Journal of

5": Functional ﬁw\bpl
]' Biomaterials \)

Review

Culture of Oral Mucosal Epithelial Cells for the
Purpose of Treating Limbal Stem Cell Deficiency

Tor Paaske Utheim 123, @ygunn Aass Utheim 4, Qalb-E-Saleem Khan > and Amer Sehic >*

Department of Medical Biochemistry, Oslo University Hospital, Oslo 0407, Norway; utheim2@gmail.com
Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo 0372, Norway

Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen 3004, Norway
Department of Ophthalmology, Oslo University Hospital, Oslo 0407, Norway; outheim@gmail.com
Department of Medical Biology, Faculty of Health Sciences, University of Tromsg, Tromse 9037, Norway;
qalb-e-saleem.k.ahmed@uit.no

*  Correspondence: amer.sehic@odont.uio.no; Tel.: +47-22840352

U = W N =

Academic Editor: Francesco Puoci
Received: 20 December 2015; Accepted: 22 February 2016; Published: 1 March 2016

Abstract: The cornea is critical for normal vision as it allows allowing light transmission to the
retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the
periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical
presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result.
Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the
first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell
types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that
have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome
following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS
is not established. The present review focuses on cell culture methods, with particular emphasis
on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and
included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However,
it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully
fabricated using temperature-responsive culture surfaces and autologous serum. In the studies
using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally
poorly reported; thus, more research is warranted with quantification of phenotypic data. Further
research is required to develop a culture system for CAOMECS that mimics the natural environment
of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum
and feeder cells.

Keywords: cornea; limbal stem cell deficiency; ocular surface disease; oral mucosal epithelial cell
sheet; substrates

1. Introduction

1.1. Limbal Stem Cell Deficiency

The regenerating organs in the body (e.g., cornea, skin, and gut) harbor tissue-specific stem cells,
which are responsible for tissue homeostasis and efficient healing in case of injury. The ocular surface
is composed of corneal and conjunctival epithelium [1]. The corneal epithelium in particular plays
a crucial role in maintaining the cornea’s avascularity and transparency [2]. The self-renewal of the
corneal surface is a multistep process dependent on a small population of limbal stem cells [3,4] located
in structures referred to as limbal crypts [5] or limbal epithelial crypts [6].

J. Funct. Biomater. 2016, 7, 5; d0i:10.3390/jfb7010005 www.mdpi.com/journal/jfb


http://www.mdpi.com/journal/jfb
http://www.mdpi.com
http://www.mdpi.com/journal/jfb

J. Funct. Biomater. 2016, 7, 5 20of 18

Numerous external factors and disorders (e.g., chemical or thermal injuries, microbial infections,
surgeries involving the limbus, cicatricial pemphigoid, and aniridia) can lead to dysfunction or loss of
limbal epithelial cells (LEC), resulting in either partial or total limbal stem cell deficiency (LSCD) [2].
The condition can be painful and may lead to reduced vision, or even blindness, by causing persistent
epithelial defects, fibrovascular pannus, conjunctivalization, and superficial and deep vascularization
of the cornea. The persistence of epithelial defects may result in ulceration, scarring, and corneal
perforation [2]. Limbal stem cell deficiency is most often bilateral.

1.2. Treatment Strategies for Limbal Stem Cell Deficiency

Treatment approaches for LSCD can be categorized as follows: (a) transplantation of cultured
cells [2]; (b) transplantation of non-cultured cells [2]; and (c) approaches that do not involve
transplantation of cells, for example keratoprostheses [7]. A great variety of cell-based therapeutic
strategies have been suggested for LSCD [8]. The stem cells of the corneal epithelium are believed to
be located in the limbus [3,4]. In 1989, limbal grafts were transplanted to eyes suffering from LSCD
to restore the corneal surface [9]. The results were promising. However, the procedure carries a risk
of inducing LSCD in the healthy eye because of large limbal cell withdrawal [10], and the therapy is
not possible in cases of bilateral LSCD. This led to a novel therapeutic strategy with ex vivo expansion
of LEC first reported by Pellegrini and colleagues in 1997 [11]. In their study, successful ocular
surface reconstruction was achieved using autologous cultivated LEC isolated from small biopsies
in two patients, both affected with severe unilateral ocular surface disease. Since then, more than
1000 patients suffering from LSCD have been treated with ex vivo cultured LEC [11-18]. Since 2003,
nine cultured non-limbal cell sources have been successfully used to reconstruct the corneal epithelium
in bilateral LSCD, in which limbal tissue is not recommended for harvest [8]. The sources include oral
mucosal epithelial cells [19], embryonic stem cells [20], conjunctival epithelial cells [21], epidermal
stem cells [22], dental pulp stem cells [23], bone marrow-derived mesenchymal stem cells [24], hair
follicle bulge-derived stem cells [25], umbilical cord lining stem cells [26], and orbital fat-derived
stem cells [27]. Among non-limbal cell types, cultured autologous oral mucosal epithelial cell sheet
(CAOMECS) and conjunctival epithelial cells are the only laboratory cultured cell sources that have
been explored in humans.

2. Cultured Autologous Oral Mucosal Epithelial Cell Sheet

A significant advantage of CAOMECS as a cell source is easy isolation from biopsies that
heal quickly without residual scarring. As the CAOMECS are autologous, there is no risk
of immune rejection, thus making immunosuppression unnecessary. However, a disadvantage
of transplantation of CAOMECS is the development of peripheral neovascularization [28-31].
Studies have demonstrated that angiogenesis related factors were expressed in corneas after
transplantation [32-35]. Anti-angiogenic therapy has been proposed as a method to prevent corneal
neovascularization and improve the outcomes after transplantation with CAOMECS [36]. Thus far,
242 patients with LSCD have been reported as treated, with a success rate of 72% and a follow-up time
of between one and 7.5 years [19,28-32,37-51].

An ideal substrate is easily available, transparent, and easy to manipulate; it permits cells to
proliferate and retain high viability. Though transplant success has been demonstrated using various
culture methods, the optimal culture method for CAOMECS for use in corneal regeneration has not
been established. The determination of appropriate substrates and culture protocols for CAOMECS
may contribute to the development of standardized, safe, and effective regenerative therapy for LSCD.
The present review focuses on the current state of knowledge of the culture methods and substrates
used for CAOMECS in ocular regeneration. The review was prepared by searching the National
Library of Medicine database using the search term “oral mucosal epithelial cells” in an attempt not to
leave out any relevant publications. In total, the search resulted in 4897 studies, of which 41 studies,
published from 2003 to 2015, were related directly to the core topic of the present review.
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3. Characteristics of the Culture Protocol for Cultured Autologous Oral Mucosal
Epithelial Cell Sheet

The standard culture conditions used for production of transplantable epithelial cell sheets,
including CAOMECS, typically requires fetal bovine serum (FBS) and murine 3T3 feeder layers [52].
The epithelial progenitor or stem cells isolated from small biopsies can, under these conditions, be
expanded in vitro to create stratified epithelial layers that closely resemble native tissues [53]. However,
these constructs are classified as xenogeneic products, with the inherent possibility of infection or
pathogen transmission from animal-derived materials [54]. In addition, xeno-contamination may
result in immunogenicity [55]. The use of feeder layers and foreign serum is, therefore, a concern in
regenerative medicine. Furthermore, dispase, a bacteria-derived protease, is commonly used to enable
cell isolation [53].

Treatment of LSCD based on various methods using CAOMECS is presented in Figure 1.
The following culture methods and substrates have been used in order to produce transplantable
CAOMECS: (1) amniotic membrane [28-30,32,35,37,39,40,42,43,45-47,49,51,56-63] (Table 1);
(2) temperature-responsive cell-culture surfaces [31,38,64-70] (Table 2); (3) fibrin-coated culture
plates [41,48] (Table 3); (4) fibrin gel [71] (Table 3); (5) collagen IV-coated culture plates [72] (Table 3);
and (6) culture plates without any substrate [33,34,73,74] (Table 3).

The possibility of pathogen transmission cannot be excluded from xenogeneic or
allogeneic materials, such as human amniotic membrane obtained following elective Caesarean
operations [17,18,75], collagen isolated from porcine or bovine skin [76], and hydrated gels made from
fibrin derived from human donor blood [77-79]. Therefore, the establishment of culture conditions
avoiding animal-derived products and foreign undefined components is warranted.

Soft palate (1 study)
Lower lip (1 study)

.. )/ Buccal mucosa (39 studies)
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l

E

Figure 1. Treatment of LSCD based on various methods using CAOMECS. A biopsy from the mucosa
is harvested from the oral cavity (A). The biopsy is cultured in the laboratory on different substrates
(B) for 7-28 days (C). A stratified cultured tissue is produced (D) and is transplanted to the diseased
eye (E).
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Table 1. Culture of oral mucosal epithelial cells on amniotic membrane.

40f18

Author, Year Type of Study Suspencs?})] n/Explant Substrate Air-Lifting Serum 3T3 Culture Medium Cul(t]\;:e;’sl")lme Morphology Phenotype
Multilayered
hi ki . . . .. ifi Expression of K3, ZO-1,
5 1r2nOa029a[ 612€]t al., Animal Cell suspension Denuded AM Yes FBS Yes SHEM (aprotinin) 7-10 eIS)tiI;itellillel(rin; Xp anii occludin
Tight junctions
Sekivama et al DMEM:F12 (penicillin, Expression of VEGF and
2%’0 6 [35] v in Vitro Cell suspension Denuded AM Yes - Yes streptomycin, insulin, 7-14 - Flt-1; Low expression
cholera toxin, EGF) of PEDF
S ¢ al DMEM:F12 (penicillin,
Ot;gf; [058] s Clinical Cell suspension Denuded AM Yes HAS Yes streptomycin, insulin, 8-9 - -
cholera toxin, EGF)
s al DMEM:F12 (penicillin,
0?5104" &g] s Clinical Cell suspension Denuded AM Yes HAS Yes streptomycin, insulin, 8-9 - -
cholera toxin, EGF)
Expression of K3, K12,
Gaddipati et al DMEM:F12 (penicillin, 5-6 cell layers; K19, Ki-67, p75, and PAX6;
20112 [40] v Clinical Explant Denuded AM - - No streptomycin, insulin, 9 Stratified P63 expression in most of
cholera toxin, EGF) epithelium the basal and
supra basal cells
X PR Stratified Expression of K3, K4, K13,
Sen et al DMF;It\fe'ggéfyi?fum’ epithelium; connexin 43, p63, p75,
2(8)1111L[6’101/ in Vitro Explant Denuded AM Yes FCS Yes amphotericin E/GF 14 Desmosomes; f31-integrin, CD29,
o iy Abundant mucin  ABCG2, and MUC 1, 5B, 6,
insulin) granules 13,15and 16
Non-keratinized,
DMEM:F12 (gentamycin, squamous,
Satake et al., . . streptomycin, penicillin, polygonal, cells B
2008 [47] Clinical Cell suspension Denuded AM Yes FBS Yes amphotericin, >14 with & Jow nuclear
EGE, insulin) to cytoplasmatic
ratio
Takeda et al DMEM:F12 (penicillin,
aZOella[glil v Clinical Cell suspension Denuded AM Yes - Yes streptomycin, insulin, 14-16 - -
cholera toxin, EGF)
DMEM:F12(penicillin, 2-5 cell layers; .
CZI(I)%S %g]l v Clinical Cell suspension Denuded AM No FCS Yes streptomycin, insulin, 14-21 Elongated cell Expression of K3, K4, K13,
. A p63, p75, and ABCG2
cholera toxin, EGF) nuclei
Ch tal SHEM (penicillin, 5-10 cell layers; Expression of FGF2, K8,
20?3 ES]" Clinical Cell suspension Denuded AM No FCS Yes streptomycin, insulin, 14-21 Stratified VEGEF, endostatin, PEDF,
cholera toxin, EGF) epithelium and IL-1ra
DMEM:F12 (penicillin, 2-5 cell layers; .
%8; t[gé]' Clinical Suspension Denuded AM No FBS Yes streptomycin, insulin, 14-21 Elongated cell E)ggres%ogrfé I‘:%CKGlg’
cholera toxin, EGF) nuclei L
DMEM:F12 (penicillin, 5-6 cell layers; .
Nakz%r&ll fgoe]t al., Clinical Cell suspension Denuded AM Yes FBS Yes streptomycin, insulin, 14-21 Desmosomes and Expresasrllcénlé)lf §< 3, K4,

cholera toxin, EGF)

hemidesmosomes
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Table 1. Cont.

50f18

Author, Year Type of Study suspe:ﬁ}’l n/Explant Substrate Air-Lifting Serum 3T3 Culture Medium Cul(t]g:e;’sl“)lme Morphology Phenotype
KGM (penicillin 4-6 cell layers; Expression of K3, K4f K13,
Anget al., Clinical Cell suspension Denuded AM Yes HAS/FBS Yes streptomycin, 15-16 Cuboidal cells, . ZO-l', desmoplékln,
2006 [37] insulin, EGF) More flattened cells integrin-, laminin 5,
4 superficially and collagen IV
PR 4-6 cell layers; Expression of K3, K4, K13,
KGM (penicillin, - 4 g !
Anget al., Clinical Cell suspension Denuded AM Yes HAS/FBS Yes streptomycin, 15-16 Cuboidal cells, . Z0 1/ desmoplfik_l n
2006 [37] insulin, EGF) More flattened cells integrin-o¢y, laminin 5,
, superficially and collagen IV
5-6 cell layers;
. DMEM:F12 (penicillin, Cuboidal cells, .
In%%rgbeé]ﬂ L, Clinical Cell suspension Denuded AM Yes FCS Yes streptomycin, insulin, 15-16 several suprabasal E:E;efﬁigrr;%iglgigicll:’
cholera toxin, EGF) cell layers, and flat P
apical cell layers
5-6 cell layers;
i DMEM:F12 (penicillin, Cuboidal cells, .
In%%rgizeé]ul,, Clinical Cell suspension Denuded AM Yes FCS Yes streptomycin, insulin, 15-16 several suprabasal Expéetslflon c};f VEGSFC;E
cholera toxin, EGF) cell layers, and flat and thrombospondin
apical cell layers
5-6 cell layers;
Inatomi ef al DMEM:F12 (penicﬂlin, Cuboidal cells,
ngo%rélf 52]” v Clinical Cell suspension Denuded AM Yes HAS/FCS Yes streptomycin, insulin, 15-16 several suprabasal
cholera toxin, EGF) cell layers, and flat
apical cell layers
Nak fal KGM (penicillin,
a Zaor?lu fz;i it Clinical Cell suspension Denuded AM Yes HAS Yes streptomycin, insulin, 15-16 - -
cholera toxin, EGF)
DMEM:F12 (PI, mouse . Low expression of p63
. 4 , Flat and uniforml
Priyaet al., . . IgG1/IgG2a, mitomycin - o Y (3.0% =+ 1.7% of cells);
2011 [46] Clinical Cell suspension Denuded AM No AS Yes C, BGE, insulin, 18-21 diﬁ\tri]i:n]‘tec}] Negative expression
penicillin, streptomycin) epithelial cells of K12
Sh al DMEM:F12 (penicillin, 3-5 cell layers; Expression of K3 and
Za(;rﬁla[g]]a v In vitro Cell suspension Denuded AM - FBS Yes streptomycin, insulin, 21 Stratified {31-integrin; High
cholera toxin, EGF) epithelium expression of p63
2-5 cell layers;
PPN Stratified .
; DMEM:F12 (penicillin, PRI Expression of K3 and
Promprasit et al., in Vitro Explant Denuded AM Yes FBS Yes streptomycin, 21 epl'thehum, . connexin 43; High
2014 [59] insulin. EGF Cuboidal cells in -
insulin, ) basal layer, flat expression of p63
superficial cells
DMEM:F12 (penicillin, 3-5 cell layers; :
Nakzaor(r)lsu fg;’it al, Animal Cell suspension Denuded AM Yes FBS Yes streptomycin, insulin, 21 Stratified Expressménlé)lf;( 3 K4,
cholera toxin, EGF) epithelium; an




J. Funct. Biomater. 2016, 7, 5

Table 1. Cont.

60f 18

Author, Year Type of Study suspe:ﬁ}’l n/Explant Substrate Air-Lifting Serum 3T3 Culture Medium Cul(t]g:e;’sl“)lme Morphology Phenotype
DMEM:F12 (penicillin, 5-6 cell layers; :
Nakamura ef al., Animal Cell suspension Denuded AM Yes FBS Yes streptomycin, insulin, 21 Stratified Expression of K3, K4,
2003 [58] X : e and K13
cholera toxin, EGF) epithelium;
DMEM:F12 (penicillin, 5-6 cell layers; .
Nakamura et al., Animal Cell suspension Denuded AM Yes FBS Yes streptomycin, insulin, 21 Stratified Expression of K3, K4,
2003 [58] . T and K13
cholera toxin, EGF) epithelium;
DtM E]t\/[:FlZ‘(pgnicilll'in, 3-7 cell layers, Expression of K3, ABCG2,
. strepromycin, mswin, firmly attached to and C/EBP$; High
Kolli et al., Clinical Expl Intact AM Ye HAS N cholera toxin, EGF, 21 o . £ ANDE3 o
2014 [43] nica xplant ntac es o hydrocortisone, each other; High expression o p630t;
i i nucleus to Negative for K12
triiodothyronine, .
! cytoplasm ratio and PAX6
adenine)
DMEM:F12 (penicillin, 2-3 cell layers;
Madhira et al streptomycin, Stratified Expression of K3, K4, K15,
a200;3r6[15€6]a v in Vitro Cell suspension Denuded AM No FCS No amphotericin, 21-28 epithelium; Gap and connexin 43; Negative
gentamycin, insulin, junctions and for K12 and PAX6
cholera toxin, EGF) desmosomes
Yok fal DMEM/FI12 (penicillin, 3-5 cell layers;
gogg [66313 " in Vitro Cell suspension Denuded AM Yes FBS Yes streptomycin, 28 Stratified -
amphotericin) epithelium

ABCG2, ATP binding cassette subfamily G member; AM, amniotic membrane; AS, autologous serum; DMEM, Dulbecco’s modified eagle medium; EGF, epidermal growth factor; FBS,
fetal bovine serum; FCS, fetal calf serum; FGF2, fibroblast growth factor 2; Flt-1, Fms-like tyrosine kinase 1; HAS, human autologous serum; IgG2a, immunoglobulin G2a; IL-1ra,
interleukin 1ra; KGM, keratinocyte growth medium; MUC, mucin; PAX6, paired box 6; PEDF, pigment epithelium derived factor; PI, propidium iodide; SHEM, supplemented
hormonal epithelial medium; VEGF, vascular endothelial growth factor; ZO-1, zona occludens protein 1; —, indicates not reported.
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Table 2. Culture of oral mucosal epithelial cells on temperature-responsive surfaces.

7 of 18

Author, Year Type of Study suspe:ﬁ}’l n/Explant Substrate Air-Lifting Serum 3T3 Culture Medium Cul(%l:;”gme Morphology Phenotype
Similar characteristics :
Burillon et al .. . to normal corneal Expression of K3/76,
2012 [38] v Clinical Cell suspension CellSeed # No - Yes - - eithelium: Basal p63, laminin 5, and
P ! {31-integrin
membrane
DMEM:F12 34 cell layers;
Soma et al., . . a _ (insulin, . Stratified epithelium; Expression
2014 [69] Animal Cell suspension CellSeed FBS Yes triiodthyronine, 10-12 Cobble stone-like cell of K14 and p63
hydrocortisone) morphology
](Dé\é[rl::ll\c/flﬁzf 3-5 cell layers;
H Stratified epithelium;
Sugiyama ctal., Animal Cell suspension CellSeed ? - FBS Yes iri;rlfll;i)rtlorc?\}:lgé 14 C;Tj:)ilgal eczils inutlhe Expression of K4,
2014 [70] P toxin. EGE basal layer, squamous K13, MUC5
hydrocortisone, epithe.lium on the
triiodothyronine) apical side
Multilayered cell :
L . - Expression of
les(l)l(l)ia[ﬁ]al. ’ Clinical Cell suspension CellSeed 2 No - Yes - 14 ShSEtS; Microvilli, 1-integrin,
esmosomes, K3, and p63
basement membrane
Bardag-G Multil d fed Expression of K4,
ardag-Gorce . . a _ _ ultilayered stratifie ANp63, TIMP-1,
et al,, 2015 [64] Animal Cell suspension CellSeed FBS Yes 14 epithelium TIMP-3,
and connexin 43
. Expression of K3, K4
Hayashida et al., . . a B _ 3-5 cell layers; P s
2005 [66] Animal Cell suspension CellSeed FBS Yes 14 Stratified epithelium; K13, p63, ANp63, and
{31-integrin
DMEM/F12
(penicillin, 3-5 cell layers;
st;‘eptomycm, Cuboidal basal cells, E ’
Murakami et al., P - a _ ungizone, flattened middle cells, Xpression o
2006 [67] in Vitro Cell suspension CellSeed HAS No transferrin, EGE, 14 and polygonal 63 and Ki67
cholera toxin, flattened
hydrocortisone, superficial cells
triiodothyronine)
4-5 cell layers; Small K?ngels(sim]l% Ii(lll 2
Oie et al . A basal cells flattened {35754 S 1%
2010 [68]/ Clinical Cell suspension CellSeed @ - HAS Yes - 14-17 middle cells, and MUCI 6;,M0 de/rate

polygonal flattened
superficial cells

expression of p63
(30.7% =+ 7.6% of cells)
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Table 3. Culture of oral mucosal epithelial cells on other substrates.
Author, Year Type of Stud Cell Sub Air-Lifti s 3T3 Culture Medi Culture Time Morphol Ph
, ype of Study Suspension/Explant ubstrate ir-Lifting erum ulture Medium (Days) orphology enotype
DMEM:F12 (penicillin,
Satake et al., . . Fibrin-coated cell streptomycin, transferrin, . _
2011 [48] Clinical Cell suspension culture inserts Yes HAS Yes EGE, hydrocortisone, - 5-6 cell layers;
triiodothyronine)
. o DMEM:F12 (penicillin,
Hirayama et al., Clinical Cell suspension Fibrin-coated cell Yes HAS Yes streptomycin, insulin, - 5-6 cell layers; -
2012 [41] culture inserts N
EGE, hydrocortisone)
. s Multilayered Expression of K3,
Sheth et al., PR - DMEM‘F124(pE’?mC1um’ epithelium; K13, and K19;
in Vitro Explant Fibrin gel - FCS No cholera toxin, insulin, - : :
2014 [71] EGE, hydrocortisone) Cobblestone High expression
a4 morphology of p63
4-12 cell layers;
Imari fal Collagen Serum-free oral PCT Stratified epithelium; Expression of
marlrée[r}éz] aty in Vitro Cell suspension IV-coated cell Yes No No epithelium 13-17 Cuboidal basal cells K3/12, K4, K13,
culture inserts medium (EGF) and flat intermediate Ki67, and p63
and superficial cells
Multilayered cells; Expression of
Kanayama et al., P . DMEM (Supplements o FGF2, VEGE,
20}67 [34] in Vitro Cell suspension Culture plate - FBS Yes not (replglrgte d) - No;rg:;)}elgll(t)}é?hal Anélr and
TCE-B1
Kanayama et al., P . B DMEM (Supplements . Expression of
2009 [33] in Vitro Cell suspension Culture plate FBS Yes not reported) 14 Multilayered cells VEGFr-1
DMEM:F12 (penicillin, Expression of K3,
Hyunetal., . . B streptomycin, 2-6 cell layers; K4, and Ki67;
2014 [74] Animal Cell suspension Culture plate FBS Yes gentamycin, 14 Stratified epithelium High expression
amphotericin) of p63
DMEM:F12 Expression of
(streptomycin, . ) ABCG2, K3,
Krishnan et al., in Vitro Explant Culture plate - FBS - amphotericin, EGF, 21 I\lflgitrﬂz%lgritdh‘ﬁilzlxsl, MUC1/4/16,
2010 [73] P P insulin, transferrin, hpl hBD1/ 2,3; High
selenium, morphology expression of p63
hydrocortisone) and ANp63

ABCG2, ATP binding cassette subfamily G member; Angl, angiopoietin; DMEM, Dulbecco’s modified eagle medium; EGF, epidermal growth factor; FBS, fetal bovine serum; FCS, fetal
calf serum; FGF2, fibroblast growth factor 2; HAS, human autologous serum; hBD, human beta defensing; MUC, mucin; PCT, progenitor cell-targeted; TGEF-f1, transforming growth

factor beta 1; VEGE, vascular endothelial growth factor; —, indicates not reported.
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4. Culture of Oral Mucosal Epithelial Cells on Amniotic Membrane

Amniotic membrane has been used on the ocular surface since 1940 [80], and for the first time in
treatment of LSCD in 1946 [81]. In cases of partial LSCD, amniotic membrane can be applied to the
affected eye and provide a suitable substrate for corneal epithelial repopulation [82,83]. The amniotic
membrane secretes several growth factors such as hepatocyte growth factor, basic fibroblast growth
factor, and transforming growth factor {3 [84,85]. Amniotic membrane is suggested to exert its effects
by suppressing inflammation and scarring [86]. There is currently a discussion over whether amniotic
membrane should be deepithelialized /denuded prior to culture, or if this substrate should remain
intact. It has been reported that native, intact amniotic membrane comprise higher levels of growth
factors compared to denuded amniotic membrane [87].

Amniotic membrane is the most common culture substrate for CAOMECS, and has been used
in 15 clinical, three animal, and six in vitro studies (Table 1). With one exception [43], the amniotic
membrane was denuded, i.e., the single layer of epithelial cells on the amniotic membrane was
removed (Table 1). In the studies using amniotic membrane as a substrate for cultured CAOMECS,
cell suspension [28-30,32,35,37,39,42,45-47,49-51,56-58,61-63] was applied in all studies, except four
using the explant method [40,43,59,60]. The number of fabricated, stratified epithelial cell layers
varied from two [56] to 10 [32]. Oral mucosal epithelial cells were normally cultivated between two
to three weeks; however, the culture time varied between seven [62] and 28 [63] days. The most
frequently used culture medium with added supplements was Dulbecco’s Modified Eagle Medium
(DMEM:F12) [28-30,35,39,40,42,43,46,47,49-51,56-61,63], followed by keratinocyte growth medium
(KGM) [37,45] and supplemented hormonal epithelial medium (SHEM) [32,62] (Table 1). Murine
fibroblasts (3T3 strain) were used in all but three studies [40,43,56]. Most of the culture protocols
exposed the cells to air-lifting (lowering the level of the culture medium to allow the cells to be cultured
at the air-liquid interface), including clinical [28,30,37,42,43,45,47,49-51], animal [57,58], and in vitro
studies [35,59,60,63] (Table 1). Fetal bovine serum (FBS) [29,30,37,47,57-59,61-63] and fetal calf serum
(FCS) [28,32,39,42,56,60] were broadly used; however, six studies used human autologous serum
(HAS) [28,43,45,46,49,50] in an attempt to minimize/avoid the use of animal derived components
(Table 1).

Oral mucosal epithelial cells cultivated on amniotic membrane exhibited multilayered, stratified
epithelium and appeared very similar to a normal corneal epithelium (Table 1). The presence of
non-keratinized, stratified-specific keratins K3 and K4 /K13 was detected by immunohistochemistry,
reverse transcription polymerase chain reaction, and Western blotting (Table 1). The expression of
p63, a marker for undifferentiated cells, was reported in 33% (8/24) of the studies (Table 4). Using
transmission electron microscopy it was demonstrated that the cultivated oral epithelial sheet had
junctional contacts, such as desmosomes, hemidesmosomes, and tight junctions, which were almost
identical to those of normal corneal epithelial cells [30,56,60,62].

5. Culture of Oral Mucosal Epithelial Cells on Temperature- Responsive Surfaces

In order to avoid the use of allogenic bacteria [53,67] and animal derived [52] components in
the cornea-engineered constructs, carrier-free epithelial cell sheets using temperature-responsive
culture dishes have been developed [31,88,89]. The modified surfaces transition between
hydrophilic and hydrophobic states—depending on the temperature—by covalently immobilizing
the temperature-responsive polymer poly(N-isopropylacrylamide) onto commercially available
tissue culture wells. Under in vitro culture conditions at 37 °C, numerous cell types adhere and
proliferate similarly to those of normal tissue culture polystyrene. By reducing the temperature
to 20 °C, the cultured cells spontaneously detach along with their deposited extracellular matrix
(ECM) without the need for proteolytic enzymes such as dispase [89,90]. Therefore, with
temperature-responsive culture surfaces the undesirable factors inherent to some substrates can
be excluded from transplantable constructs.
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Nine studies (three clinical, four animal, and two in vitro) have utilized the temperature-responsive
cell-culture surfaces as a substrate for CAOMECS. In all studies the cells were applied as a cell
suspension and DMEM:F12 with added supplements was used as a culture medium (Table 2). The
culture time for CAOMECS in these studies ranged from 10 [69] to 28 [65] days, but was most often
two weeks [31,64,66,67,70]. The most common nutrient used was FBS [64-66,69,70]; however, two
studies utilized HAS [67,68]. None of the studies exposed the cells to air-lifting (Table 2). The number
of fabricated cell layers varied from three [69] to eight [65]. Only one study did not use 3T3 murine
fibroblasts [67]. Two studies reported the cell viability of the cultured sheets to be 86% [68] and
93% [65]. The presence of p63 in the fabricated cell sheets was reported in 78% (7/9) of the studies
(Table 4).

Table 4. Expression of p63 in cultured autologous oral mucosal epithelial cell sheet cultivated on
different substrates.

Non-Quantitative

s Expression of p63 . Quantitative Expression
Substrate Total Number of Studies Not Reported EXPIEZ?SE:; p63 of p63 Reported
4 studies: p63 expressed;
- . 1 study: high expression 1 study: 3.0% + 1.7%
Amniotic membrane 24 16 studies of ANp63; 2 studies: high of cells
expression of p63
Temperature-responsivecell-culture 9 2 studies 6 studies: p63 expressed 1 study: 30.7% =+ 7.6%
inserts " P P of cells
Fibrin-coated culture plate 2 2 studies - -
- 1 study: high
Fibrin gel 1 - expression of p63 -
Collagen IV-coated culture .
plate 1 - 1 study: p63 expressed -
Culture plate 4 2 studies 2 studies: high -

expression of p63

6. Culture of Oral Mucosal Epithelial Cells on Fibrin Substrates

Fibrin has been broadly used as a substrate in regenerative medicine and for
wound-healing [91,92]. It is easily available, assists epithelial cell growth, and its degradation
can be controlled by addition of fibrinolytic components. Rama and colleagues first established the use
of fibrin gels as a substrate for ocular surface reconstruction in 2001 [78]. Fibrin gel is a hemostatic
compound of thrombin, fibrinogen, and calcium chloride [93]. The mixture of these components
fabricates a gel that is similar to the physiological lump formed at the last stage of the coagulation
cascade [94]. The gel produced by this reaction is biodegradable, non-toxic, and inhibits fibrosis,
tissue necrosis, and inflammation [94-96]. In vivo, the gel is completely resorbed and ultimately
replaced by matrix components such as collagen [95]. A major disadvantage with fibrin as a substrate
is that it encourages angiogenesis [97]. The gel, however, is resorbed within days to weeks after
transplantation [94], minimizing the effects. Sheth ef al. have demonstrated that CAOMECS cultivated
on fibrin gel results in production of multilayered epithelium in vitro. The fabricated cell sheets
expressed keratins K3, K4, and K13 [71]. The putative epithelial progenitor cell marker p63 [98]
was also highly expressed (Table 3). Sheth and associates modified the pre-existing methodology to
produce a reproducible, robust gel that supports the expansion and transplantation of CAOMECS,
without the need for murine 3T3 fibroblasts. Fibrin-coated culture plates have also been used as a
substrate for CAOMECS [41,48] (Table 3). Both studies utilized murine 3T3 fibroblasts and DMEM:F12
with added supplements as a culture medium. Human autologous serum was used as nutrient, and
the cells were exposed to air-lifting [41,48].

7. Culture of Oral Mucosal Epithelial Cells on Collagen Substrates

All of the previously reported culture protocols for CAOMECS use serum, and most also use
feeder cells to support the stratification of the epithelial cells. Due to the risk of infections associated
with murine feeder cells and non-autologous serum in the cultivation of cell sheets, Imarinen and
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colleagues sought other options to support the stratification of isolated CAOMECS [72]. In their
in vitro study, stratified epithelium was generated on collagen IV-coated culture plates in serum-free
culture conditions without using 3T3 feeder cells. The authors analyzed the functional properties
of the cell sheets by transepithelial electrical resistance measurements, in addition to morphology,
differentiation, and regenerative capacity. This study is the only report of a successful stratification of
oral mucosal epithelium for ocular surface regeneration in the absence of serum. The results showed
that, in serum-free conditions, oral mucosal epithelial cells attached to and proliferated on collagen
IV—coated inserts more readily than on amniotic membrane [72]. Imarinen and colleagues also studied
the effects of increased epidermal growth factor (EGF) concentration, as EGF is known to stimulate the
growth and differentiation of a variety of epithelial tissues [99,100]. However, they detected no major
effects on the phenotype of the cell sheets using additional EGF.

8. Culture of Oral Mucosal Epithelial Cells on Non-Coated Culture Plates

Four studies (three in vitro and one animal) have used non-coated, substrate-free culture plates in
order to fabricate transplantable CAOMECS [33,34,73,74] (Table 3). All of the studies used DMEM:F12
with added supplements as a culture medium and FBS as a nutrient, without including air-lifting. In
three studies, murine 3T3 feeder cells were included [33,34,74]. The authors reported formation of a
multilayered epithelium [33,34,73], one study specifying the number of cell layers [74]. Two of the four
studies confirmed the expression of K3 and high expression of p63 [73,74].

9. Challenges and Future Perspectives

Recently, a meta-analytic concise review about transplantation of CAOMECS for treating LSCD
has reported a success rate of 72% [19]. In this review, the focus was on clinical features of transplants
of CAOMECS over the past 10 years, including surgery and pre- and postoperative considerations. In
contrast, herein we focus on cell culture methods, with particular emphasis on substrates. Moreover,
in the present review we expand on both in vitro and animal studies.

A complete xenobiotic-free culture protocol has become a goal in regenerative medicine; this is to
avoid the risk of transferring known and unknown microorganisms and to standardize the culture
conditions. The properties of epithelial cells are dependent upon extracellular signals supplied by the
cell—cell and cell-substratum interactions. Further research is warranted to develop a culture system
for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without
the need for undefined foreign materials such as serum and feeder cells.

It is likely that the phenotype of CAOMECS affects clinical success following transplantation.
Thus far, p63 is the only predictor of clinical outcome following transplantation to correct LSCD [12].
Recently, Rama ef al. demonstrated that the phenotype of cultured LEC is critical to ensure successful
reconstruction of the ocular surface following LSCD [12]. The authors showed that successful
transplantation was achieved in 78% of patients when using cell cultures in which p63-bright cells
constituted more than 3% of the total number of clonogenic cells. In contrast, successful transplantation
was only seen in 11% of patients when p63-bright cells made up 3% or less of the total number of
cells. In the studies using different substrates for culture of CAOMECS, the expression of p63 varied
considerably (Table 4). Few studies reported the expression of p63 when using fibrin-coated culture
plates, fibrin gels, collagen-coated culture plates, and culture plates without substrate (Table 4). When
comparing amniotic membrane and temperature-responsive inserts, 33% (8/24) and 78% (7/9) of the
studies showed the expression of p63, respectively (Table 4). The quantitative expression of p63 was
generally poorly reported; thus, more research is warranted with quantification of phenotypic data.

The use of culture inserts with autologous serum has also been shown to facilitate the stratification
of oral mucosal epithelial cells in the absence of 3T3 feeders [67]. Kolli et al. found that autologous
serum was superior to FCS in generating an undifferentiated epithelium [43], and in another study the
porcine trypsin was replaced with xeno-free trypsin with successful outcomes [61]. Hirayama et al. [41]
showed that transplantation of a substrate-free cell sheet resulted in significantly better results than
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engrafting oral mucosal cells cultured on an amniotic membrane. The improvements were significantly
higher graft survival rate, better visual acuity (1, 3, 6, and 12 months postoperatively), and reduction
of neovascularization (12 months postoperatively) [41]. Furthermore, except collagen IV-coated
culture plate, this review demonstrates that the use of different methods and substrates for culture of
CAOMECS did not appear to have any effect on the number of cell layers generated (Table 5).

Table 5. Overall Effect of Different Culture Methods and Substrates for Cultured Autologous Oral
Mucosal Epithelial Cell Sheet.

. . Phenotype
c lices Animal-derived Use of Serum-free R J
Substrate/Method Air-lifting Nutrient 3T3 Medium Viability Morphology (E):’l;rszs;)on
Amniotic o 4.2 cell
membrane 17/24 16/24 21/24 0/24 >98% (1) layers (15) ++
Temperature-responsive 0/9 5/9 8/9 0/9 86%-93% (2) 4.3 cell -
cell-culture inserts layers (6)
Fibrin-coated 5-6 cell
culture plate 2/2 0/2 2/2 072 layers (2) -
Fibrin gel 0/1 1/1 0/1 0/1 - - +++
Collagen IV-coated 4-12 cell
culture plate 11 0/3 01 11 - layers (1) +
Culture plate 0/4 4/4 3/4 0/4 - 2-6 cell +++
p layers (1)

Number of studies using different culture parameters is presented in the Table; —, indicates not reported;
+, low expression of p63; ++, moderate expression of p63; +++, high expression of p63.

Due to the lack of mechanical strength provided by various culture substrates, transplantation of
substrate-free cell sheets can be challenging. Hence, methods to enhance the strength and durability
of the epithelial cell sheets should be further explored. Using the air-lifting technique, originally
developed to formulate skin cell culture sheets for transplantation, the mechanical strength of epithelial
cell sheets can be increased. The present review reveals that only 48.8% of the studies applied the
air-lifting method (Tables 1-3). Interestingly, the majority of studies using amniotic membrane (71%)
did utilize air-lifting, while none of the studies with temperature-responsive surfaces applied this
method (Table 5). Arguments for air-lifting include the promotion of migration [101], proliferation [101],
epithelial stratification [101], and increased barrier function of LEC [102]. Arguments against air-lifting
include induction of squamous metaplasia [103], gradual loss of stem cells [104], and differentiation of
LEC [104,105]. Until 2010, the clinical implications of increased differentiation of transplanted cells
in corneal reconstruction were unknown. This changed when Rama and colleagues demonstrated
the critical importance for clinical success of a substantial, putative stem cell population within the
cultured cells [12]. It is yet to be investigated whether the potential advantages of air-lifting outweigh
the disadvantages in corneal regeneration using CAOMECS.

10. Conclusions

Most culture protocols for CAOMECS used amniotic membrane as a substrate and
included the xenogeneic components FBS and murine 3T3 fibroblasts. However, it has been
demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated
using temperature-responsive culture surfaces and autologous serum. More studies on how
various substrates and other culture parameters affect the cell sheet, with special emphasis on the
phenotype, are warranted. Furthermore, it is important to focus on cell culture methods using
xenobiotic-free conditions.
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