

CuSO₄/[Cu(NH₃)₄]SO₄-Composite Thermochemical Energy Storage Materials

Danny Müller ^{1,*}, Christian Knoll ^{1,2}, Georg Gravogl ^{1,3}, Daniel Lager ⁴, Jan M. Welch ⁵, Elisabeth Eitenberger ⁶, Gernot Friedbacher ⁶, Andreas Werner ⁷, Werner Artner ⁸, Michael Harasek ², Ronald Miletich ³ and Peter Weinberger ^{1,*}

- ¹ Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; christian.knoll@gmx.at (C.K.); georg.gravogl@tuwien.ac.at (G.G.)
- ² Institute of Chemical, Environmental & Biological Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; michael.harasek@tuwien.ac.at (M.H.)
- ³ Institut für Mineralogie und Kristallographie, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; ronald.miletich-pawliczek@univie.ac.at (R.M.)
- ⁴ Austrian Institute of Technology GmbH, Giefinggasse 2, 1210 Vienna, Austria; daniel.lager@ait.ac.at (D.L.)
- ⁵ Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria; jan.welch@tuwien.ac.at (J.W.)
- ⁶ Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; elisabeth.eitenberger@tuwien.ac.at (E.E.); gernot.friedbacher@tuwien.ac.at (G.F.)
- ⁷ Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; andreas.werner@tuwien.ac.at (A.W.)
- ⁸ X-Ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria; email: werner.artner@tuwien.ac.at (W.A.)
- * Correspondence: danny.mueller@tuwien.ac.at (D.M.); peter.e163.weinberger@tuwien.ac.at (P.W.); Tel.: +43-1-58801-163740 (D.M.); +43-1-58801-163617 (P.W.)

Figure S1. (a) CuSO4 (left) and [Cu(NH3)4]SO4 (right); (b) CuSO4 on charcoal (left) and [Cu(NH3)4]SO4 on charcoal (right); (c) CuNa-zeolite 13X (left) and CuNa-zeolite 13 after reaction with NH3 (right); (d) CuSO4 on sepiolite (left) and [Cu(NH3)4]SO4 on sepioite (right); (e) CuSO4 on vermiculite (left) and [Cu(NH3)4]SO4 on vermiculite (right);.

Figure S2. Comparison of the P-XRD pattern for CuSO4 and [Cu(NH3)4]SO4.

Figure S3. Comparison of the P-XRD pattern for charcoal, $CuSO_4$ on charcoal and $[Cu(NH_3)_4]SO_4$ on charcoal.

Figure S4. Comparison of the P-XRD pattern for sepiolite, CuSO₄ on sepiolite and [Cu(NH₃)₄]SO₄ on sepiolite.

Figure S5. Comparison of the P-XRD pattern for vermiculite, CuSO₄ on vermiculite and [Cu(NH₃)₄]SO₄ on vermiculite.

Figure S6. Comparison of the P-XRD pattern for zeolite 13X, CuNa zeolite 13X and CuNa-zeolite 13X after reaction with NH₃.