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Abstract: Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials
for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical
and cosmetic industry, anti-infective therapy and wound care, food and the textile industry.
Their extensive and versatile applicability relies on the genuine and easy-tunable properties
of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency,
anti-inflammatory action and antitumor activity. Besides commercially available and clinically
safe AgNPs-based products, a substantial number of recent studies assessed the applicability of
nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing
and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions
of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an
accurate candidate for various biomedical products. In the present review, the most important and
recent applications of AgNPs in biomedical products and biomedicine are considered.

Keywords: antimicrobial therapy; cancer therapy; tissue engineering; wound care

1. Introduction

Nanotechnology and nanoscience represent important fields for the progress of modern society,
especially given the incessant efforts and impressive achievements in alternative nano-based therapies [1,2].
A particular interest was oriented towards the revaluation and biofunctional assessment of metallic
nanoparticles for biotechnology and biomedicine, especially thanks to their unique physical,
chemical and biological features [3–5]. Specifically, biocompatible nanoparticles with superior
physicochemical properties, suitable biomechanical behavior and tunable therapeutic efficiency can
be successfully obtained [6,7]. Thanks to their genuine size-related characteristics, nanoparticles
are distinguished as the most versatile candidates for biotechnological and biomedical applications,
being considered the star technology of the 21st century [8,9].

Among zero-dimensional nanomaterials, silver nanoparticles (AgNPs) represent one of the
most explored and promising candidates for unconventional and performant applications in the
contemporary world, with formidable results being reported in pharmaceutical sciences [10–12],

Nanomaterials 2020, 10, 2318; doi:10.3390/nano10112318 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-3280-4922
https://orcid.org/0000-0003-3036-094X
http://dx.doi.org/10.3390/nano10112318
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/11/2318?type=check_update&version=2


Nanomaterials 2020, 10, 2318 2 of 44

cosmetic products [13,14], anti-infective coatings [15,16] and wound dressings [17,18], antimicrobial
textiles [19–21] and food packages [22–24]. The particular interest of AgNPs in biomedical applications
mainly relies on their excellent and extensive antimicrobial properties, limited anti-pathogenic resistance
and impressive efficiency against multidrug-resistant microorganisms [25–27].

AgNPs with tunable physicochemical characteristics and versatile functionality can be obtained
by various top-down (mainly, evaporation-condensation processes of bulk silver) [28,29] and bottom-up
(mainly, electrochemical processes of metallic salts) processing methods [30,31]. Special attention
was oriented on the inexpensive and environmentally-friendly synthesis of AgNPs, which either
considers the revaluation of plant-derived reducing and antioxidant phytochemicals [32,33] or the
microorganism-mediated bioreduction mechanisms [34,35].

Given their intrinsic antimicrobial efficiency, silver-based compounds and materials were used
for many centuries in day-to-day applications [36–38]. Their versatility and excellent biofunctionality
enabled the development and clinical implementation of several human-safe commercial products,
as summarized in Table 1.

Table 1. Commercial products containing ionic (Ag+) or metallic silver (Ag0/AgNPs).

Product Type Product Trademark Company Note

Wound dressing

Acticoat™
Smith & Nephew, Inc.

(London, UK)

Flexible and nonadherent nanocrystalline silver dressing
Provides sustained broad-spectrum bactericidal activity
against over 150 strains

Allevyn™ Ag
Absorbent and flexible silicone foam dressing
impregnated with SSD
Provides sustained long-term bactericidal effects

Actisorb™ Silver

3M+KCI (MN, USA)

Activated charcoal layer impregnated with silver
Provides anti-bacterial barrier action and
bactericidal activity

Silvercel™

Nonwoven pad of natural polysaccharides blend and
nylon fibers impregnated with ionic silver
Provides sustained long-term bactericidal and
anti-biofilm effects

Tegaderm™ Alginate Ag

Absorbent soft-gelling alginate dressing impregnated
with silver
Provides sustained long-term broad-spectrum
bactericidal effects

Maxorb® Extra Ag+

Medline Industries, Inc.
(IL, USA)

Blend fibers of natural polysaccharides impregnated
with ionic silver
Provides a sustained and long-term barrier against
bacteria absorbed in wound exudates

Opticell® Ag+
Absorbent and flexible gelling fiber format impregnated
with ionic silver
Provides sustained long-term bactericidal activity

SilvaSorb™ Sheet
Super-absorbent hydrogel sheet impregnated with ionic
silver
Provides sustained long-term bactericidal activity

SilvaSorb™ Gel Hydrogel ointment impregnated with ionic silver
Provides sustained broad-spectrum antimicrobial action

Aquacell® Ag
ConvaTec Group

(Deeside, UK)

Nonwoven inner pad impregnated with ionic silver
Provides long-term broad-spectrum bactericidal and
bacteriostatic effects

PolyMem Silver™ Ferris Mfg. Corp.
(TX, USA)

Foam dressing impregnated with nanocrystalline silver
Provides fungicidal and broad-spectrum bactericidal
effects

SilvrSTAT® ABL Medical (UT, USA)

Hydrogel dressing ointment impregnated with metallic
silver
Provides antimicrobial action in first- and second-degree
burns
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Table 1. Cont.

Product Type Product Trademark Company Note

Catheter coating

Silverline® Drainage
Catheters

Spiegelberg GmbH & Co.
(Hamburg, Germany)

Radiopaque polyurethane or silicone catheters
modified with silver
Provides antimicrobial and anti-biofilm effects in the
case of drainage in central nervous system structures

Covidien® Foley
Catheter

Medtronic (London, UK)

Outer and inner silicone catheter and balloon coated
with ionic silver hydrogel coating
Provides substantial antimicrobial activity by
consistent release of ionic silver

SilverSoaker™ Catheter Halyard Health, Inc.,
(GA, USA)

Outer and inner catheter coated with metallic silver
(SilvaGard™)
Provides antimicrobial and anti-biofilm effects

Bardex® Catheter C.R. Bard Inc., (NJ, USA)
Latex Foley catheter modified with Bard® hydrogel
and Bactiguard® silver coating
Provides antibacterial and anti-biofilm effects

Endotracheal tube Agento® Silver-coated
Endotracheal Tube

C.R. Bard Inc., (NJ, USA)

Endotracheal tube modified with a hydrophilic
polymer coating containing silver particles
Provides microbiological efficiency against
ventilator-associated pneumonia

Abbreviation: SSD—silver sulfadiazine.

Besides commercial products, an impressive number of preclinical studies reported the successful
implications of AgNPs in the development of effective and performance-enhanced unconventional
therapeutic strategies. A schematic representation of the most explored therapeutic applications of
AgNPs in modern healthcare practice is included in Figure 1. The present paper aimsto survey the
most recent biomedical applications of nanosilver-based formulations.Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 45 
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Figure 1. Applications of silver nanoparticles (AgNPs) in biomedicine.

2. Toxicity of Silver Nanoparticles

Nanosilver is of great interest for modern and personalized biomedical uses, especially since their
interactions with living structures may lead to biochemical modifications in cytoskeleton organization
and molecule adhesion [39,40], as well as in cell proliferation [41,42]. In a similar way to their
intrinsic anti-pathogenic effects, the AgNPs-mediated toxicity in mammalian cells may be induced by
a different mechanism, such as: (i) disruption in energy-dependent cellular events and impairment in
DNA replication, caused by the uptake of free silver ions; (ii) formation of reactive oxygen species and
free radicals; and (iii) local damage of cellular membrane due to direct interactions with AgNPs [43,44].
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Biosynthesized nanosilver coated with cetyltrimethylammonium bromide (CTAB) surfactant
and polyethylene glycol (PEG) polymer showed time- and dose-dependent effects on erythrocytes
with increasing the concentration of coating agent, but exhibited nonhemolytic activity at
CTAB and PEG concentrations below 100 µg/mL, being thus considered blood compatible [45].
Highly stable and conductive nanosilver stabilized with a polymer coating of polyvinyl alcohol
(PVA)—PEG and poly(3-aminophenyl boronic acid) also proved compatible for human red
blood cells. The nanocomposite exhibited nontoxic effects on normal human cell line at bactericidal
concentrations [46].

Biosynthesized AgNPs coated with chitosan (CS) exhibited enhanced anticoagulant activity in an
animal model, as evidenced by the dose-dependent variation of blood parameters. Also, the treatment
with nanoparticles determined increased antiplatelet and thrombolytic effects, as well as low cytotoxicity
in different study models [47].

The size-dependent phagocytic internalization of AgNPs proved responsible for cytotoxic effects
on macrophages. Significantly increased levels of reactive oxygen species (ROS) and interleukin were
reported when treating the cells with 4 nm sized nanosilver, whereas the 20 and 70 nm nanoparticles
led to more reduced or even insignificant cytotoxicity [48]. As evidenced by complex structural and
functional tests and proteomic assays, macrophages treated with silver nanoparticles stabilized with
polyvinylpyrrolidone (PVP) exhibited cellular homeostasis recovery within three days after acute
exposure [49]. Moreover, highly antibacterial and anti-biofilm AgNPs coated with bacteria-isolated
protein showed no toxic effects against primary macrophage cultures and different vital organs [50].

A complex study proved that AgNPs stabilized with PVP have dose-dependent toxic effects on
murine dendritic cells, but the effects were significantly increased against cancerous cells [51]. Particles
of 10 nm exhibited toxicity on neural stem cells, regardless the type and charge of a surface coating.
Oxidative events, as well as ROS-mediated inflammatory response and DNA damage, caused either
apoptotic or necrotic cell death [52]. The size-dependent neurotoxicity of PVP-coated nanosilver was
reported by Zhang et al., as 20 nm particles induced increased intracellular silver accumulation and
caused significant cytoskeleton modifications and dopamine efflux alterations, in comparison with
70 nm particles [53].

Negatively charged AgNPs biosynthesized with sorrel flower extract determined dose-dependent
toxicity in human endothelial cells, causing ROS-mediated apoptosis, as well as cellular morphological
and functional impairment. The as-obtained particles induced cell malformations, death and senescence
in a zebrafish model due to severe oxidative stress [54]. Also, Jalilian and coworkers reported
the dosage-dependent cytotoxicity of nanosilver on normal fibroblasts. The same nanoparticle
concentrations induced higher cytotoxic effects against malignant cells [55].

No toxic or genotoxic effects were identified in fibroblast cultures treated with nanoparticles
coated with silica (SiO2) [56]. In a comparative study, Verkhovskii et al. reported that
highly stable AgNPs coated with PVA and sodium carboxymethyl cellulose (CMC) are safe for
dermal fibroblasts, while nanoparticles coated with sodium dodecyl sulfate and sodium oleate
proved cytotoxic [57]. The viability of human lung fibroblasts was minimally reduced when treated
with AgNPs in concentrations up to 100 µg/mL or 2.5 mg/mL, obtained with Ayurvedic medicinal
herb extract [58] or oxidized amylose/curcumin complex [59], respectively. The biosynthesized
nanoparticles also exhibited dose-dependent antioxidant activity while showing enhanced antibacterial
effects. As well, bactericidal concentrations of lecithin-modified montmorillonite (MMT) embedded
with nanosilver showed no toxic effects on normal fibroblasts [60]. Antibacterial composites of
high-density polyethylene and AgNPs-decorated MMT exhibited superior cytocompatibility with
human erythrocytes and dermal fibroblasts and caused no morphological alterations in the skin tissue
of rats after 21 days of exposure [61].

Concentrations lower than 10 µM of highly stable PEG-coated nanosilver proved safe for
human keratinocytes, while the higher concentration of 50 µM was associated with intense cell
mortality [62]. Graf and coworkers reported no preferential shape-related cellular internalization of
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AgNPs by keratinocytes, while mesenchymal stem cells exhibited preferential uptake of PVP-stabilized
silver nanoprisms, in comparison with silver nanospheres [63]. Reduced levels of cytotoxicity and
genotoxicity on human keratinocytes were also reported in the case of nanoparticles biosynthesized by
Trichoderma harzianum cultivated with or without pathogenic fungal enzymes [64]. Fungi-mediated
bioreduced AgNPs exhibited high antimicrobial efficiency, but showed nontoxic effects against normal
human melanocytes for concentrations up to 6 µg/mL [65].

Huy and coworkers reported that silver nanoparticles synthesized by the electrochemical method
were nontoxic on striated muscle cell cultures for concentrations up to 100 ppm but displayed strong
biocidal effects against enveloped viruses [66]. Mild lung inflammatory infiltrate was observed after the
pulmonary exposure of albino mice to AgNPs coated with PVP or citrate. Consequently, dose-dependent
effects were evidenced at the cardiovascular level, such as the increase of proinflammatory cytokines and
antioxidants, cardiac oxidative stress, DNA damage and apoptosis of cardiac cells, prothrombotic events,
and coagulation alterations [67].

Different studies from recent years investigated the toxicity of nanosilver with respect to
human tissues and demonstrated their applicability as safe therapeutic agents for pharmaceutical
products [68,69]. An important fact is that the toxic effects exhibited by AgNPs are strongly influenced
by their morphology and dimension. For example, cytoplasm and cellular organelles are more prone
to be affected by smaller particles than bigger particles [70,71].

The main mechanism responsible for AgNPs-related cytotoxicity is the oxidative stress induced
by the excessive production of ROS, which can cause structural and functional impairments in proteins,
lipids and DNA, resulting in cellular alteration and even cell death [72,73]. More than that, due to
their nanodimension and reactive surface chemistry, AgNPs are captured and internalized by the
cells [74]. Their intracellular agglomeration can severely damage cellular constituents (cell wall,
cytoplasm), as well as vital organelles (mitochondria) and essential macromolecules (proteins, enzymes,
DNA) [75,76]. Also, another possible mechanism for nanosilver toxicity is cellular apoptosis [77,78].

Hu and coworkers reported that silver nanoparticles affect the global differentiation of human
embryonic stem cells. In particular, dose-dependent effects were evidenced during the differentiation
and function of hepatocytes and cardiomyocytes [79]. Using albino mice, Jarrar et al. proved that
hepatoprotective agents or coatings are mandatory for the safe administration and suitable drug
metabolism of AgNPs-based systems, as citrate-coated nanosilver (20 ± 5 nm size) induced significant
downregulation in the gene expression of hepatic drug-metabolizing enzymes, causing important
hepatic inflammation [80].

Green synthesized AgNPs altered the levels of glucose and hepatic enzymes in an animal model, but
did not induce morphological modifications. The beneficial conjunction between metallic nanoparticles
and common dogwood extract resulted in diminished oxidative stress and enhanced antioxidant and
anti-inflammatory effects [81]. The functional alteration of liver and kidney was also reported after the
inoculation of CS-coated bioreduced nanosilver in rats. Moreover, the proposed AgNPs proved able to
cross the placenta and induced minimal toxicity in fetuses. Contrariwise, time-dependent severe fetal
hepatotoxicity was evidenced in the case of uncoated nanoparticles inoculation [82].

Other studies reported the importance of surface coating on the bioavailability and toxicity
of nanosilver. AgNPs modified with silicate and PVP neutral coatings induced less inflammatory effects
and genotoxicity than negatively charged citrate and positively charged branched polyethylenimine
(PEI) coatings [83]. In addition, Zucker and coworkers showed that 80 nm AgNPs coated with
branched PEI were internalized and accumulated at a greater rate by epithelial cells, in comparison
with nanoparticles coated with citrate, PEG, or PVP, causing significant mitochondria damage [84].

Following the subacute exposure of rats to AgNPs, Docea and coworkers evidenced significant
antioxidant effects in the case of particles coated with ethylene glycol (EG). For the same doses,
PVP-EG-coated AgNPs resulted in important pro-oxidant effects, as indicated by the induction of
protein oxidation and decrease of glutathione levels [85]. After subcutaneous implantation in rats,
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colloidal nanosilver determined important subacute inflammatory response of connective tissue but
demonstrated long-term biocompatibility, as evidenced after 60 days of exposure [86].

3. Silver Nanoparticles for Antibacterial Applications

An alarming phenomenon of current healthcare practice is the occurrence of many drug-resistant
microorganisms, which leads to ineffective conventional monotherapy. Bacterial infections and their
related complications represent a major and frequent cause of death [87,88]. With the aim to overcome
the limitations that occurred due to drug-resistant pathogens, worldwide researches focused on the
investigation of antibacterial resistance mechanisms, as well as on the development and optimization
of unconventional and effective antibacterial strategies.

A concerning number of bacterial strains developed or enlarged their resistance to conventional
antibiotherapy, especially due to their versatile mechanisms to adapt to the action of drugs and to
the excessive usage of antibiotics [89–91]. The clinical implications related to infections caused by
drug-resistant bacteria and the particular complications related to biofilm-embedded pathogens
led to the necessity to develop new and effective bactericidal products [92–94]. In particular,
nanomaterial-based formulations represent a feasible choice for modern and therapeutic-enhanced
antibacterial agents.

Silver-based compounds have been used as antimicrobial agents for thousands of years, proving
the ability to go through biological membranes and to exhibit local or systemic effects, thus being used
for different treatments, including dental and digestive pathologies, wounds and burns healing [36,95].
Despite their remarkable therapeutic properties, the weakness of such compounds is related to their
toxicity on human cells, which occur at higher concentrations. In addition, if prolonged treatment
with silver-based compounds is applied, their accumulation in the organism may lead to vital organs’
impairment and skin discoloration (argyria) [96,97]. Therefore, in order to overcome cytotoxicity,
products containing silver compounds and nanoparticles require very low metallic concentrations and
suitable delivery systems.

The effects of biocompatible systems based on nanosilver for novel antimicrobial agents were
assessed against various planktonic and sessile strains relevant to current clinical practice. In particular,
a plethora of research studies investigated the effects of nanosilver-based biomaterials against Escherichia
coli (E. coli) and Staphylococcus aureus (S. aureus), as representative (respectively) Gram-negative
and Gram-positive pathogens responsible for community-transmitted and hospital-acquired
infectious diseases.

In comparison with S. aureus, the increased sensitivity of E. coli to AgNPs bactericidal activity
was related to the much thinner peptidoglycan layer and the outer liposaccharide portion within the
cell wall, which can modulate bacterial membrane destabilization, cell penetration and leakage of
intracellular organelles and macromolecules [98,99]. Due to high surface reactivity, strong interactions
formed between nanosilver and bacterial membranes containing phosphorous and sulfur determined
significant growth inhibition of both strains [100,101]. The antibacterial effects of AgNPs were also
related to cellular stress induced by the alteration of energy-dependent processes mediated by adenosine
triphosphate (ATP) [102,103].

Moreover, it was demonstrated that the toxic effects exhibited by AgNPs against E. coli and
S. aureus can be mediated by the release of metallic ions (Ag+). The cellular exposure to silver ions
was associated with increased levels of highly reactive species, such as singlet oxygen, hydroxyl,
superoxide, hydroperoxyl, hydrogen peroxide and nitric oxide. It was reported that the generated ROS
were responsible for cellular oxidative stress, induced by lipid peroxidation, impairment of protein
and enzyme metabolism, degradation of nucleic acids [104,105].

The electrostatic affinity of Ag+ ions for phosphate- and thiol-containing macromolecules
was associated with the inactivation or denaturation of vital macromolecules (proteins, enzymes,
nucleic acids), which eventually resulted in bacterial cell death [106,107].
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Size-dependent antibacterial effects of AgNPs were evidenced. Due to a larger specific surface area
and intense surface reactivity, smaller nanoparticles generate better contacts with cellular structures and
subcellular components and are able to induce stronger Ag+-mediated cellular oxidative stress [108,109].
Thermo-sensitive polymer nanoparticles embedded with AgNPs exhibited size-dependent antibacterial
activity against both E. coli and S. aureus strains, the effects being more pronounced in the case of the
smallest particles [110]. In a similar way, ultrasmall AgNPs (1.59 nm) stabilized with thermo-sensitive
copolymer showed enhanced bactericidal effects against E. coli and S. aureus than bigger nanoparticles
(2.29 and 3.91 nm sizes). An enhanced cytotoxic effect was observed against the Gram-negative
pathogen, as evidenced by nanosilver-mediated damage of bacterial membrane, cellular uptake and
ROS generation [111]. Smaller nanoparticles (below 20 nm) were generally reported as more cytotoxic
for both Gram-positive and Gram-negative bacteria [112,113].

The antibacterial efficiency of nanosilver also proved to be shape-dependent.
Spherical biosynthesized nanosilver (40 nm) showed stronger bactericidal effects against
E. coli and S. aureus strains in comparison with NPs with irregular shapes [114]. Due to higher
specific surface area and increased ability to release metallic ions, spherical AgNPs exhibited superior
antibacterial effects compared with disk and triangular plate morphologies [115]. Excellent inhibitory
effects were reported for ultrasmall spherical AgNPs (2–5 nm) bioreduced with fungal extract,
in comparison with particles with pentagonal or hexagonal (50–100 nm) and rectangular (40–65)
shape [116]. Chemically synthesized spherical AgNPs showed more effective killing bacteria ability
than rod-shaped counterparts when used against both Gram-negative and Gram-positive pathogens.
It was evidenced that the antibacterial activity of nanosilver is strongly related to their microstructure,
namely the presence of (1 1 1) crystallographic plane [117].

Strong bactericidal or bacteriostatic effects against E. coli were also reported for AgNPs
biosynthesized with gum kondagogu (4.5 ± 3.1 nm) [118], Arisaema flavum extract (5–8 nm) [119]
and Polygonatum graminifolium extract (3–15 nm) [120], but also for nanoparticles capped with PVP
(16 ± 2 nm) [121], pectin (8–13 nm) [122] and chitosan (>20 nm) [123]. AgNPs biosynthesized with
corn silk extract (10–30 nm) [124], belladonna tincture (15–20 nm) [125], thyme extract (75 nm) [126]
and nanosilver bioreduced by Bacillus subtilis (3–20 nm) [127] and Lactobacillus brevis (45 nm) [128]
showed pronounced antibacterial effects against S. aureus.

Besides E. coli and S. aureus bacterial strains, nanosilver biomaterials proved efficient against
various clinically-relevant pathogens, as summarized in Table 2. A wide variety of studies reported that,
following their interaction with AgNPs, microbial cells death occurs due to (i) attachment to the
cell surface, followed by modification of membrane permeability, cell wall piercing, intracellular
infiltration and cytoplasm leakage [129,130]; (ii) generation of highly reactive species and free radicals,
followed by denaturation of microbial proteins and enzymes, alteration in DNA replications [131,132];
(iii) alteration of cellular respiratory chain or / and signal-transduction pathways [133,134].

Table 2. Effects of AgNPs against various bacterial pathogens.

Bacterial Strain Proposed Systems Effects Refs.

Bacillus subtilis (B. subtilis)

AgNPs biosynthesized with petai
(Parkia speciosa), fig tree (Ficus hispida),
pomegranate (Punica granatum), Sida
cordifolia and
Platycodon grandiflorum extracts

Antibacterial effect due to size-related
cytotoxicity and phytochemicals [135–139]

AgNPs biosynthesized with coriander
(Coriandrum sativum) leaf extract and
AgNPs bioreduced by
Actinomycetes strain

Bacterial death due to cellular uptake
and Ag+-mediated DNA damage [140,141]

Enterococcus faecalis
(E. faecalis)

AgNPs biosynthesized with
night-blooming jasmine (Cestrum
nocturnum) extract

Bacteriostatic and bactericidal effects
exhibited for lower and higher AgNPs
concentrations, respectively

[142]

AgNPs bioreduced by Fusarium
semitectum strain

Strong antibacterial and anti-biofilm
activity [143,144]
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Table 2. Cont.

Bacterial Strain Proposed Systems Effects Refs.

Klebsiella pneumoniae
(K. pneumoniae)

AgNPs biosynthesized with butterfly
pea (Clitoria ternatea) and mango
(Mangifera indica) flower extracts and
wild ginger (Alpinia nigra) fruit extract

Antibacterial effect due to size-related
cytotoxicity and phytochemicals [145–147]

AgNPs bioreduced by Nostoc Bahar M.
cyanobacteria

Strong bactericidal effect due to
imbalance in bacterial antioxidants and
enzymes, fragmentation and
degradation of bacterial proteins

[148]

AgNPs bioreduced by Bifidobacterium
bifidum strain

Antibacterial activity due to inhibitory
effects on efflux pump genes [149]

PVP-capped AgNPs

Antibacterial effects due to membrane
disruption and cytoplasmic protein
leakage, anti-biofilm effects due to
inhibitory activity on extracellular
protein substances

[150]

Pseudomonas aeruginosa
(P. aeruginosa)

AgNPs biosynthesized with sesame
(Sesamum indicum) oil, horse chestnut
(Aesculus hippocastanum) and
stonebreaker (Phyllanthus niruri)
extracts

Bacterial death due to cellular uptake
and size-related intracellular toxicity [151–153]

AgNPs dendronized with cationic
carbosilane dendrons and modified
with PEG

Destabilization of outer membrane,
degradation of peptidoglycan layer
(in conjunction with endolysin)

[154]

AgNPs biosynthesized with eyebright
(Euphrasia officinalis) leaf extract

Strong antibacterial and
anti-biofilm activity [155]

AgNPs biosynthesized with Lysiloma
acapulcensis extract

Antibacterial effect due to size-related
cytotoxicity and phytochemicals [156]

Salmonella enterica
(S. enterica)

AgNPs biosynthesized with green tea
(Camellia sinensis) and jackfruit
(Artocarpus heterophyllus) extracts

Synergistic inhibitory and bactericidal
effects due to size-related toxicity and
phytochemicals

[157,158]

AgNPs capped with afzelin and
quercitrin extracted from
Crotolaria tetragona

Bacteriostatic and bactericidal effects,
anti-biofilm activity due to alteration of
membrane potential and efflux pumps
and modification of bacterial surface
hydrophobicity

[159]

AgNPs bioreduced by Penicillium
polonicum strain

Strong bactericidal activity due to
membrane disruption and cytoplasmic
protein leakage

[160]

Staphylococcus epidermidis
(S. epidermidis)

AgNPs biosynthesized with river
bushwillow (Combretum erythrophyllum)
leaf extract, grape (Vitis vinifera) fruit
extract and Elytraria acaulis leaf extract

Bacterial death due to cellular uptake
and size-related intracellular toxicity [161–163]

AgNPs biosynthesized with tea tree
(Melaleuca alternifolia) essential oil

Inhibitory and bactericidal effects due
to membrane disruption and bacterial
internalization, synergistic toxicity
related to AgNPs size and tea tree
essential oil

[164]

Streptococcus mutans
(S. mutans)

AgNPs biosynthesized with citrus
(Citrus limetta) peel extract

Antibacterial effect due to size-related
membrane permeability alteration and
anti-biofilm activity

[165]

SiO2-coated AgNPs biosynthesized
with green tea (Camellia sinensis) extract

Strong antibacterial and anti-biofilm
activity [166]

Streptococcus pyogenes
(S. pyogenes)

AgNPs biosynthesized with Dodonaea
viscosa extract and AgNPs bioreduced
by Saccharopolyspora hirsute strain

Antibacterial effect due to size-related
cytotoxicity and phytochemicals [167,168]

In addition to their intrinsic antibacterial activity, AgNPs proved impressive synergistic effects in
the case of combined treatment with different natural or synthetic compounds. The treatment with
PVA-capped nanosilver and hydrogen peroxide determined rapid and synergistic bactericidal effects
against both Gram-negative and Gram-positive strains [169]. Biasi-Garbin and coworkers reported
that bioreduced AgNPs combined with eugenol had enhanced inhibitory activity against planktonic
and biofilm-embedded drug-susceptible and drug-resistant Streptococcus agalactiae isolates [170].
In comparison with conventional PVP-capped AgNPs, curcumin-capped nanosilver showed enhanced
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bacterial inhibitory and killing activity. The presence of curcumin determined superior interactions
with bacterial cells and higher release of silver ions, resulting in ROS-mediated cytotoxicity [171].

Enhanced inhibitory effects on E. coli were reported when using the treatment with AgNPs,
Centaurea damascena essential oil and Gentamicin or Amoxicillin. In the case of S. aureus, the most
prominent synergistic effect was reported when combining nanoparticles and essential oil with
Imipenem [172]. Pronounced antibacterial effects on both strains were also reported when treated with
Vancomycin-loaded AgNPs [173].

Similar synergistic effects were reported on S. aureus and P. aeruginosa when treated with
triangular-shaped nanosilver and Ampicillin or Gentamicin [174], but also when treated with
Metronidazole-capped spherical AgNPs [175]. Streptomycin-resistant B. subtilis exhibited important
susceptibility on the antibiotic-conjugated AgNPs treatment [176], while Ciprofloxacin-conjugated
nanoparticles caused significant bactericidal effects against S. epidermidis [177]. Biosynthesized
nanosilver conjugated with Ampicillin or Vancomycin [178] and Tetracycline [179] determined
improved antibacterial effects against K. pneumoniae, whereas 10 nm sized bioreduced AgNPs proved
potentiated antibacterial effects on S. mutans treated with Gentamycin and Vancomycin [180].

The exposure of E. coli and S. aureus to the combined treatment with AgNPs and visible light
irradiation resulted in enhanced synergistic antibacterial effects against both strains. However,
the ROS-mediated cytotoxicity was more evident in the case of Gram-negative bacterium [181].
Light-irradiated enhanced bactericidal effects were also reported for P. aeruginosa treated with
citrate-coated nanoparticles [182].

4. Silver Nanoparticles for Antiviral Applications

Given the complexity of pathophysiological interactions established between healthy cells and
viruses, the development of specific and effective antiviral agents requires thorough and unceasing
efforts [183,184]. The presence of living cells is mandatory for the replication of viruses, which invade
and impair or even destroy host cells. Acute and chronic conditions occurred after viral contamination
generally cause systemic infections and severe related complications. Few antivirals (generally,
inhibitory protein-specific or enzyme-specific drugs and nucleoside or nucleotide analogs that
interfere with viral replication cycle) [185] and vaccines (biological formulations containing viral
vectors—attenuated or inactivated organisms, toxins or proteins, nucleic acids or genes that activate
the innate immune system of the host) [186,187] are currently available to treat viral infections. As a
result of nanosize-guided structural and molecular complex studies, nanosilver-based biomaterials
proved impressive tools for the development of specific, selective and efficient antiviral therapies.

The intrinsic antiviral mechanism of silver nanoparticles is not completely known and understood,
the studies requiring more complex structural, molecular and immunological research than in the case of
antibacterial properties. In a similar way with their antibacterial activity, the antiviral effects induced by
AgNPs rely on the specific affinity for essential biomolecules (viral proteins and glycoproteins, enzymes,
lipids, nucleic acids) and Ag+-mediated biostatic events, such as obstruction of cellular attachment
and invasion, the arrest of intracellular viral replication or propagation, hinder of extracellular virions
production [188–190].

Ultrasound-assisted biosynthesized AgNPs (5–15 nm) exhibited virucide activity against influenza
A virus (IAV) at noncytotoxic concentrations [191]. Previous data demonstrated the size-related antiviral
action of nanosilver against IAV [192]. Significant antiviral effects were reported for nanoparticles
functionalized with IAV inhibitory peptide ligand due to the potentiating effect of released silver ions on
the peptide [193]. AgNPs decorated with Oseltamivir and Zanamivir (inhibitors of surface-expressed
neuraminidase enzyme) showed synergistic antiviral effects against IAV, by preventing attachment
to host cells and hindering viral activity by downregulation in ROS generation [194,195]. Moreover,
nanosilver proved to represent a suitable adjuvant for the virus-inactivated vaccine, resulting in
reduced lung inflammation and induced mucosal immunity [196].



Nanomaterials 2020, 10, 2318 10 of 44

It was also reported that AgNPs interfere with the host cell attachment of respiratory syncytial
virus (RSV). Curcumin-modified nanoparticles (11.95 ± 0.23 nm) significantly inhibited the infectivity
of RSV, by interacting with envelope glycoproteins and thus blocking virus internalization by human
epithelial cells [197]. Recently, Morris et al. demonstrated that 10 nm PVP-coated nanosilver reduced
RSV replication and proinflammatory cytokines production, both in epithelial cell lines and infected
mouse lung tissue [198].

Fungal bioreduced AgNPs proved to inhibit cellular attachment and intracellular replication of
type 1 herpes simplex virus (HSV-1), in a manner dependent on the particle size [199]. Noncovalent
interactions between HSV-1 thymidine kinase ligands and nanoparticles biosynthesized with plant
extracts were considered responsible for the antiviral activity of nanosilver [200]. AgNPs modified
with tannic acid (33 nm) showed the ability to reduce the cellular infectivity with type 2 HSV (HSV-2),
by directly blocking viral glycoproteins and interacting with viral DNA. The treatment with these
nanoparticles also reduced local inflammation and potentiated virus-specific immune response in both
primary and recurrent HSV-2 infection of mice [201,202]. Noncytotoxic concentrations of nanosilver
produced by marine alga effectively reduced the cytopathic effect (an indication of host cell death after
virus-related lysis or reproductive inability) in cells infected with HSV-1 and HSV-2 [203].

PVP-coated AgNPs (25 nm) with antitumor activity exhibited high cytotoxicity on cells infected
with oncogenic γ-herpesviruses, such as Kaposi’s sarcoma-associated herpesvirus and Epstein–Barr
virus. The nanoparticles interfered with viral replication (by inducing ROS generation and activating
autophagy) and impaired associated virions [204]. El-Mohamady and coworkers reported that
cytocompatible concentrations of spherical AgNPs (<30 nm) induced inhibitory effects on the replication
of bovine herpesvirus-1 [205].

It was previously reported that AgNPs show antiviral action against cells infected with type
1 human immunodeficiency virus (HIV-1) [206], but are also able to prevent cell infection [207].
Low concentrations of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate significantly
interfered with HIV-1 replication [208]. AgNPs (10–28 nm) biosynthesized with Rhizophora lamarckii
extract inhibited the activity of HIV-1 reverse transcriptase, an essential viral replication enzyme [209].
It was determined that positively charged nanosilver can form complexes with either HIV-1 protease
(able to split viral polyproteins into mature and infectious particles) or specific peptides (macromolecules
similar to HIV-1′s polyproteins). Due to competitive interactions, the early presence of AgNPs resulted
in the most important decrease in viral replication [210].

Nanosilver-based formulations proved efficient therapeutic effects against several pathologies
caused by clinically-relevant viruses, such as severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [211,212], human papilloma virus (HPV) [213], rotavirus [214,215] and other enteric
viruses [216–218]. It is worth mentioning that new and effective platforms containing AgNPs were
evaluated for their biocidal activity against viral vectors, generally mosquito-borne pathogens including
Zika virus [219,220], Dengue virus [221,222], West Nile virus [223,224] and Chikungunya virus [225,226].

5. Silver Nanoparticles for Cancer Therapy

Cancer represents a major concern in public health, being a group of aggressive and
treatment-deficitary diseases that are incriminated in an alarming number of deaths at a global
level [227,228]. In general, the conventional treatment of cancers consists of strategies with reduced
selectivity and specificity, such as surgery, radiation therapy and chemotherapy, which lead to inefficient
anticancer therapy [229]. With the aim to enhance the patients’ response to the considered anticancer
treatment and to improve their general healthcare status, new nano-related strategies were proposed
and assessed for cancer therapy [230,231].

Silver nanoparticles have a special role in modern anticancer therapy, being explored for detection
and diagnosis of malignant tumors [232,233], controlled and externally triggered drug delivery
systems [234,235]. In a similar way with the antimicrobial activity of AgNPs, their efficiency against
cancer cells require the cellular uptake of nanosilver, which can be acquired by diffusion, phagocytosis,
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pinocytosis and receptor-mediated endocytosis [236,237]. The size, morphology and surface properties
of AgNPs are favorable for internalization by cancer cells, which results in local release of silver
ions and oxidative stress [238,239]. Such events further cause the death of cancer cells, either by
(i) apoptosis, which occurs due to alteration of mitochondria and generation of imbalance between
antiapoptotic proteins and proapoptotic kinases, and (ii) structural and functional impairment of cellular
substructures, which occurs due to specific interactions with silver nanoparticles and ions [240,241].

Mitochondrial-dependent apoptosis of lung adenocarcinoma cells treated with nanosilver
biosynthesized in the presence of cotton leaf extract was reported in a study performed by Kanipandian
and coworkers. They also evidenced that negatively charged spherical nanoparticles, with 13–40 nm
physical size, induced cell cycle arrest [242]. Besides oxidative stress, the treatment of lung cancer
cells with AgNPs synthesized with Anemarrhena asphodeloides medicinal plant extract also resulted
in decreased cellular migration [243]. The latest nanoparticles also proved anticancer efficiency
against human colon and breast cancer cell lines. In addition, pulmonary cancer cells treated with
biosynthesized AgNPs overexpressed the pro-apoptotic caspase-3 gene [244,245].

Under biological media, AgNPs may undergo specific processes that may influence their cytotoxicity,
such as surface oxidation, biomolecule conjugation or attachment, the release of surface metallic
ions [246,247]. In a complex comparative study performed by Ahn and coworkers, nanosilver
obtained with thirty medicinal plant extracts exhibited substantial cytotoxicity against lung cancer cells,
the results being remarkable in comparison with sole extracts. The authors also reported increased
toxic effects in the case of cells cultured in media containing fetal bovine serum, as a consequence of
protein corona modulated interactions [248]. Majeed et al., also reported that nanosilver resulting from
bacteria-mediated biosynthesis and capped with bovine serum albumin showed important toxicity
against breast cancer, colon carcinoma and osteosarcoma cells. In comparison with the initial nanosilver,
protein-capped AgNPs (11.26–23.85 nm dimensional range) exhibited increased toxicity at reduced
concentrations [249].

Well-dispersed AgNPs (20–30 nm size), obtained with tamarind fruit shell extract, induced
apoptotic death in human breast cancer cells. A dose-dependent anticancer effect was reported, as the
local increase of ROS led to mitochondrial impairment and DNA damage [250]. The same cytotoxic
effects were evidenced after cellular treatment with AgNPs biosynthesized with extract from Ochradenus
arabicus medicinal shrub [251] and marine bacilli [252]. Synergistic toxicity against breast cancer cells
were reported by using Capecitabine-loaded citrate-capped AgNPs [253] and Gemcitabine-loaded
PVP-stabilized nanosilver [235].

Concentration-dependent cytotoxicity of AgNPs (33 nm average size) biosynthesized with extract
of Nepeta deflersiana medicinal plant against human cervical cancer cells was reported. In a similar way to
previous studies, the AgNPs-mediated oxidative stress was responsible for mitochondrial damage and
cell cycle impairment, which further caused the apoptotic and necrotic death of malignant cells [254].
Electrolytically deposited AgNPs capped with black tea extract also proved anticancer efficiency [213].
Sinigrin-mediated synthesized AgNPs, with 20 nm average size, induced dose-dependent toxicity on
cervical cancer cells, as well as synergistic apoptotic processes in the case of combined treatment with
Camptothecin [255].

Medicinal plant extracts contain substantial amounts of secondary metabolites with important
effects against tumor cells. Highly stable spherical AgNPs obtained using neem leaf and shrub root
extracts showed toxicity against breast, colon and hepatic cancer cells. Still, the most reliable results
were obtained when using ethanolic extracts (instead of aqueous) on the colon adenocarcinoma cell
line [256]. Complementary results on the anticancer efficiency were reported for nanosilver obtained
with bulletwood fruits extract [257]. AgNPs biosynthesized by freshwater cyanobacterium potentiated
the antibacterial effects of commercial antibiotics in the case of combined administration. In addition,
they showed dose-dependent cytotoxic effects against human breast and colon cancer cells, apoptotic
events being evidenced [258].
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In another study, biogenic AgNPs prepared by using honey from distinctive floral sources
manifested antiproliferative activity against liver tumor cells [259]. Quasispherical silver nanoparticles
biosynthesized with lotus extract showed significant cytotoxic effects against human prostate, liver and
gastric cancer cells [260]. Gastric adenocarcinoma cells were also impaired after treatment with AgNPs
biosynthesized with medicinal extracts from leaves of felty germander [261] and from fruits of Crataegus
microphylla shrub [262]. Other recent data on the toxic effects of silver nanoparticles against cancer cells
are included in Table 3.

Table 3. Cytotoxicity of AgNPs against various cancers.

Malignant Cells Proposed Systems Effects Refs.

Bladder carcinoma AgNPs bioreduced by Fusarium
oxysporum strain

Apoptosis induced by DNA damage,
reduced cellular migration and
proliferation, tumor regression

[263]

Breast adenocarcinoma

AgNPs bioreduced by Penicillium
citrinum strain Apoptosis induced by DNA damage [264,265]

AgNPs biosynthesized with fineleaf
fumitory (Fumaria parviflora),
rhododendron (Rhododendron ponticum),
rhubarb (Rheum ribes) and cumin
(Cuminum cyminum) extracts

Cell death evidenced on distinctive
tumor cell lines [266–269]

Colorectal cancer

AgNPs biosynthesized with creeping
woodsorrel (Oxalis corniculata)
leaf extract

Cell death induced by apoptotic and
necrotic mechanisms [270]

AgNPs biosynthesized with peacock
(Caesalpinia pulcherrima) flower extract

Cell death induced by apoptosis and
membrane damage [271]

Hepatocellular
carcinoma

AgNPs bioreduced by
Bacillus safensis strain

Cell death induced by apoptotic and
necrotic mechanisms [272]

PVP-stabilized AgNPs

Cell death induced by damage of
cellular organelles (especially
mitochondria) and oxidative stress,
upregulation of mitochondrial
proapoptotic proteins

[273]

Laryngeal carcinoma AgNPs bioreduced by
Penicillium italicum strain

Cell death induced by ROS-mediated
membrane damage and essential
enzymes impairment

[274]

Lung adenocarcinoma

AgNPs bioreduced by Bacillus
amyloliquefaciens strain

Cell death induced by ROS generation
and damage of cellular organelles [275]

AgNPs biosynthesized with soursop
(Annona muricate) and mangrove
(Avicennia marina) leaf extracts

Apoptosis induced by ROS generation,
downregulation of antiapoptotic genes
and upregulation of proapoptotic genes

[276,277]

Osteosarcoma

AgNPs biosynthesized with cempedak
(Artocarpus integer) and mangrove
(Rhizophora apiculata) leaf extracts and
noni (Morinda citrifolia) bark extract

Cell death evidenced on distinctive
tumor cell lines, cell death induced by
membrane damage and oxidative stress

[278–280]

Rhabdomyosarcoma AgNPs bioreduced by Bacillus sp. strain Cell death induced by ROS generation [281]

Besides their effects on cellular and subcellular structures, AgNPs significantly affect tumor
angiogenesis, being responsible for alterations in growth factors’ expression and subsequent restricted
proliferation and migration of endothelial cells [282,283]. Yang and coworkers reported that ~10 nm
AgNPs induced dose-dependent apoptosis in breast cancer cells but also inhibited the transcription of
hypoxia-inducible factor-1 (HIF-1) and the induction of vascular endothelial growth factor-A (VEGF).
Together with the inhibition of tube formation in healthy endothelial cells, the authors proved the
antiangiogenic effects of nanosilver [284]. Another study evidenced that the inoculation of AgNPs
within the chorioallantoic membrane caused an important increase in the expression of caspase-3
and caspase-8 genes, which are responsible for cell apoptosis. The 15 nm particles obtained with red
amaranth extract induced an important decrease in the length and number of new blood vessels and
showed cytotoxic effects against breast malignant cells [285]. Also, antiangiogenic effects were reported
for chicken chorioallantoic membrane treated with AgNPs biosynthesized with madder extract [286].



Nanomaterials 2020, 10, 2318 13 of 44

Except for their intrinsic anticancer effects, particular attention was oriented to the development and
assessment of new silver-based nanosystems for boosted chemotherapy and radiotherapy. For example,
branched gold-silver nanoparticles coated with dopamine and subjected to near-infrared irradiation
determined photothermal-mediated cytotoxicity against colon cancer cell lines. By complex in vitro
and in vivo studies, the authors evidenced that NP-mediated photothermal therapy (PTT) occurred by
various apoptotic and necrotic mechanisms [287]. Multifunctional core-shell nanosystems based on
AgNP core and aggregation-induced emission molecule were recently proposed by He and coworkers.
The complex platforms were excellent enhancers for radiotherapy and modulators for PTT and
photoacoustic effect but also exhibited excellent potential as contrast agents for fluorescence and
computed tomography imaging [288].

Systems based on silver/magnetite nanoparticles coated with PEG, modified with folic acid and
loaded with Doxorubicin drug showed great potential for the PTT of cervical cancer. Besides dual
chemotherapeutic/photothermal effects, the hierarchical platforms exhibited targeted specificity for
cancer cells and imaging potential by fluorescence and magnetic resonance [289]. Due to synergistic
chemotherapeutic and photothermal effects that occurred after laser irradiation, enhanced cytotoxicity
against malignant cells was reported for nanosystems based on Methotrexate-conjugated nanoparticles
based on graphene oxide (GO) and AgNPs [290] and 5-Fluorouracil-loaded mesoporous SiO2-coated
silver/gold nanoshells [291].

AgNPs capped with PEG and labeled with I-131 radionuclide showed increased targeting ability
for malignant tissues in an animal model, with maximum solid tumor uptake of 35.43 ± 1.12%
ID/g (reached at 60 min. after intravenous inoculation) and 63.8 ± 1.3% ID/g (reached at 15 min.
after intratumor injection) [292]. Biosynthesized AgNPs with intrinsic cytotoxicity against hepatic
malignant cells, proved a potentiating effect on the gamma radiation treatment [293]. Also, the
treatment with cold atmospheric plasma-activated PVA-stabilized nanosilver resulted in additive
cytotoxic effects against human glioblastoma multiforme cells [294].

AgNPs obtained in the presence of globe artichoke (Cynara scolymus) leaf extract by microwave
irradiation showed the photosensitizing ability for the photodynamic therapy (PDT) of human breast
adenocarcinoma cells. Synergistic effects were reported following the combined treatment, such as
severe mitochondrial damage and ROS generation [295]. Enhanced cytotoxic effects were also reported
in the case of melanoma cells, where AgNPs functionalized with porphyrin acted as mediators for
enhanced PDT [296].

6. Silver Nanoparticles for Tissue Engineering

At the microstructural level, human tissues consist of highly organized cells with
specific functions and their corresponding extracellular matrix (ECM, protein-based environment
containing glycosaminoglycans, which in turn provides three-dimensional support for cellular
adhesion and proliferation, regulates intercellular communication and tunes cell physiology).
Generally, the structural and functional impairment of human tissue may occur due to acute or
chronic injuries, severe inflammatory conditions, genetic disorders, degenerative conditions and tumors.
With the aim to overcome the limitations of organ transplantation (including reduced bioavailability
in the case of autografts and isografts, immunogenicity and graft rejection in the case of allografts
and xenografts), healthcare professionals and scientists turned their attention towards the impressive
potential of tissue engineering.

As a part of regenerative medicine, the desideratum of tissue engineering (TE) is represented
by the fabrication of nonviable complex biocompatible systems that are able to revive the structural
integrity and functionality of damaged tissues by restoring, replacing or regenerate them [297].
Nanostructured biomaterials represent a suitable choice for TE applications, not only because they
properly interact with living systems and possess specific and selective therapeutic purpose, but also
because they possess versatile and tunable characteristics which enable the achievement of particular
requirements, such as (i) biocompatibility (a complex feature that relies on the bidirectional interactions
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between nanomaterials and host cells or tissues); (ii) physicochemical properties (microstructure,
phase transitions, porosity, wettability, morphology, topography, composition, stability, reactivity); and
(iii) circumstantial bioactivity [298,299].

Given their reduced toxic effects in healthy cells, facile surface functionalization and excellent
antimicrobial activity, the impact of nanosilver-based biomaterials for TE was thoroughly evaluated.

To begin with, AgNPs-embedded coatings were reported to boost the biological performances of
bioinert materials used in orthopedics and orthodontics. The simple modification of titanium
implants’ surface with nanosilver resulted in significant antibacterial effects against strains
responsible for implant-associated infections while maintaining excellent biocompatibility [300–302].
Nanotubular titanium oxide surface coated with silver nanowires showed prolonged inhibitory
action against S. aureus and E. coli, with more prominent effects against the Gram-positive strain.
At the same time, the nanostructured surface exhibited protein adsorption capacity and proved an
excellent substrate for the adhesion and proliferation of osteoblast-like cells [303]. Similar bactericidal
performances were also evidenced for a mixed titanium/niobium oxide nanotube array coated with
AgNPs-decorated GO sheets. In comparison with bare titanium-based alloy, the as-modified substrates
showed improved cytocompatibility and differentiation of pre-osteoblastic cells, alongside superior
corrosion resistance and apatite formation ability [304].

Polymer coatings embedded with AgNPs are unharmful materials for normal cells and only act
as protective carriers or enhancers for local anti-infective effects, thus inducing or potentiating
the antibacterial activity of metallic biomaterials [305,306]. Titanium implants modified with
nanosilver-embedded poly(lactic-co-glycolic) acid (PLGA) coatings showed strong bactericidal
activity against opportunistic pathogens, together with important osteoinductive potential [307].
Nanocomposite coatings of chitosan–tragacanth gum embedded with nanoparticles of silica and
biosynthesized silver (SiO2@Ag) demonstrated enhanced apatite-forming ability, as well as good
antibacterial effects under both acidic and aqueous media [308]. Electrospun composites based on
polylactic acid (PLA), GO and AgNPs increased the mechanical properties and anticorrosive behavior
of magnesium alloy and encouraged the formation of a stable apatite layer. Such composite coatings
reduced the degradation rate of magnesium alloy and proved beneficial for the adhesion, proliferation
and normal development of osteoblast-like cells while significantly inhibited bacterial growth [309].

A more attractive and successful strategy to enhance the performance of metallic implants consists
of modifying their surfaces with biomimicking coatings containing nanosilver, which simultaneously
determine superior osseointegration and anti-infective efficiency [310,311]. Estrada-Cabrera and
coworkers reported the potential use of composite coatings based on bioactive glass, CS and AgNPs
for surface modification of anodized titanium implants [312]. Nanostructured material composed of
hydroxyapatite (HAp), CS, AgNPs and lysozyme proved cytocompatible substrates for osteoblasts.
Titanium substrates modified with such hybrid coatings exhibited strong bactericidal effects due to
the synergistic activity of the latter two components [313]. Even if nanostructured coatings of HAp,
zirconium oxide and nanosilver proved to decrease the corrosion resistance of zirconium/titanium
alloy, they showed superior osteoconductive ability and enhanced the in vivo osseointegration of
as-modified implants [314,315].

Significant inhibitory activity against planktonic and sessile bacteria was reported in the case of
AgNPs-incorporated silk fibroin (SF) films. Low concentrations of nanosilver determined favorable
cytocompatibility on fibroblasts and osteoblasts, as well as nondetrimental effects on the osteogenic
differentiation ability of human mesenchymal stem cells [316]. The bone-forming potential of SF
coatings embedded with AgNPs and Gentamycin was evidenced in an animal model. The highly
hydrophilic and protein adsorptive surfaces showed a pH-dependent release of metallic silver,
which determined enhanced biocompatibility, mineralization and osteoinductive potential, but also
long-term antibacterial efficiency [317]. The potential use of hydrogels of SF and CMC loaded with low
concentrations of nanosilver for TE applications was also reported. The highly absorbent composites
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showed strong antibacterial and mild antifungal efficiency and displayed cytocompatibility with
respect to bone marrow stem cells [318].

A recently developed endodontic sealer based on methacrylate derivative embedded with
nanoparticles of amorphous calcium phosphate and silver determined remineralization and
strengthening effects on dentin, but also strong bactericidal activity against pathogens associated with
dentin infections [319]. AgNPs-loaded natural rubber latex showed low toxicity and tissue reaction
similar to commercial products, being proposed as an antibacterial occlusive membrane for guided
bone regeneration in orthodontics [320]. High bactericidal efficiency and cytocompatibility were
also reported by embedding rigid poly(methyl methacrylate) (PMMA) nanoparticles decorated with
CS-stabilized AgNPs within soft films of natural rubber [321].

Biodegradable electrospun membranes of poly(caprolactone) (PCL) or polylactide/cellulose
acetate (PLA/CA) embedded with nano-HAp and AgNPs promoted the formation of bone-like apatite.
The nanofibrous composites exhibited prolonged bactericidal effects, being proposed as suitable
materials for orthodontic applications [322]. Liu et al., reported the successful fabrication of nanofibrous
materials based on PLA/HAp nanowires modified with polydopamine membrane and coated with
polypyrrole-stabilized AgNPs. The obtained hybrid biomaterials possessed good stability under
physiological conditions, enhanced mineralization ability, excellent cytocompatibility and long-term
antibacterial efficiency, being promising candidates for bone-related regenerative and anti-infective
applications [323].

The sustained release of Ag+ from PLA scaffolds modified with nanosilver-loaded halloysite
nanotubes determined prolonged antibacterial activity. The as-modified scaffolds showed increased
mechanical properties, degradability and mineralization, which positively contributed to supporting
cellular proliferation and osteogenic differentiation [324]. Hasan and coworkers reported that CS/CMC
scaffolds modified with AgNPs-decorated cellulose nanowhiskers possess suitable porosity and
compressive behavior for bone TE applications, in conjunction with intrinsic antibacterial efficiency.
The controlled degradability of hybrid scaffolds was adjusted for angiogenesis and vascularization
processes and proved beneficial for in vitro mineralization, while the protein adsorption ability
determined superior adhesion and proliferation of osteoblasts [325]. Silver nanorods incorporated
within highly porous wollastonite scaffolds determined strong bactericidal effects while providing
the favorable apatite-forming ability and good cytocompatibility with respect to osteoblast-like
cells [326]. Composite freeze-thawed gelatin/alginate/PVA and electrospun PCL scaffolds embedded
with a bactericidal concentration of silver-HAp nanoparticles showed suitable porosity and prolonged
release metallic ions, with simultaneous favorable adhesion, proliferation and osteogenic potential on
mammalian cells [327,328].

Substrate roughness and wettability possess a very important role in protein absorption and cellular
attachment, therefore significantly contributing to the biological performance of implanted devices.
The addition of AgNPs within electrospun scaffolds of CMC/PVA and PCL loaded with rambutan
polyphenolic extract determined higher cellular proliferation rates due to surface modification [329,330].
Titanium oxide nanotube array coated with AgNPs-embedded polydopamine layer was assessed as
a feasible option for arthroplasty [331]. CS-SF/PET (polyethylene terephthalate) scaffolds modified
with nanosilver/HAp by plasma splashing procedure promoted cellular proliferation and osteogenic
differentiation of mesenchymal stem cells. The composite scaffolds restricted the resorption of
bone passage and enhanced the biomechanical response of bone–joint interface, being potential
candidates for the replacement of anterior cruciate ligament [332]. In addition, AgNPs-decorated
nanofibrous membranes of PET, with good cytocompatibility and inhibitory effects against planktonic
and sessile bacteria, induced weak inflammation and reduced foreign body response in an animal
model [333]. Poly(acrylonitrile-butadiene-styrene) copolymers modified with AgNPs were proposed
as suitable candidates for the fabrication of middle ear implants. The composites exhibited pronounced
hydrophilicity and long-term mechanical stability while determined no cytotoxic effects and promoted
cellular proliferation in both osteoblast and fibroblast cultures [334,335].



Nanomaterials 2020, 10, 2318 16 of 44

Thanks to their excellent mechanical strength, gradual degradation and biological activity, agarose
scaffolds impregnated with CS-coated nanosilver were proposed for soft TE applications. In addition to
their intrinsic bactericidal efficiency, the biopolymer-based scaffolds showed good hemocompatibility
and enhanced cytocompatibility with different epithelial cell lines [336]. The incorporation of AgNPs
within composite aerogels of bacterial cellulose (BC) and polyaniline (PANI) determined increased
viscoelastic behavior, which is an important factor for the repair and regeneration of soft tissue [337,338].
With the aim to obtain low-cost antibacterial scaffolds for TE applications, the decellularized fish swim
bladder matrix was modified with colloidal AgNPs. The resulted collagen-enriched scaffold showed
broad-spectrum bactericidal efficiency (due to the gradual release of nanosilver) and biocompatibility,
as well as good flexibility and biodegradability [339]. The ultrastructure of decellularized esophageal
scaffolds (more regular and enhanced binding of collagen fibers, reduced alteration of pore areas) was
improved by modification with 5 µg/mL of citrate-stabilized AgNPs (100 nm), due to their ability to
non-covalently interact with the collagenous material. The as-modified scaffolds presented superior
water uptake ability, substantial resistance to enzymatic degradation and thermal stability, together with
excellent anti calcification effect. Moreover, the nanosilver-modified matrices exhibited highly
compatible behavior with respect to stem and endothelial cells, while the intrinsic anti-inflammatory
activity of AgNPs led to a reduced immune response of tissue after in vivo implantation [340].

The interconnected porosity of CS scaffolds incorporated with AgNPs-embedded CS microspheres
proved beneficial for the adhesion, proliferation and migration of fibroblasts. Given the sustained release
of metallic silver and the prolonged antibacterial effects of such nanostructured scaffolds, they were
evaluated as suitable candidates for skin TE by Niu and coworkers [341]. Macroporous CS sponge
embedded with polysaccharide biosynthesized nanosilver were proposed for the regeneration of skin
defects due to excellent water retention property, mechanical behavior and biological performances [342].
SF nanofibrous mats modified with biosynthesized AgNPs were also proposed for skin TE. In
comparison with several commercial products, the highly biocompatible constructs showed superior
extensibility and flexibility, as well as increased water uptake, which are essential aspects for tissue
repair [343].

Thanks to their impressive compositional versatility and high intrinsic hydrophilicity, swelling capacity
and tunable degradability, adequate elasticity and flexibility and stimuli-responsive ability, hydrogels
attracted particular attention in regenerative medicine. AgNPs-embedded biocompatible platforms with
promising potential for TE applications include guar gum hydrogel [344], gelatin/PEG/dopamine
hydrogel [345] and carboxymethyl starch/PVA/citric acid hydrogel [346].

7. Silver Nanoparticles for Wound Care

Wounds are defined as damage in the natural structure of the skin and adjacent tissues, which
may appear through several traumas, including physical or mechanical injury, chemical or thermal
damage and biological impairment. The natural healing process starts right after the occurrence
of a wound, by impressive local recruitment of immune, cellular and vascular components that
synergistically act for the proper restoration of structural and physiological functions [347,348]. This
process relies on the accurate sequence of the following essential stages: hemostasis, inflammation,
cellular proliferation, re-epithelialization and tissue remodeling [349,350]. When the affected tissue is
not able to heal properly, the wound healing process is inadequate and may further lead to various
complications and even life-threatening conditions.

Currently, few strategies are available for the clinical management of wounds. For instance,
in terms of compatibility and enhanced healing process, skin autografts and xenografts represent a
desirable therapeutic choice for severe wounds. Except for being expensive approaches, these strategies
have specific limitations, such as restricted bioavailability, respectively immunogenicity and increased
possibility for disease transmission [351,352]. In addition, oxygen-enriched therapy is beneficial
for accelerated wound healing, as oxygen is essential for the stimulation of collagen synthesis and
subsequent re-epithelialization, as well as for the induction of angiogenesis [353,354]. Besides being a
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costly and uncomfortable procedure, it was also reported that hyperbaric oxygen therapy has limited
efficiency since negative pressure therapy is generally suitable for small wounds and may induce several
physical effects that can hamper the healing process [355,356]. Another therapeutic strategy for wound
healing consists in using wound dressings, which support the structural and functional restoration of the
injured tissue and may additionally provide protection against external pathogens. Several key aspects
must be considered for an effective wound dressing, such as biocompatibility, fluid (super)absorption,
water and oxygen partial permeability, nonimmunogenicity, facile and nontraumatic removal [357,358].
Even if a wide variety of dressings is commercially available, the current tendency in wound care
management is to develop specific and performance-enhanced dressings, which provide suitable
compositional, structural and biofunctional features for proper wound healing process [134,359].

The opportunistic microbial contamination and colonization of wounds generally lead to the
delayed and circumstantial improper healing process, but it may also lead to severe infections and critical
healthcare complications [360,361]. Therefore, impressive attention was oriented on the development of
anti-infective wound dressings, which can be produced by embedding dressing materials with different
antimicrobial agents, such as synthetic antibiotics [362,363], essential oils [364,365] and antibacterial
nanoparticles [366–368].

Silver derivatives were used for wound care since ancient times, as even Hippocrates described
their efficiency in wound healing [369]. Also, silver-based compounds were used to reduce the
intraoperative risk of wound infection from the late XIX century [370] and remained the preferred
agent for partial burns treatment since mid of XX century (as they can absorb fluids better and reduce
infective processes) [371,372]. However, the decrease observed in the use of SSD-based products
(occurred due to different side effects, like eschar formation and tissue irritation) led to the development
of unconventional silver-based therapeutic formulations [373,374]. Among noble metals, silver, in the
form of nanoparticles and nanosystems, represents the most explored representative for the successful
development of innovative and effective wound dressings, thanks to their impressive biocide and
biostatic effects, anti-inflammatory activity and reduced or absent toxicity for human tissues [37,375].
Given the above-mentioned aspects, together with tunable surface chemistry, drug delivery ability
and low production costs [376,377], different products containing silver nanoparticles and ions are
commercially available (as previously summarized in Table 1). Other silver-based nanostructured
candidates with promising preclinical performances in wound care management are included in
Table 4.

Depending on the type and localization of tissue injury, cotton dressings, silk sutures and
synthetic polymeric mats represent the preferred choice for open wounds. Still, these formulations
are effective only for promoting or accelerating the healing process, without preventing or
eliminating opportunistic microbial contamination. The facile modification of cotton [378,379] and
silk [380,381] materials with nanosilver resulted in promising local antibacterial effects without
affecting the intrinsic long-term stability and wound healing ability of initial substrates. Cotton
fabrics coated with AgNPs stabilized with CS derivatives exhibited strong and long-lasting
bactericidal efficiency [382,383]. Substantial antimicrobial activity was also reported in the case
of nanosilver-decorated polypropylene [384,385] and nylon [386,387] fibers and fibrous mats.

As a consequence of synergistic anti-infective efficiency, strong antimicrobial and anti-biofilm
effects were reported for textile wound dressings modified with alginate embedded with AgNPs
conjugated with essential oils of mandarin, clove and niaouli [388]. Wound dressings coated with
biosynthesized AgNPs determined intense collagen deposition and faster re-epithelialization in the
case of burn wounds (17 days, in comparison with 25 days for uncoated dressings). The as-modified
materials exhibited improved tensile strength and accelerated healing potential, being thus proposed
for the management of pediatric wounds [389].

The mechanical properties and antibacterial activity of CS films were experimentally improved by
incorporating them with biosynthesized nanosilver [390,391]. CS films embedded with AgNPs were
proposed as temporary wound dressings. The bacteriostatic and bactericidal composites showed a water
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vapor transmission rate comparable with commercial dressings, as well as reduced degradability and
prolonged cytocompatibility on human fibroblasts [392]. Moreover, CS derivative films incorporated
with AgNPs in 0.125% inorganic/organic ratio showed suitable hemolytic and hemostatic effects for
wound healing applications [393].

The capacity of composite films of sodium alginate containing SiO2-coated AgNPs was investigated
for wound dressing use. The obtained films showed slow release of silver ions, increased hydration
properties and prolonged bactericidal and anti-biofilm activity. Even if comparable antibacterial effects
were reported in the case of films incorporating acetate-stabilized nanoparticles, only the presence
of silica layer determined excellent compatibility with respect to fibroblasts and keratinocytes [394].
The ability to promote wound healing and exert efficient antibacterial effects against planktonic
and biofilm-embedded bacteria were also reported for alginate/HA membranes embedded with
Chitlac-stabilized AgNPs [395].

Nanofibrous electrospun mats of hyaluronic acid (HA) and polygalacturonic acid (PGA) embedded
with nanosilver showed promising results for wound healing. Increased mechanical behavior and
hydrophilicity, but also enhanced antibacterial activity was reported for the composites obtained by
electrospinning. Moreover, faster healing and wound epithelialization were evidenced, as well as
reduced tissue inflammation. Such behavior was assigned to the presence of AgNPs, which intrinsic
anti-inflammatory activity contributed to accelerated wound healing [396].

The hydrophilic nature of hydrogels is closely related to their impressive ability to absorb wound
exudates and to maintain adequate wound bed moisture [397,398]. By also considering their intrinsic
flexibility and swelling, similar hydration with skin tissue and circumstantial stimuli-responsive ability,
(hydro)gel dressings help to substantially reduce pain scores, accelerate wound healing and prevent
bacterial contamination by the facile incorporation of antimicrobial agents [358,399].

In order to extend the use of CS hydrogels for wound dressing applications, Wang and
coworkers modified them with AgNPs. They demonstrated that the addition of nanoparticles
within biopolymeric hydrogel resulted in ultrahigh mechanical properties of the composite hydrogel
without affecting its structural integrity. Faster and improved wound healing were evidenced
in the case of nanosilver-embedded hydrogel [400]. Also, biocompatible PVA/CS hydrogels
loaded with electrochemically synthesized nanosilver showed improved swelling ability, as well
as the slower and prolonged release of metallic ions, which are desirable aspects for wound
healing applications [401]. Together with favorable mechanical strength and self-healing ability,
the excellent biocompatibility and enhanced healing effects evidenced on infected wounds recommend
AgNPs-loaded chitosan/carboxymethyl chitosan hydrogel for wound management [402].

Composite hydrogels of alginate/gelatin loaded with AgNPs determined the improved formation
and maturation of granular tissue and promoted the earlier formation of primary collagen scars [403].
Effective antibacterial activity accelerated healing process and enhanced re-epithelialization were
reported in the case of PVA hydrogel patches loaded with biosynthesized AgNPs [404]. Thanks to their
enhanced water vapor transport and increased moisture retention, highly antibacterial starch/PVA
hydrogel membranes loaded with biosynthesized AgNPs exhibited impressive potential for wound
dressing use [405]. Jaiswal and coworkers demonstrated the promising use of carrageenan hydrogel
films embedded with lignin-stabilized nanoparticles for the treatment of full-thickness wounds [406].
The efficiency of Pluronic F-127 gels loaded with nanosilver against planktonic and sessile bacteria
was also reported. The proposed formulations showed great cytocompatibility on human cells and
excellent thermoreversibility, which determined the facile application of gel dressing [407].

In a complex study, Erring et al. investigated the healing ability of AgNPs gel and nanosilver
foam dressings in patients with burn wounds. In comparison with nanostructured gel and collagen
dressings, the nanostructured foam exhibited the best results: faster-wound healing rate, a higher
number of patients with improved re-epithelialization (55% vs. 20% and 30%, respectively), increased
ease of application (95% vs. 78% and 80%, respectively), improved level of tolerance and significantly
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reduced pain scores. All taken together, nanosilver foam dressings proved a more efficient strategy for
the management of partial-thickness burns [18].

Besides their complex cellular compatibility (which enables adhesion, proliferation and
circumstantial differentiation) and porous architecture (which is beneficial for cellular migration
and angiogenesis), 3D scaffolds designed for wound healing applications possess proper mechanical
features, suitable flexibility, swelling ability and tunable biodegradability [134,408].

Highly organized collagen scaffolds stabilized with juglone-functionalized AgNPs were evaluated as
beneficial substrates for cellular adhesion and intercellular connection. The as-obtained nanostructured
scaffolds exhibited significant antiproteolytic and proangiogenic ability and determined faster and enhanced
wound healing [409]. Bergonzi et al. recently proposed 3D-printed scaffolds of alginate and nanocrystalline
cellulose incorporated with nanosilver as highly absorbable and elastic macroporous scaffolds
with considerable antibacterial effects for wound care applications [410]. AgNPs-impregnated
BC/polydopamine scaffolds were proposed for the management of burn wounds, with complete healing
being evidenced after 25 days. The nanocomposites facilitated necrotic tissue clearance, promoted
collagen deposition and epidermis neoformation. The scaffolds also determined increased/decreased
levels of anti-inflammatory/pro-inflammatory interleukins, respectively, and upregulation of growth
factor genes involved in wound healing [411]. Highly antimicrobial electrospun PLA scaffolds
modified with nanosilver and cellulose nanofibrils promoted the proliferation and normal growth
of ocular epithelial cells, with no proinflammatory reaction. The hydrophilic scaffolds were recently
proposed as effective ocular bandages [11]. AgNPs and lavender oil-induced synergistic antibacterial
effects when incorporated within polyurethane (PU) nanofibrous scaffolds. The resulted hydrophilic
nanocomposites encouraged improved proliferation and normal development of fibroblasts [412].

Table 4. Nanosilver-embedded formulations for wound healing.

Proposed Systems In Vitro Effects In Vivo Effects Refs.

CS films embedded with
CS-stabilized AgNPs Antibacterial effects against E. coli

Better and faster wound healing rate,
reduced local inflammation and
enhanced angiogenesis

[413]

CS/sericin films conjugated
with AgNPs and loaded

with Moxifloxacin

Antibacterial effects against E. coli,
P. aeruginosa, S. epidermidis,

drug-sensitive and drug-resistant S.
aureus

Rapid and enhanced repair of infected
burn wounds accelerated wound
healing, reduced local inflammation,
improved collagen deposition
and angiogenesis

[414]

CS/PEO nanofibrous
membranes incorporated

with AgNPs
Antibacterial effects against S. aureus

Bactericidal effects in infected wounds,
faster wound healing rate, improved
regeneration of epidermis and
neovascularization

[415]

CS/KGM hydrogel
embedded with AgNPs

Antibacterial effects against E. coli and
S. aureus

Good biocompatibility on fibroblasts

Enhanced repair of infected wounds,
reduced inflammation by regulating
local levels of proinflammatory and
anti-inflammatory interleukins

[416]

Collagen/CS dressing loaded
with AgNPs

Antibacterial effects against E. coli,
P. aeruginosa and S. aureus

Faster wound healing rate, enhanced
re-epithelialization, reduced local
inflammation, downregulation of
inflammatory cytokine and
upregulation of growth factors

[417]

Galactoxyloglucan hydrogel
scaffolds decorated

with AgNPs

Antimicrobial effects against E. coli,
S. aureus and C. albicans

Enhanced cellular adhesion and
proliferation of fibroblasts

Bactericidal effects in infected wounds,
better and faster wound healing rate,
improved collagen deposition and
angiogenesis

[418]

PVA/β-cyclodextrin
nanofibrous scaffolds loaded
with AgNPs and riboflavin

Antibacterial effects against E. coli and
S. aureusEnhanced cellular proliferation

of epithelial cells

Enhanced wound contraction and
re-epithelialization [419]

PVA/PVP/pectin/MF
nanofibers embedded

with AgNPs

Antibacterial effects against E. coli, P.
aeruginosa and S. aureus

Enhanced cellular proliferation of
fibroblasts

Faster healing rate and
tissue regeneration [420]
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Table 4. Cont.

Proposed Systems In Vitro Effects In Vivo Effects Refs.

PCL/PVA nanofibrous
scaffolds loaded with AgNPs

Antibacterial effects against S. aureus
Good biocompatibility on fibroblasts

Improved wound closure, faster healing
rate, reduced inflammation,
promoted angiogenesis

[421]

PU/CA nanofibrous scaffolds
incorporated with

AgNPs-decorated GO
and curcumin

Antibacterial effects against P. aeruginosa
and S. aureus

Enhanced cellular proliferation of
fibroblasts

Improved neovascularization and
collagen deposition, faster adnexal
healing response, accelerated wound
healing and advanced
epidermis regeneration

[422]

PU foam dressings
incorporated with AgNPs

and asiaticoside

Antibacterial effects against B. subtilis, E.
coli, P. aeruginosa and S. aureus

Enhanced cellular proliferation
of fibroblasts

Safe skin application, improved and
accelerated wound healing [423]

Abbreviations: PEO—polyethylene oxide; KGM—konjac glucomannan; MF—mafenide acetate.

Diabetic wounds are moderate to severe chronic wounds which natural healing is generally
disturbed by several disease-associated factors, such as glycemic levels and local hypoxia, peripheral
vascular disease and neuropathy, compromised immunodeficiency and opportunistic infections [424].
The successful use of silver-based nanomaterials in wound therapy relies on their ability to be specifically
modified and easily incorporated within dressing materials (which facilitates transportation, protection
and control of therapeutic agents), respectively, on the improvement of skin remodeling through
antioxidant, anti-inflammatory and proliferative properties [425,426]. Nanosilver has the advantage
of better chemical stability and catalytic activity, thus being used as an intrinsic therapeutic agent.
The limitation of using AgNPs in wound healing consists of their toxicity rate, but this aspect can
be tuned by raising the surface-to-volume ratio and by different protective coatings [427]. Taking all
into consideration, particular attention was straightened to the use of AgNPs in the management of
diabetic wounds.

The mid-term use (three days) of AgNPs-incorporated chitin nanofiber sheet after wound bed
cleansing with weakly acidic hypochlorous acid (pH 6.5) determined enhanced disinfection and
significant healing efficiency in mice diabetic wounds infected with P. aeruginosa [428]. Hybrid
hydrogels of thiolated CS and dextran grafted with maleic acid embedded with AgNPs were proposed
as effective dressings for diabetic ulcers. The proposed antifouling hydrogel showed macroporous
architecture and excellent water absorption ability while promoted and accelerated the healing process
and modulated the host immune response by the local recruitment and activation of immune cells [429].
The slow and sustained release of metallic particles from CS/PEG hydrogels loaded with AgNPs proved
beneficial implications on the prolonged antibacterial efficiency and accelerated healing of wounds
in diabetic rabbits. The highly porous nature and increased swelling ability of composite hydrogel
contributed to faster complete re-epithelialization (12.3 ± 0.8 days) and collagen deposition processes
(34.4 ± 2.0 on day 12), while resulted in moderate granulation tissue and reduced inflammation. After
14 days of experimental treatment, blood vessels and nuclei formation were also noticed, an indication
the angiogenic potential of nanosilver-embedded CS/PEG hydrogels [430].

8. Concluding Remarks

The genuine size-related physicochemical features, mechanical and optical properties and peculiar
biological behavior (including nontoxicity, antimicrobial efficiency and biofunctional ability) represent
fundamental characteristics that recommend silver nanoparticles (AgNPs) for the development of
unconventional and effective biomedical applications. For such particular use, a real challenge for
researchers is to properly tune the biocompatibility/antimicrobial activity balance as to maximize the
desired therapeutic effects. Thanks to their impressive versatility, nanosilver-based biomaterials and
biosystems are promising candidates for unconventional anti-infective therapy, specific and selective
platforms for detection and diagnosis, targeted and controlled drug delivery and gene therapy, soft and
tissue engineering and regenerative medicine.
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