41% presence in SCCs and up to 41% presence in ADs. These
differences are mainly due to the different techniques used to assess EGFR vIII (from PCR
to immunohistochemistry and Western blot) and technical limitations related to the poor
availability and affinity of EGFR vIII antibodies for the respective protein [46,59].

Genomic changes in EGFR kinase domains, discovered after extracellular domain
mutations, were shown to be much more significant and frequent in lung cancer formation,
notably in NSCLC. These mutations, which comprise around 16% of NCSLCs, typically
involve DNA alterations that cause replacements of amino acids [58,60].

One of the most well-known genetic variations in this group is G719S, in which serine
takes the place of a glycine residue at position 719. Briefly, mutations in this domain cause
abnormal increased autophosphorylation episodes that artificially activate the EGFR and
cause the receptor to initiate signaling pathways through signal transducers within the
tumor microenvironment (Figure 3). Some of these uncontrolled signaling cascades may
result in pro-tumoral phenotypes [61].
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While the G719S mutation is not frequently observed in lung cancers (only 0.22% of
NSCLC cases had this mutation), its clinical significance makes it worth mentioning [62].
Lynch et al. [63] demonstrated that screening for RTK mutations in lung cancer patients
might establish effective therapy strategies from the very early stages of medication and/or
indicate the recommended drug substitute in cases of drug-resistance development. Their
study identified identical G719S somatic mutations in multiple Gefitinib-responsive patients
with NSCLC and proved that individuals without similar mutations were also unresponsive
to gefitinib.

On a molecular level, it is thought that the G719S mutation controls the interaction
between the receptor and this ligand by repositioning critical ATP-binding residues of
EGFR. This occurs primarily because ATP and gefitinib compete with one another to bind
to the EGFR, with ATP acting as an activator and gefitinib as an inhibitor of receptor
activity. Thus, by screening for these changes in patients, physicians could quickly de-
termine the best course of action, considerably increasing the likelihood that lung cancer
patients will survive. This mechanism and others have also paved the way for developing
specialized and targeted therapies for treating patients with malignancies harboring EGFR
mutations [64–66].

Last but not least, despite the potential of these screenings being foreseen around 20
years ago, technical barriers severely limited their use on a large scale. Novel techniques,
such as liquid biopsy and digital multiplex PCR, were shown to promote and enhance the
therapeutic value of EGFR mutation screenings even more. The most important advantages
of these strategies are greatly improved sensitivity and accuracy especially when ascertain-
ing therapy approaches for patients with advanced stages of NSCLC [67,68]. Furthermore,
these recently established methods may be beneficial for patients with insufficient solid
tissue biopsies or those with poor-quality tumoral samples [69], as well as for screening
several EGFR mutations in a single assay while utilizing small amounts of plasma [67].

As a result of its value as a diagnostic and therapeutic tool, EGFR plays a significant
role in the management of lung cancer. After over three decades of being acknowledged
as a crucial molecule in pulmonary pathology, cutting-edge approaches have shown new
ways that EGFR may function as a marker and a component in determining treatment, both
in the advanced and early stages of NSCLC.

Further on, we will circumscribe the most relevant aspects related to targeted EGFR
nanotherapy in NSCLC patients.
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Figure 3. EGF signaling pathway and the tumor microenvironment (modified after [70]). Abbrevi-
ations: EGF, epidermal growth factor; EGFR, epidermal growth factor receptor, JAK, Janus kinase;
STAT3, signal transducer and activator of transcription 3; STAT 1, signal transducer and activator of
transcription 1; IL-6, interleukin 6; IL-10, interleukin 10; VEGF, vascular endothelial growth factor;
HLA-1, human leukocyte antigen 1; APM, antigen processing machinery; PD-L1, programmed
death-1 ligand 1; CSF-1, colony-stimulating factor 1; TAM, Tyro3, AXL, MerTK; CD8+, cluster of
differentiation 8; Treg, regulatory T cells; AREG, amphiregulin.

3. Therapeutic Management of NSCLC

According to the American Cancer Society, there will be at least 238,340 new cases
of lung cancer and around 127,070 lung cancer deaths in the United States in 2023 [71].
Among lung cancer cases, the 5-year relative survival rate of patients with NSCLC is 64%
for the localized stage, 37% for the regional stage, 8% for those with distant metastases, and
26% for overall survival [72].

The treatment options for these patients vary, depending on the type and stage of
cancer and the possible side effects. There are systemic and local therapies, the main classes
being chemotherapy (ChT), targeted therapy, immunotherapy, radiotherapy (RT), and
surgery [73] (Figure 4).
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3.1. Management of Early-Stage NSCLC

Stage 0 NSCLC is limited to the lining layer of the airways. It may be AD in situ (AIS)
or SCS in situ (SCIS). An NSCLC tumor stage I (A, B) is 4 cm or less in size and has not
spread to any lymph nodes. A stage II (A, B) tumor is 5 cm or more in diameter and does
or does not involve the lymph nodes within the lung (N1) [74–76]. Usually, these stages
can be treated with surgery alone.

For stage 0, the recommended surgery is segmentectomy or wedge resection (removal
of part of the lobe). Alternative treatments are photodynamic therapy (PDT), laser therapy,
or brachytherapy [38,41,77].

For Stage I, surgery is still an option (lobectomy, sleeve resection, segmentectomy, or
wedge resection). Adjuvant ChT or RT may be suggested in specific circumstances [78].

In the LACE collaborative group study, Pignon et al. [79] demonstrated a 5.4% increase
in the absolute benefit five-year survival rate with adjuvant ChT (cisplatin). Immunother-
apy with nivolumab and ChT before surgery is another option for treating tumors larger
than 4 cm. Stereotactic body radiation therapy (SBRT) constitutes a possible alternative to
surgery [41,77].

3.2. Management of Locally Advanced (Stage III) NSCLC

Stage III is divided into IIIA, IIIB, or IIIC according to the size of the tumor and
the affected lymph nodes. Stage III tumors typically do not have distant metastases
but cannot be treated surgically alone [74]. Resectable tumors include N2-type tumors
without affecting other lymph nodes, T4N0, or those that can be removed surgically
following induction therapy if nodal downstaging has occurred and a pneumonectomy can
be avoided. Chemo-radio therapy (CRT) may be suggested before and after surgery [80].

Treatment options depend on the stage III subtypes and the decision of a multidis-
ciplinary team.Stage IIIA treatment entails a combination of RT, ChT, and surgery. The
treatment plan usually starts with neoadjuvant CRT. Alternative treatments include im-
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munotherapy with nivolumab along with ChT first and then surgery; thus, surgery or
immunotherapy (pembrolizumab and cemiplimab) as the first line of treatment. For pa-
tients with EGFR-mutated NSCLC, the targeted drug osimertinib could be used as an
adjuvant treatment [80,81].

Stage IIIB cannot be removed entirely by surgery. If the condition remains stable for at
least two months following CRT, the treatment consists of CRT followed by immunother-
apy (Durvalumab). Other first-line therapies include RT, ChT, and immunotherapy with
pembrolizumab or cemiplimab [80,81].

For Stage IIIC, therapy options include sequential or concurrent ChT and RT, RT alone,
new fractionation schedules, radiosensitizers, combined-modality approaches, or targeted
drug delivery in patients with EGFR-mutated or ALK-translocated cancers, and adaptive
radiation therapy with response monitoring based on positron emission tomography (under
clinical evaluation) [81–85].

3.3. Management of Late-Stage IV(A) and IV(B) NSCLC

The patient’s overall health, histology, molecular pathology, age, patient’s health
status, comorbidities, location of distant metastases, genetic traits, and protein alterations
in tumor cells all influence the treatment options [81,86]. As in the case of stage III, stage IV
is also subdivided into IVA and IVB.

In the case of stage IVA, one remote location (usually the central nervous system) is
affected. Initially, surgery, stereotactic radiation, or surgery followed by RT to the entire
brain are used to treat the metastases. The primary tumor may be treated with surgery,
ChT, RT, or a combination of these [81,86,87].

In stage IVB, two or more remote sites are involved. Prior to developing a treatment
plan, gene mutations in the KRAS, EGFR, ALK, ROS1, BRAF, RET, MET, or NTRK genes
involved in the EGFR signal transduction pathway should be assessed (Figure 5) with
specific therapies to be considered (e.g., sotorasib—KRAS G12C gene mutation, crizotinib—
ROS1 gene mutation, etc.). Immunotherapy medications (immune checkpoint inhibitors),
either alone or in combination with ChT, are advised as additional treatments. If there are
no hemorrhagic risks, bevacizumab and ChT may be used to treat SCC patients [81,86,88].

3.4. Management of Recurrent NSCLC and Palliative Care

If there is a relapse of NSCLC, the type of treatment used will be dictated by the
location and extent of the tumor, the treatments used beforehand, and the patient’s health.
The second line of treatment is represented by ChT (docetaxel and pemetrexed), RT, or
targeted therapy. Certain types of NSCLC can be treated with an immunotherapy drug
such as nivolumab, along with ipilimumab, pembrolizumab, or atezolizumab [89–91].

For patients needing palliative care, RT may be utilized to treat tracheal, esophageal,
or bronchial compression, pain, vocal cord paralysis, hemoptysis, and superior vena cava
syndrome. Proximal obstructive lesions have also been treated with endobronchial laser
therapy and brachytherapy. There are no differences regarding the efficacy of either form
of RT. However, there is evidence that patients with better performance status who receive
larger doses of radiation do live slightly longer (5% at one year and 3% at two years) [92,93].

Regardless of the cancer stage, the tumor cells can present various resistance mecha-
nisms to the treatments administered, considerably reducing the effectiveness of treatment.
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proximity to one another for trans-autophosphorylation, which activates downstream 
signaling cascades. In cancer, inappropriate EGFR activation is triggered by amplifica-
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Figure 5. EGFR signal transduction pathway—an overview (modified after [94]). Abbreviations:
gp130, glycoprotein 130; IL-6, interleukin-6; JAK, Janus kinase; STAT, signal transduction and activator
of transcription; EGFR, epidermal growth factor receptor; EGFR-TKI, epidermal growth factor recep-
tor tyrosine kinase inhibitor; (K)RAS, GTPase KRas; (B)RAF, B-Raf proto-oncogene serine/threonine-
protein kinase; MEK, mitogen-activated protein kinase kinase 1; PIK3CA, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha/beta/delta; AKT, RAC serine/threonine-protein
kinase; mTOR, mechanistic target of rapamycin; PTEN, phosphatase and tensin homolog; MDM2,
mouse double minute-2 homolog; TP53, tumor protein 53; EMT, epithelial–mesenchymal transi-
tion; RB1, epithelial–mesenchymal transition; HER2, human epidermal growth factor receptor 2;
FGFR, fibroblast growth factor receptor; MET, proto-oncogene tyrosine-protein kinase Met; RET,
proto-oncogene tyrosine-protein kinase Ret; ALK, anaplastic lymphoma kinase; NTRK, neurotrophic
tyrosine receptor kinase; HER3, human epidermal growth factor receptor 3; TROP2, trophoblast
cell-surface antigen 2.

As seen in Figure 5, EGFR is a protein expressed on the surface of cells, involved
in cell growth and division. The phosphorylation of EGFR is caused by ligand-induced
dimerization of the receptor monomer, which brings intracellular kinase domains into
proximity to one another for trans-autophosphorylation, which activates downstream
signaling cascades. In cancer, inappropriate EGFR activation is triggered by amplification,
point mutations, transcriptional upregulation, and ligand overproduction induced via
autocrine/paracrine pathways. NSCLC cells contain an excess of EGFR, which causes
them to grow quicker, and inhibitors of EGFR can block the EGFR signal, leading to cell
proliferation [95].

4. Mutations-Related EGFR Treatment and Targeted Nanotherapy in NSLC

In recent years, the focus on EGFR mutations in NSCLC has acquired significant
therapeutic implications. In addition to the presence of specific clinical features, such as
non-smoker, Asian ethnicity, female gender, and AD histology, the patients with EGFR
activating mutations (e.g., exon 19 deletions or exon 21 L858R point mutation) have access
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to specific treatments (EGFR-TKI—e.g., gefitinib), leading to a significantly higher overall
survival [96]. There are four generations of EGFR-TKIs for NSCLC, each targeting different
EGFR mutations and binding reversibly or irreversibly to EGFR. With the presence of
EGFR mutations comes the possibility of developing resistance/tolerance to the initial
treatment via de novo EGFR mutations and the need for substitution with ChT or other
therapies. The known mechanisms involved in the development of resistance to EGFR-
TKI are primary (no response to initial treatment) or acquired (initial response to therapy,
then resistance) mutations (Table 1) [97,98]. Each generation of EGFR-TKIs has specific
sensitizing mutations, lowering treatment efficiency. Del19 and L858R mutations are
involved in reduced response to the first generation of EGFR-TKIs whereas Del19, L858R,
and T790M mutations are incriminated for the second EGFR-TKIs generation. The third
and fourth generations have decreased effectiveness when mutations, such as Del19, L858R,
T790M, and C797S are present [97,99,100]. Osimertinib, a third-generation EGFR-TKI, is an
effective first- and second-line NSCLC therapy but patients eventually develop resistance to
the drug, thus requiring alternative treatment options [101]. The sensitizing and resistance
mutations in EGFR are summarized in Figure 6.
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Various studies have been conducted to identify potential solutions to resistance in
NSCLC EGFR-mutated tumors (sensitizing, primary, or acquired mutations). Yi et al. [102]
concluded, in a meta-analysis that included 10 studies with a total of 1528 patients from
January 2023, that combining gefitinib with ChT would have significant improvements in
the objective response rate (ORR) (OR = 1.54; 95% CI 1.13–2.1; p = 0.006), disease control rate
(DCR) (OR = 1.62; 95% CI 1.14–2.29; p = 0.007), progression-free survival (PFS) (HR = 1.67;
95% CI 1.45–1.94; p < 0.001), and overall survival (OS) (HR = 1.49; 95% CI 1.2–1.87; p < 0.001)
compared to gefitinib alone. The only downside was represented by the higher incidence
of complications, mainly due to the ChT [OR of 3.29, 95% CI 2.57–4.21; p < 0.001)]. One of
the possible explanations was the intratumoral genetic heterogeneity for targets such as
EGFR, which could be prevented via the usage of ChT followed by an EGFR-TKI treatment,
lowering the risk of EGFR-sensitizing mutations.
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A study realized by Rocco et al. [103] underlines the higher PFS but the lack of
improvement in the OS when combining antiangiogenic monoclonal antibodies with EGFR-
TKIs in the treatment of NSCLC with EGFR-mutations. Another study, conducted by Wang
et al. [104] in 2022, focused on the tight relationship between EGFR and vascular endothelial
growth factor A (VEGF), as both play an essential role in tumoral growth. The study tried
to prove the positive outcome of dual-inhibition of EGFR-VEGF, the main results being
the resistance to acquired mutations of tumor cells to EGFR inhibitors and increasing PFS
times, but the disadvantage of this treatment would be the adverse reactions (e.g., renal
dysfunction) [105].

Another meta-analysis (Dai et al. [106]), focused on the overall benefits of using ChT
plus EGFR-TKIs compared to antiangiogenic agents with EGFR-TKIs in advanced EGFR-
mutated NSCLC proved only the higher ORR in the first arm (RR = 1.1, 95% CI: 1.0–1.2),
without any significant differences in PFS, OS or DCR. Del19 and L858 mutations of exon
21 led to similar survival benefits in the two arms.

Table 1. Mechanisms of resistance to EGFR-TKIs.

Mechanisms of primary resistance References

Exon 20 insertions [107]
T790M mutation [46,108]

HGF overexpression [108]
BCL2L11 deletion [46,109]

Mechanisms of acquired resistance References

T790M gatekeeper mutation in the ATP binding pocket of EGFR [109,110]
D761Y, L747S and T854A mutations [48]

MET gene amplification [108,110]
PI3KCA mutation [110]

Histological transformation [111,112]
HGF overexpression [113,114]

IGF-1R hyperphosphorylation [114]
C797S mutation [49]

G796R/S/, l792H, L718Q, and G724S substitutions [110,115]
Abbreviations: BCL2L11, Bcl-2 interacting mediator of cell death; IGF-1R, insulin-like growth factor-1 receptor.

Nanoparticles (NPs) have gained popularity in the last decades, representing the next
generation of treatments. According to the Food and Drug Administration (FDA), NPs are
“materials that have at least one dimension in the range of approximately 1 to 100 nm and
exhibit dimension-dependent phenomena” [116]. Nanomaterials are used in the medical
domain for drug and gene delivery, bio-detection of pathogens, probing of DNA structure,
tumor destruction via heating (hyperthermia), and many other purposes such as integration
of anticancer chemo/immuno-based drugs with multifunctional nanomedicines that have
an imaging modality to determine tumor location and can respond to stimuli such as
light, pH, magnetic field, or metabolic changes to trigger ChT, photothermal therapy, gene
transfection, photodynamic therapy, radiotherapy, or catalytic therapy to increase tumor
immunogenicity [117–119].

5. Nano-Immunotherapies for EGFR Mutated NSCLC

NPs are an attractive delivery system because the drugs are protected from degrada-
tion while circulating through the body and the organism is simultaneously protected from
drug-related toxicity [115]. There was initial optimism surrounding the passive targeting
of NPs to tumors via the enhanced permeability and retention (EPR) effect, based on the
increased permeability of leaky blood vessels around tumors enabling the accumulation of
NPs at the desired site.

Despite credible theoretical underpinnings, the EPR effect proved to have limited
efficacy and low reliability in clinical practice and is generally insufficient for the targeting
of NPs to tumor sites [120]. Furthermore, once at the tumor site, NPs would benefit from an
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active tumor-targeting system based on cancer cell surface markers. For EGFR-expressing
cancer cells, as in the case of NSCLC, a host of EGFR-binding ligands were developed to be
conjugated onto NPs. These were reviewed in detail by Nguyen et al. [121] and include
peptides like EGF, the EGFR-binding peptide GE11, and anti-EGFR antibodies, or antibody-
like molecules, such as monoclonal antibodies (mAb), fragment antigen-binding (Fab)
regions, single-chain fragment variable (ScFv) antibodies, nanobodies, and aptamers [121].

Coupling the targeting ability of antibodies with the drug delivery capabilities of NPs
holds great promise for the treatment of various cancers, therefore prominent examples of
EGFR-targeting NPs are detailed in the following sections.

6. Nanoparticles Suitable for NSCLC

There are numerous types of NPs in use or in studies, such as lipid-based, polymer-
based and micelles, dendrimers, carbon-based, metallic, magnetic, etc. [122]. The compari-
son between therapeutic methods and nanotechnology used in NSCLC is summarized in
Figure 7.
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Regarding NSCLC, numerous ongoing studies involving lipid NPs-based therapies
focus on delivering the active drug or gene therapy to the tumor site and reducing the side
effects. Some of these studies are clinical trials based on lipid NPs and mRNA in different
phases, from I to IV. [5] Some examples are BIND-014 (docetaxel NPs) [6], paclitaxel
albumin-stabilized NPs [7], CRLX101 (cyclodextrin-based polymer with camptothecin) [8],
and GPX-001 (TUSC2 encapsulate in lipid NPs) [9].

6.1. Organic Nanomaterials
6.1.1. Polymer-Based Particles

Synthetic polymers, such as polylactic acid, polyglycolic acid, and polyhydroxy bu-
tyrate, are usually suitable for drug delivery due to their individual properties, such as
biocompatibility and biodegradability [116]. One of the first studies on NPs was published
in 2011 and focused on the usage of EGFR-targeted heparin-cis-diamminedichloroplatinum
(II) (EHDDP) NPs for the delivery of ChT to the tumor site in NSCLC. Some of the main
advantages of this NP would be that heparin is biocompatible and biodegradable and that
the chemically modified variant did not show any anticoagulant activity. The targeted
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delivery of DDP by EHDDP NPs significantly reduced the associated toxicity to the kidney
and spleen due to a higher DDP concentration at tumor sites and a longer time to renal
excretion, which was demonstrated both in vitro and in vivo studies [123].

Gemcitabine (2’,2’-difluoro 2’-deoxycytidine, GEM) is an analog of cytosine arabi-
noside (Ara-C) and is frequently used as a first line of therapy in SCS and in unfit elderly
patients [124]. Gemcitabine-loaded cetuximab (CET) surface-modified poly(lactic) acid
(PLA) NPs (CET-GEM/PLA NPs) targeting EGFR overexpressing A549 NSCLC cells deter-
mined a two-fold increase in fluorescent intensity compared to that of non-targeted NPs in
the cancer cells and a greater level of cell apoptosis (early and late apoptosis ∼40%) [125].

Combinatorial-designed EGFR-targeted chitosan (CS) NPs with lipid-modified plat-
inum derivatives (cisplatin) were tested for their encapsulation efficiency and in vitro
cytotoxicity. They were more effective in suppressing cellular growth in both sensitive and
resistant lung cancer cells than the drug solution. The increase in potency can be a benefit to
therapy and limit side effects by reducing the therapeutic dose. These vectors can be modi-
fied to load a variety of therapeutic agents with different hydrophobicity [126]. Another
nano-drug delivery system for co-encapsulate hydrophilic (carboplatin) and hydrophobic
anti-tumor drugs (paclitaxel) was created in 2016 to reduce the tumoral drug resistance
and the influence on normal cells and tissues. Its efficiency was evaluated in vitro and
in vivo on the NCL-H460 human NSCLC cell line. By using the co-delivery system, the
overall effect was better than that of the single drug delivery NPs, with a higher cytotoxic
effect, tumor-targeting capacity, and anti-tumor activity [127]. Another study proved that
through co-encapsulation of cisplatin and paclitaxel in a single nano-formulation, with
poly (lactic acid-co-glycolic acid)-poly (ethylene glycol) (PLGA-PEG) NPs, the efficiency of
chemoradiotherapy is improved in mice with NSCLC. PLGA-PEG NPs improve the solu-
bility and the pharmacokinetic profile of a wide range of small-molecule drugs, allowing
the delivery of precise ratios of drugs, inducing combination synergy, and overcoming
multidrug resistance mechanisms [128].

Chitosan-coated osimertinib-loaded biodegradable polymeric NPs targeting the EGFR
T790M NSCLC mutant form were proven to have a 2.6- and 2.4-fold superior activity
compared to plain osimertinib in H1975 mice models (cell line with epithelial morphol-
ogy, isolated in 1988 from the lungs of a non-smoking female with NSCLC). Superior
drug accumulation of 81.59 ± 5.8% was also observed in the novo NPs, with a higher
triggered G2/M phase arrest. In vivo, the effects consisted of a reduction in tumor size and
cytotoxicity [129].

Another study focused on the administration of erlotinib in resistant EGFR-mutated
NSCLC and used NPs such as poly (ethylene glycol)-poly (lactic acid) (PEG-PLA NPs)
for the co-delivery of erlotinib and fedratinib. The delivery system was more stable
and could deliver the EGFR-targeted therapy more efficiently in acidic tumorous condi-
tions. Fedratinib proved to be an important factor in the reversal of erlotinib resistance by
downregulating the expression levels of proteins in the JAK2/STAT3 signaling pathway,
including p-EGFR, p-JAK2, p-STAT3, and survivin. PEG-PLA NPs also had, both in vitro
and in vivo, lower systemic side effects and a more potent effect on tumoral growth [130].

To combat resistance to EGFR inhibitors in NSCLC, He et al. [131] co-encapsulated
EGFR and integrin αvβ3 inhibitors, namely erlotinib and cilengitide, respectively, in MPEG-
PLA [methoxy poly (ethylene glycol)-poly (lactide)] NPs. The new molecule enhanced
tumor suppression through cytotoxicity, with reduced organ damage, and reversed the
drug resistance induced by integrin αvβ3.

When conjugating a biocompatible and photothermally conductive polymer (polypyr-
role) to a TKI (afatinib) to direct near-infrared-photothermal therapy (NIR-PTT) in NSCLC,
a research team found that polypyrrole-iron oxide-afatinib nanocomposite (PIA-NC) caused
cancer cells to produce more reactive oxygen species (ROS), increased cytotoxicity, and
minimized off-target biological effects of NIR-PTT [132].

Mutations located in the EGFR tyrosine kinase region (exon 19 deletion or exon 21
L858R mutation) are linked to patients’ positive response to gefitinib in NSCLC. Unfor-
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tunately, most patients developed acquired resistance and in over 60% of patients, the
mechanism was the T790M EGFR mutation. By using targeted co-delivery of gefitinib
and Rapamycin via aptamer-modified NPs, a research group induced cell autophagy.
The explanation would be that by delivering Rapamycin in H1975 EGFR-mutant NSCLC
cells, the EGF secretion increases, with a more potent effect of gefitinib on preventing cell
proliferation [133].

6.1.2. Lipid-Based Particles

Erlotinib (ETB), via oral administration, is used as the second-line therapeutic option
for the treatment of metastatic NSCLC. Therefore, the local delivery at the tumoral site may
affect the overall therapeutic impact. Bakhtiary et al. [134] combined ETB with solid lipid
NPs (SLNs) as a dry powder inhaler. They tested the product on NSCLC human alveolar
ADs epithelial A549 cells, the outcome being suitable flowability and aerodynamic traits
and enhanced cytotoxic activity. By double inhibition of nuclear EGFR and PI3K/AKT,
NPs that co-encapsulated erlotinib and quercetin had a more synergistic effect against A549
and NCI H460 cells than erlotinib with fisetin/carnosic acid/luteolin, with the reduction in
expression of nuclear EGFR and an increased uptake in lung tissue. These types of NPs
(EQNPs) have a small particle size of 87.3 ± 0.78 nm and release the highest quantity of
erlotinib and quercetin at a pH of 5.5 [135].

Docetaxel (DTX) is an anti-neoplastic agent used in the treatment of advanced or
metastatic NSCLC. Resveratrol (RSV) is a polyphenol, an anti-tumor agent, with the ability
to inhibit the initiation, promotion, and progression stages of carcinogenesis and to enhance
ROS production in cancer cells resulting in cytotoxicity. Specific lipid-based NPs have been
created to deliver DTX and RSV in the mitochondria of EGFR-expressing tumor cells to
overcome multi-drug resistance. In vitro and in vivo studies showed significant synergistic
effects when using EGFR DTX/RSV LPNs, higher tumor inhibition ability, and the lowest
systemic toxicity [136].

In order to overcome TKIs’ resistance in NSCLC, Yang et al. [137] created a poly (lactic-
co-glycolic acid) porous microsphere dry powder that co-delivers afatinib and paclitaxel
loaded in stearic acid-based solid lipid NPs and administered them via inhalation. Cell
experiments showed synergistic effects of afatinib and paclitaxel and the experiments on
mice indicated 96 h of high lung concentration with minimum adverse reactions but low
concentrations in other tissues [137].

6.2. Magnetic Nanomaterials

Through combining anti-EGFR antibody (Cetuximab), as a molecular therapeutic,
with hybrid plasmonic magnetic NPs, Yokoyama et al. [138] observed that EGFR-targeted
C225-NPs are selectively taken up by EGFR-expressing NSCLC cells and had synergistic
antitumor properties, also inducing apoptosis and autophagy. A more recent study from
2014 presented additional findings regarding the 225-NP treatment of EGFR-positive lung
cancer, indicating that tumoral cells are being arrested in the G2/M phase of the cell cycle
and suffer DNA damage, leading to effective tumor growth inhibition both in vitro and
in vivo [139].

6.3. Inorganic Nanomaterials

Inorganic NPs lower the drug dose, prolong the retention time, and achieve targeted
delivery, leading to increased cure rate and fewer complications. Moreover, they change the
immunosuppressive environment and thus effectively deliver and extensively accumulate
EGFR-TKIs in tumor site, reducing the accumulation of drugs in normal tissues [140].

Gold NPs (AuNPs) are used for the delivery of a variety of therapies in different types
of cancer, including NSCLC. An example would be the C225-AuNPs novel compound,
which contains a monoclonal antibody, Cetuximab (C225), targeting the external domain
of EGFR, and the 14 nm gold NP as a carrier of C225. Both in vitro and in vivo, the
results indicated a higher cytotoxicity and antitumor capability in A549 line NSCLC. C225-
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AuNPs also showed an increased suppression of the EGFR signaling pathway, probably
via inducing membranous EGFR endocytosis and cytoplasmic EGFR accumulation [141].
Anti-EGFR peptide-conjugated PEGylated triangular gold nanoplates (TGN-PEG-P75) were
used as targeting photothermal therapy (PTT) agents to treat NSCLC in mice, under the
guidance of computed tomography (CT) and photoacoustic imaging. The TGN-PEG-P75
had uniform edge length (77.9 ± 7.0 nm), a neutrally charged surface, and a high affinity
to EGFR-expressing cells via P75, with subsequently increased accumulation at the tumor
site. TGN-PEG-P75 exhibited 3.8-fold superior therapeutic efficacy than TGN-PEG, with an
increased inhibition of tumoral growth using PTT [142].

Near-infrared (NIR) emitting Ag2S quantum dots (QDs), when combined with Cetux-
imab antibody and 5-fluorouracil (5FU), proved to have an important effect on suppressing
autophagy, compared to the stimulating effect of 5FU alone, that leads to resistance to cell
death. These results were tested on low (H1299) and high (A549) EGFR-overexpressing cell
lines and the outcome indicated a higher efficiency on A549 cells due to the induction of
apoptosis [143].

6.4. siRNA Delivery Systems

Mad2 is a mitotic checkpoint component and its abolition leads to cell death. An
EGFR-targeted chitosan NP was created to silence the Mad2 gene using small interfering
RNAs (siRNAs) in patients with A549 cell line NSCLC (epithelial carcinoma derived from
a 58-year-old male patient, known to be KRAS mutant and EGFR wild type). chitosan is
a positively charged biodegradable polymer and its main role is to protect the siRNAs
from enzymatic activity, its efficiency being linked directly to its molecular weight. Higher
molecular weight indicated a better outcome in vitro. The results showed a high tumoral
uptake of the drug and a massive cell death by apoptosis [144]. EGFR-targeted chitosan
NPs showed, in a more recent study, a consistent and preferential tumor targeting ability
with rapid plasma clearance and the presence within the tumor up to 96 h. They exhibit
a sixfold higher tumor targeting efficiency compared to the nontargeted NPs [145]. In a
study from 2016, the efficiency of treatment was tested in lung cancer models (A549), both
sensitive and resistant to cisplatin, as a single therapy or in combination with cisplatin.
As a result, the siRNA-mediated Mad2 downregulation increased the sensitivity of lung
cancer cells to cisplatin with the reversal of drug resistance and with the usage of lower
doses to also decrease the adverse reactions. These outcomes were more significant in the
targeted delivery group [146].

Hexagonal selenium NPs (HSNs) modified by siRNA (HSNM-siRNA) were used in a
study in 2016 to target EGFR in human NSCLC and down-regulate the signaling cascade.
This was assessed via Western blot and real-time PCR. The percentage of apoptotic cells
and cell cycle progression were also measured after exposure to HSNM-siRNA and HSNs.
The cell lines treated with HSNM-siRNA had a higher percentage of apoptotic cells and of
cells in G1/G0 phase and a significantly decreased proportion of cells in S phase [147].

EGFR-mutation-positive NSCLC are usually treated with TKIs. Unfortunately, due
to the development of resistance to this treatment, the drug efficacy is weakened. A
multi-functional drug delivery system AP/ES was developed by using anti-EGFR aptamer
(Apt)-modified polyamidoamine to co-deliver erlotinib and survivin-short hairpin RNA-
expressing plasmid (shRNA). Survivin is an inhibitor of the apoptosis protein family
present in many types of cancer cells and involved as a resistance factor in drug-induced
apoptosis in NSCLC cells. In combination with Chloroquine, the AP/ES system overcame
the drug resistance, both in vivo and in vitro, by normalizing tumor vessels for sufficient
drug/gene delivery in Erlotinib-resistant NSCLC [148].

Radiation sensitizers, such as ChT, oxygen mimics, or metallic NPs in combination
with ionizing radiation, are used increasingly more in NSCLC to improve the outcome
for those receiving radiation therapy. A study by Reda et al. in 2019 [149] focused on
Cetuximab conjugated NP that targets EGFR and delivers siRNA against polo-like kinase 1
(PLK1) (C-siPLK1-NP). The result indicated a downregulation of PLK1 expression and a
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G2/M arrest followed by cell death. In vivo, on A549 lung cancer cells, the combination of
IR and C-siPLK1-NP resulted in immediate tumor control with eventual regression [149].

An in vitro study conducted by Majumder et al. [150] created a multicomponent and
multifunctional cancer-targeted delivery system, containing Nanostructured Lipid Carriers
(NLCs) as vehicles, luteinizing hormone-releasing hormone (LHRH) as a cancer-targeting
moiety, siRNA targeted to EGFR mRNA as a suppressor of EGF receptors, EFG-TK inhibitor
gefitinib and/or paclitaxel as anticancer drugs, and an imaging agent (Rhodamine) for the
visualization of cancer cells. The drug entrapment efficiency of gefitinib and paclitaxel
was greater than 90% (90.54 ± 5.48% and 97.60 ± 0.34%, respectively). Both the gefitinib
and paclitaxel-loaded NLCs showed 5 to 10-fold improved in vitro anticancer activity in a
series of human lung cancer cells when compared with their parent drugs. They proved
the superiority of using a single drug with multiple components rather than delivering
them separately, with the possibility of detection of drug-resistant NSCLC, higher efficiency
of treatment, and fewer adverse reactions [150]. Polyethylenimine (PEI) lipid NPs in
combination with siRNA complex (EPV–PEI–LNP–siRNA) were used to target PD-L1 and
EGFR in NSCLC. The siRNA and EGFR short peptide vaccine had a high biocompatibility,
showed effective tumor immunotherapy, and had an effective role in the downregulation
of the expression of PD-L1 in cells compared to the blank group and the PD-L1-siRNA
group [151].

The usage of edible and cation-free kiwi-derived extracellular vesicles (KEVs) loaded
with Signal Transducer and Activator of Transcription 3 interfering RNA (siSTAT3), with
a size of 186 nm, exhibited high stability, specificity, and cytotoxicity in vivo in EGFR
over-expressing and mutant PC9-GR4-AZD1 cells (lung AD cell line with deletion in
exon 19 of the EGFR gene and high sensitivity to TKIs). In mice, the systemic delivery of
STAT3/EKEVs suppressed tumor xenografts via STAT3-induced apoptosis, combating the
EGFR resistance [152].

6.5. Mesoporous Silica Nanomaterials

Cetuximab-capped mesoporous silica NP (MP-SiO2 NP) loaded with gefitinib, proved
to be of higher efficiency in inhibition of cell growth, in EGFR-mutant NSCLC with gefitinib-
resistant cell line derived from PC9 cell (PC9-DR), than gefitinib alone. By using cetuximab-
capped MP-SiO2 NP as a drug carrier, gefitinib entered cells in a greater quantity through
endocytosis and the high glutathione levels increased its local effect and overcame TKIs
resistance [153].

6.6. NUFS Nanomaterials

One of the major complications of NSCLC is the presence of metastases in the central
nervous system, with low penetration ability of the TKIs via the blood–brain barrier. A
study conducted by Kim et al. [154] stated the efficacy of water-soluble erlotinib (NUFS-
sErt) against these metastases. There was no difference between the new agent and erlotinib
alone in terms of inhibiting the proliferation of cancer cells and suppressing EGFR signaling
in vitro and in vivo but by injecting NUFS-sErt into the brain ventricle, a significant tumor
growth inhibition was observed in an intracranial xenograft model, indicating a possible
alternative treatment for patients with central nervous system metastases [154].

7. Discussion

Nanotherapy is an important tool in improving lung cancer management and has
great potential for future personalized treatments of various cancers, but it still needs
optimization. The barrier to widespread clinical use of targeted NPs is not technical in
nature, as indicated by the wide variety of drug-containing targeted NPs produced by
researchers throughout the world, many of which have been presented in this review. A
synopsis of the characteristics and mechanisms of EGFR-targeted NPs as well as their
weaknesses and strengths are depicted in Table 2.
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Table 2. Synthetic table of specific EGFR-targeted nanoparticles.

Ref. Study Type Composition Drug Delivered Size Surface Mods Mechanism Weaknesses Strengths

[123] In Vivo
Study Polymer NPs Heparin-Cisplatin 20 nm Negative charge,

hydrophilic EGFR targeting Particle stability, organ
conc., side effects

Enhanced antitumor
effect, reduced toxicity

[125] In Vitro and
In Vivo PLA NPs Gemcitabine −

Cetuximab 120 nm EDC activation EGFR signal block Cytotoxic to normal cells Enhanced cell killing,
passive targeting

[126] In Vitro
Study Chitosan NPs Lipid-Modified

Cisplatin 220–365 nm Positively charged Receptor-mediated
endocytosis Side effects Improved cytotoxicity

[127] In Vitro and
In Vivo PLGA-PEG NPs Paclitaxel +

Carboplatin 125 nm Negative charge Drug release Systemic side effects Sustained drug release

[128] In Vitro and
In Vivo PLGA-PEG NPs PTX + Fatty Acid CPP 80–85.5 nm Negative charge NP phagocytosis Biodistribution, liver and

kidney Enhanced apoptosis

[129] In Vitro and
In Vivo

Chitosan-coated
NPs Osimertinib 101.3–119.7 nm Biodegradable

NPs Drug release Side effects Reduced tumor size

[130] In Vitro and
In Vivo PEG-PLA NPs Erlotinib + Fedratinib 120 nm Hydrophobic,

dual-drug
Acidic

microenvironment Side effects Enhanced therapeutic
efficacy

[131] In Vitro and
In Vivo Chitosan NPs Osimertinib 101.3–119.7 nm Biodegradable

NPs Drug release Side effects Reduced tumor size

[134] In Vitro Solid Lipid NPs Erlotinib
microparticles 1–5 µm Dry powder

inhaler PI3K/AKT signaling Inhalatory admin. Suitable flowability

[135] In Vitro and
In Vivo Polymer NPs Erlotinib + Quercetin 87.3 ± 0.78 nm Chitosan-MA-

TPGS Nuclear EGFR Low side effects Minimal injury to
healthy tissue

[136] In Vitro and
In Vivo

Core-Shell
Lipid-Polymer

NPs

Docetaxel +
Resveratrol 189.6 ± 5.6 nm Dual-drug loaded

NPS
Mitochondrial

targeting Mouse weight loss Higher tumor
inhibition

[137] In Vitro and
In Vivo Solid Lipid NPs Afatinib + Paclitaxel 500 nm Dual-drug loaded

NPS
PI3K/Akt/mTOR

pathway Hepatic edema Increased cell
migration inhibition

[138] In Vitro Magnetic NPs C225 + Hybrid
Plasmonic NPs 54 ± 11 nm Gold-coated iron

oxide NPs Apoptosis, autophagy Multivalency effect Higher efficiency

[139] In Vitro and
In Vivo Magnetic NPs C225 + Hybrid

Plasmonic NPs 73 ± 35 nm Gold-coated iron
oxide NPs Autophagy, apoptosis Active on EGFR-positive

cells
Greater tumor
suppression
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Table 2. Cont.

Ref. Study Type Composition Drug Delivered Size Surface Mods Mechanism Weaknesses Strengths

[141] In Vitro and
In Vivo Gold NPs Cetuximab 25 nm BSA-treated EGFR endocytosis Time/dose-dependent

effect Increased cytotoxicity

[142] In Vitro and
In Vivo Gold Nanoplates Anti-EGFR PTT agent 77.9 ± 7.0 nm Neutrally Photothermal therapy

Requires light exposure to
activate the photothermal

effect

Selectively kill cancer
cells, minimal side

effects, can be used for
imaging

[143] In Vitro and
In Vivo Ag2S QDs Cetuximab

functionalization <50 nm PEGylated
cationic NPs Endocytosis Fluorescence imaging Enhanced apoptosis

[144] In Vitro PEG-CS NPs Mad2 siRNA 100–250 nm Peptide-modified
PEG-CS NPs EGFR internalization Efficiency dependent on

MW Increased selectivity

[145] In Vitro and
In Vivo

NTG and TG CS
NPs Mad 2 siRNA 113.1–230.1 nm Peptide-modified

PEG-CS NPs Apoptosis Organ accumulation Higher targeting
efficiency

[146] In Vitro and
In Vivo

NTG and TG CS
NPs

Mad 2 siRNA +
Cisplatin 126.7–202.7 nm PEGylated CS

derivatives
Apoptosis, mitotic

failure
Decreased plasma

exposure Minimized side effects

[147] In Vitro Hexagonal
Selenium NPs siRNA 20 nm Oligonucleotide

modification
Down-regulation of

EGFR genes
Increased apoptosis,

suppression
Effective tumor
immunotherapy

[150] In Vitro and
In Vivo

Nanostructured
Lipid Carriers

Gefitinib + Paclitaxel +
siRNA 100–300 nm LHRH-coated

NLCs
Suppression of EGF

pathway Instability of siRNA Enhanced
internalization

[151] In Vitro and
In Vivo

PEI Lipid NPs +
siRNA EGFR + PD-L1 siRNA 30 nm Peptide-modified

PEI Immune stimulation T cells-related adverse
effects

High biocompatibility,
tumor

immunotherapy

[152] In Vitro and
In Vivo

Kiwi-Derived
Extracellular

Vesicles
siSTAT3 186 nm Aptamer surface

mod.
STAT3-induced

apoptosis Side effects High specificity,
cytotoxicity
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Practical improvement is necessary for polymeric NPs since difficult IV use with low
solubility has been reported [121] as well as concerns with particle stability having been
described [123]. As with every drug, reservations exist concerning the uncontrollable
accumulation of NPs in healthy tissues, leading to systemic cytotoxic effects [125–127].
The liver and kidneys seem to be especially affected, as shown by Tian et al. [128], who
analyzed PLGA-PEG NPs delivering PTX and fatty acid-modified CP prodrug (CPP) to
lung cancer cell lines [155], founding miscellaneous NPs biodistributed to the tumor target
as well as the liver and the spleen. In addition, around 20–30% of NSCLC with an activating
mutation display an intrinsic resistance to EGFR-TKI, the fast mutational characteristics
leading to 50% resistance to first- and second-generation EGFR-TKIs within 9 to 14 months.
To improve the EGFR inhibition, targeting several parts within the EGFR cascade or several
parallel pathways to prevent cross-activation of the EGFR have been considered [156,157].

It was demonstrated that drug-laden targeted NPs can be produced reliably, at a
large scale, and in accordance with pharmaceutical good manufacturing practice (GMP)
principles [150,151], the production processes being adequate for testing targeted NPs in
human patients in multiple clinical trials.

A review of nine clinical trials of non-targeted NPs in the treatment of lung cancer
(seven using paclitaxel albumin-stabilized NPs, one using CRLX101, and one using ABI-
009) concluded that these treatments were not inferior to the standard of care, with widely
varying rates of serious adverse events [158]. No clinical trials of EGFR-targeted NPs in
lung cancer have been identified to date but three trials using anti-EGFR immunoliposomes
containing Doxorubicin (anti-EGFR ILs-dox) were conducted for the treatment of other
types of cancer [159]. A phase I dose escalation study (clinical trial identifier NCT01702129)
in patients with pancreatic, head and neck, colorectal, and urothelial cancers concluded
that anti-EGFR ILs-dox were well tolerated and therefore warranted further use in phase II
trials [160]. A phase II trial of anti-EGFR ILs-dox in glioblastoma (NCT03603379) concluded
that the therapy was safe but that NPs could not cross the intact blood–brain barrier to
treat central nervous system tumors [161]. Another phase II trial of anti-EGFR ILs-dox in
advanced triple-negative breast cancer (NCT02833766) did not meet its primary endpoint
of progression-free survival at 12 months [162].

Overall, the results of EGFR-targeted NPs in clinical trials have been underwhelming.
This could be due to either insufficient understanding of NP behavior in the human body
and their uptake by tumor cells or it could be due to insufficiently advanced NPs designs.
A recent review by Fan et al. [163] described NPs targeting efforts on three levels: tissular
(reaching the tumor inside the body), cellular (reaching the cancer cells once in their
vicinity), and sub-cellular (unloading the therapeutic agents in the right organelles for
maximum effect) [163].

The preparations tested in clinical trials lack the complete triple-tiered designs aimed
at achieving the desired NP localization at every level, but, on the bright side, safety and
tolerability were acceptable in many targeted NP clinical trials.

Perhaps the next steps on this road should include combining tissular, cellular, and
sub-cellular targeting mechanisms into a single therapy to achieve maximum effect.

8. Conclusions

Targeted EGFR nanotherapy offers a promising approach to NSCLC management in
the context where traditional ChT has limited efficacy in treating NSCLC and often causes
significant side effects by its non-specific nature. Preclinical studies demonstrated that
targeted delivery of ChT drugs or EGFR-TKIs to NSCLC using EGFR–antibody conjugated
NPs can enhance cytotoxicity and reduce off-target toxicity compared to free drugs. Com-
bination NPs co-encapsulating EGFR-TKIs with ChT drugs or targeted agents showed
synergistic effects in vitro and in vivo in overcoming resistance; also, EGFR-targeted NPs
delivering siRNA against resistant genes helped reverse drug resistance.

These promising preclinical findings suggest that EGFR-targeted nanotherapy has the
potential to improve NSCLC treatment through enhanced tumor targeting, cytotoxicity,
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and overcoming resistance. However, further optimization of NP delivery systems and
comprehensive evaluation in clinical trials are needed before translation to patients. Fu-
ture research should focus on improving tumor specificity, drug loading, release kinetics,
and the stability of NPs while demonstrating safety and efficacy in vivo. Overall, EGFR-
targeted nanotherapy is a promising novel strategy warranting further development as a
personalized therapy for NSCLC patients with EGFR mutations.
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