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Abstract: Cancer comprises a large group of complex diseases which arise from the misrouted
interplay of mutated cells with other cells and the extracellular matrix. The extracellular matrix is a
highly dynamic structure providing biochemical and biophysical cues that regulate tumor cell behavior.
While the relevance of biochemical signals has been appreciated, the complex input of biophysical
properties like the variation of ligand density and distribution is a relatively new field in cancer
research. Nanotechnology has become a very promising tool to mimic the physiological dimension
of biophysical signals and their positive (i.e., growth-promoting) and negative (i.e., anti-tumoral or
cytotoxic) effects on cellular functions. Here, we review tumor-associated cellular functions such
as proliferation, epithelial-mesenchymal transition (EMT), invasion, and phenotype switch that are
regulated by biophysical parameters such as ligand density or substrate elasticity. We also address the
question of how such factors exert inhibitory or even toxic effects upon tumor cells. We describe three
principles of nanostructured model systems based on block copolymer nanolithography, electron
beam lithography, and DNA origami that have contributed to our understanding of how biophysical
signals direct cancer cell fate.

Keywords: biophysical cues; extracellular matrix; nanostructured ligand presentation; tumor
progression; biophysical toxicity

1. Setting the Stage: Environmental Signals Modulate Cellular Functions

Cells use membrane receptors like integrins and cadherins to communicate with each other as
well as with their environment (Figure 1). These ligand interactions are crucial for maintaining cell
viability and structural tissue integrity [1,2]. On the molecular level, membrane ligands tend to cluster
upon activation. Intracellular proteins bind to the inner domain of clustered ligands, thus leading
to focal adhesion formation and the activation and re-organization of the cytoskeleton. The signals
generated by the adhesion-related molecular machinery are linked with classical signaling pathways
controlling cell growth and differentiation [1,3]. In a very simplified way, this is how biophysical
signals are integrated to create a situational adaptation of cellular behavior and how fundamental
cellular responses to environmental cues are processed.
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Figure 1. The extracellular matrix and stromal cells influence the behavior and fate of tumor cells. 
Using melanoma as an example, early tumor stages are controlled by contact with keratinocytes, 
which is mediated by cadherins and other surface receptors. During invasion, melanoma cells reach 
the extracellular matrix where they encounter additional ligands like RGD (arginine, glycine, 
aspartate) motifs in different arrangements. These ligands enable migration towards blood vessels 
and lymphatics. Upon intravasation tumor cells become exposed to new biophysical influences 
including shear and tensile forces by the blood flow. Adhesion ligands in distant organs like Vascular 
Cell Adhesion Molecule (VCAM)-1 lead to adhesion and tumor cell arrest which is a prerequisite for 
extravasation and metastasis formation. The colonization of distant organs requires the tumor cells to 
deal with very different ECM (extracellular matrix) conditions which include tissue stiffness, ligand 
density, and topography. The panels a–c depict some examples of tumor cell interactions which can 
be addressed by nanotechnological approaches: (a) when tumor cells leave their original tissue, 
cadherin interactions are presumably involved. Changes in the cadherin repertoire as well as the 
density and topographical arrangement of the ligand presentation play an important role according 
to our current knowledge. Upon contact with high densities of RGD, melanoma cell spreading is 
inhibited, while E-cadherin (largely irrespective of its density) enhances spreading. (b) In the ECM of 
the connective tissue, integrins and gradients of their ligands are particularly responsible for motility, 
morphogenesis, and spread of tumor cells. These functions are for example clearly controlled by RGD 
residues. Melanoma cells entrapped in an ECM with reduced RGD ligands show maximum spreading 
possibly enhancing migration. (c) It is assumed that VCAM-1 density plays an important role in the 
extravasation of melanoma cells at sites of metastasis formation, whereby higher VCAM-1 densities 
can inhibit the spreading of tumor cells. 

Figure 1. The extracellular matrix and stromal cells influence the behavior and fate of tumor cells.
Using melanoma as an example, early tumor stages are controlled by contact with keratinocytes, which
is mediated by cadherins and other surface receptors. During invasion, melanoma cells reach the
extracellular matrix where they encounter additional ligands like RGD (arginine, glycine, aspartate)
motifs in different arrangements. These ligands enable migration towards blood vessels and lymphatics.
Upon intravasation tumor cells become exposed to new biophysical influences including shear and
tensile forces by the blood flow. Adhesion ligands in distant organs like Vascular Cell Adhesion
Molecule (VCAM)-1 lead to adhesion and tumor cell arrest which is a prerequisite for extravasation
and metastasis formation. The colonization of distant organs requires the tumor cells to deal with
very different ECM (extracellular matrix) conditions which include tissue stiffness, ligand density, and
topography. The panels a–c depict some examples of tumor cell interactions which can be addressed by
nanotechnological approaches: (a) when tumor cells leave their original tissue, cadherin interactions
are presumably involved. Changes in the cadherin repertoire as well as the density and topographical
arrangement of the ligand presentation play an important role according to our current knowledge.
Upon contact with high densities of RGD, melanoma cell spreading is inhibited, while E-cadherin
(largely irrespective of its density) enhances spreading. (b) In the ECM of the connective tissue,
integrins and gradients of their ligands are particularly responsible for motility, morphogenesis, and
spread of tumor cells. These functions are for example clearly controlled by RGD residues. Melanoma
cells entrapped in an ECM with reduced RGD ligands show maximum spreading possibly enhancing
migration. (c) It is assumed that VCAM-1 density plays an important role in the extravasation of
melanoma cells at sites of metastasis formation, whereby higher VCAM-1 densities can inhibit the
spreading of tumor cells.
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An instructive example for the relevance of serially ordered and specific ligation of ligands that
induces distinct cellular responses is leukocyte extravasation, a process that occurs in distinct steps
of interactions with the endothelial lining, i.e., tethering, rolling, firm adhesion, and, eventually,
transmigration [4–6]. This process is responsible for the controlled attraction of immune cells to sites
of inflammation. It illustrates how ligand interactions direct immune cells from the blood stream to
the target sites. Likewise, tumor cells utilize such cellular ligand interactions for spreading, invasion,
extravasation and migration through tissues [7–9]. For example, melanoma cells (metastasized
melanoma is one of the deadliest tumor entities) exhibit an array of upregulated and functionally
activated adhesions receptors allowing them to metastasize to many different tissues [10,11]. Despite
recent improvements in melanoma treatment through targeted therapies with small molecules [12] and
immune-checkpoint blockade [13], the tumor is still fatal to most patients with advanced disease [14,15].
In this light, it is crucial to know as much as possible about the biomechanical and pathophysiological
factors that influence the progression of melanoma (and other tumors). The modulation of the
micromilieu of tumors may have a considerable influence on the survival of tumor cells and the effect of
cytotoxic therapeutics. Indeed, the impact of distinct features of the ECM (extracellular matrix) on cell
growth, survival, migration and differentiation has become increasingly clear in recent years [16]. The
tumor–stroma interaction involves a complex interplay between tumor cells, fibroblasts, endothelial
cells, immune cells, and the extracellular matrix. Melanoma cells have been shown to modify the tumor
environment in a paracrine fashion and thereby create permissive situations for cell invasion and
tumor progression [8]. These processes include the modification of ECM features on the nanoscopic
scale, such as the composition and gradual availability of integrin ligands that have been shown to
control tumor cell motility, apoptosis, and migration [17,18]. Consequently, blocking agents have
been developed to interrupt the interaction of for an example melanoma cells with the extracellular
matrix [19–22]. Unfortunately, the natural environment of a tumor is very complex and difficult to
study, so standardized and tunable models are needed to specifically study the exact function of
progression-related adhesion molecules such as integrins and cadherins [19–22].

Defined nano-structured matrices have made a significant contribution to uncovering some
surprising functions of adhesion receptors, which can partly provide a biophysical basis or explanation
for the effect or ineffectiveness of therapeutics directed against them [23–25]. Indeed, the spatiotemporal
variation and distribution of ligands is highly relevant for distinct tumor cell functions [26–28].
Accordingly, there is a considerable need to mimic these biophysical parameters and investigate their
respective influence on ligand interactions with respect to tumor progression on the one hand and
inhibiting or cytotoxic activities on the other.

In the following, we give a brief overview of general biophysical features of the extracellular matrix
(ECM), and we highlight the relevance of defined ligands and mechanotransducers in physiologically
relevant settings. We then discuss several nanostructured models which enable the controlled
site-directed presentation of ligands. Finally, we describe tumor progression-related functions that have
been refined through the precise modulation of ligand density on the nanoscale. We will also discuss
the utility of such systems to study either progression-promoting or -inhibiting (cytotoxic) mechanisms.

2. Biophysical Properties of the Extracellular Matrix—More Than Just a Scaffold

The ECM conveys and enables the exertion of biophysical functions by cells, for example the use of
traction and propulsive forces or motility as well as survival or death signals through the presentation
of certain ligands. Tissue rigidity, ligand topography, density and spatial distribution play decisive
roles [29–32].

The stiffness and elasticity of the ECM is determined by the composition and cross-linking
of collagen and other structural proteins. Different tissues display characteristic stiffness values
usually specified by the elasticity (or Young’s) modulus (measured in Pa) [33]. All organ-resident and
immigrating cells are exposed to the respective isometric forces generated locally at the nanoscale
level by intercellular or cell–ECM contacts [34]. Cell are usually adapted to their specific tissue of
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origin. With regard to tumors, tissue stiffness is only one parameter that influences progression
(melanomas, for example, metastasize into both very hard bones and soft brain tissue). However,
tumor derived factors may enhance the stiffness of the ECM, as has been shown for both breast cancer
and melanoma [35,36]. In pancreatic carcinoma, this has been viewed as a defense mechanism against
immune cells [37]. Therefore, the response of tumor cells and immune cells to ECM stiffness variations
is relevant for the understanding of tumor progression.

The nanoscale topography and structure of extracellular matrix components is difficult to
decipher [29]. Usually, ex vivo tissue samples are used to analyze the architecture (this approach,
however, is hampered by potential artifacts occurring during fixation). Both the size and the
three-dimensional spatial arrangement of extracellular structures determine the presentation of ligands
to cells [29,38]. Indeed, the topography of ligands has been shown to decisively control cellular
functions associated with tumor progression like migration, growth or differentiation, and, as a
consequence, their potential response to cytotoxic signals [31,39]. Of particular importance is the local
density of ligands. Such biophysical features are relevant for many cellular interactions and are the
focus of our review.

3. YAP and TAZ—Master Regulators of Mechanosensing

Understanding how cells sense biophysical cues of their environment and transduce them into gene
regulation is a prerequisite for the modulation of complex functions including motility, proliferation
or death. Indeed, environmental characteristics like the spatial distribution of ligands regulates the
clustering of cellular receptors which in turn leads to the activation of the cytoskeleton [2]. This
notion underlines the relevance of specific ligand presentation for mechanotransduction as for example
intracellular proteins like talin are thought to arrange themselves according to the spatial positioning
of integrins [40–42]. In addition, the transcription factors YAP (yes-associated protein) and TAZ (WW
domain containing transcription regulator-1) are key to mechanosensing in physiological situations
but also in pathophysiological processes like cancer progression [43–45]. Both YAP and TAZ are part
of the Hippo pathway which is relevant for organ size control through the regulation of proliferation
and apoptosis [46]. However, during mechanosensing YAP and TAZ seem to act independently of the
Hippo pathway [44,47]. Activation of YAP/TAZ is primarily regulated by their subcellular distribution
in the cytosol (inactivated) versus transfer into the nucleus (activated). Several biophysical parameters
such as tissue stiffness, shear stress or spatial distribution of ligands have been shown to facilitate the
transfer of YAP into the nucleus where it binds to other proteins altering gene expression. Interestingly,
f-actin is indispensable for the activation of YAP/TAZ although it is still unclear how its assembly to
stress fibers leads to YAP/TAZ activation [43,44].

YAP and TAZ are upregulated in tumor cells and have been implicated in stem cell attributes,
proliferation, chemoresistance and metastasis [48,49]. In malignant melanoma, they convey resistance
to BRAF/MEK inhibition [50]. Intriguingly, they also increase mechanosensitivity or even independence
of external growth stimuli [51]. In fibroblasts within the tumor stroma, YAP/TAZ activation leads
to increased collagen deposition and, consecutively, to enhanced organ stiffness. The latter in turn
activates YAP and TAZ in tumor cells [48,50]. Therefore, YAP and TAZ play a fundamental role in
choreographing tumor-stromal interactions, and defined modulations of the extracellular matrix that
influence the function of YAP and TAZ could therefore improve the effect of antitumor cytotoxic
therapies [49]. Therefore, it is particularly important to use tunable and standardized model systems
of defined nanostructured ligand presentation for the investigation of important cell functions.

4. Nanoscale Ligand Control in Experimental Models

The true two- and three-dimensional ligand distribution as well as the actual presentation of
ligand recognition motifs in biological matrices are difficult to determine. However, recent advances in
imaging techniques have allowed to estimate some in vivo ligand densities. Although there are of
course differences between different receptor-ligand pairs, most of the interactions investigated so far
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seem to take place at lateral distances between 20 and 200 nm [24,52–54]. Therefore, model systems
with ligand presentation in this order of magnitude will be outlined in the following.

Two general methods are mainly used for the generation of nanostructured matrices: The first are
the so called “top-down” methods which produce nanostructures by comminuting larger materials
through lithographic tools such as electron-beam lithography. On the other hand, the so called
“bottom-up” techniques use the self-assembly of molecules to create the desired nanoscale structures.
The latter include the DNA-origami method and block copolymer nanolithography [55]. Both principles
can also be combined for the fabrication of more sophisticated nanopatterns [56].

Most nanomodels for studying and manipulating cell functions use gold (Au) nanoparticles
as an anchor because Au binding to thiol groups provides for a covalent ligation required for the
immobilization of different molecules. In addition, Au nanoparticles allow the site-directed presentation
of proteins through a nickel-his-tag complex. This is an elegant and versatile method to mimic the
site-directed display of biomolecules in natural matrices such as plasma membranes or extracellular
matrices [53,57]. All systems require an inert background preventing unspecific interactions. The
proper orientation of transmembrane proteins, however, is more challenging [57]. Experimental
systems become even more complex when they are aimed at: (i) the presentation of more than
one ligand (monovalent vs. multivalent), (ii) ligand presentation in a particular distribution such
as clustered ligands, and/or (iii) variations of substrate elasticity/stiffness (e.g., different glass or
gel matrices, depending on the desired stiffness). Until now, it is not possible to adjust all these
parameters simultaneously.

Block copolymer (micellar) nanolithography (BCML, Figure 2a) is an appropriate method to
deposit metal particles on substrates in a quasi-hexagonal order, thus allowing the local and global
control of nanoparticles. The basis of this technique is the self-assembly of block copolymers to
micelles in a non-polar solution. The hydrophilic center of the micelles can be loaded with metallic
nanoparticles and the distance of the nanoparticles can be adjusted by the length of the polymers.
Spin-coating or dip-coating (the velocity of dipping controls the distance of the nanoparticles) mounts
the nanoparticles onto (glass) substrates. Subsequent cold plasma treatment removes the polymers.
The particles thus immobilized in a structured pattern can then be used as anchor molecules for
biofunctionalization with a variety of molecules. In principle, it is possible to deposit different metallic
nanoparticles. An inert surface with Pll-g-PEG (poly L-lysine-grafted-polyethylenglycol) prevents
unspecific protein adsorbance or cell binding in-between the gold nanoparticles. The Pll-g-PEG itself
can also be spiked with additional ligands or ligands can be activated by click chemistry, thus creating
bi- or multifunctional matrices [53,58–61].



Nanomaterials 2020, 10, 212 6 of 15
Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 16 

 

 
 

Figure 2. Principles of nanostructured models of cellular and extracellular matrices. (a) Block-copolymer nanolithography (BCML): Glass slides are covered with 5 
nm gold particles by BCML. The advantages of this method are the high production rate and the flexible tunable densities of Au nanoparticles. The area in-between 
the nanodots is passivated by pegylation preventing unspecific protein adsorption. The Pll-g-PEG layer can also be spiked with additional ligands, or ligands can 
be unmasked via click chemistry. The Au-particles serve as anchor points for the site-directed display of ligands via creating an NTA–Nickel–His–tag complex. (b) 
Electron beam lithography: Glass slides are nanopatterned by electron beam lithography. Based on different production processes, modifications like nanopedestals 
(for the axial presentation of ligands) or alternative materials like silicon have been used. The general design of the patterns (distribution of particles) can vary. Pll-
g-PEG in-between the particles prevents unspecific binding, or a second ligand can be presented using artificial lipid bilayers. The Au-particles can be functionalized 

Figure 2. Principles of nanostructured models of cellular and extracellular matrices. (a) Block-copolymer nanolithography (BCML): Glass slides are covered with 5 nm gold
particles by BCML. The advantages of this method are the high production rate and the flexible tunable densities of Au nanoparticles. The area in-between the nanodots is
passivated by pegylation preventing unspecific protein adsorption. The Pll-g-PEG layer can also be spiked with additional ligands, or ligands can be unmasked via click
chemistry. The Au-particles serve as anchor points for the site-directed display of ligands via creating an NTA–Nickel–His–tag complex. (b) Electron beam lithography: Glass
slides are nanopatterned by electron beam lithography. Based on different production processes, modifications like nanopedestals (for the axial presentation of ligands) or
alternative materials like silicon have been used. The general design of the patterns (distribution of particles) can vary. Pll-g-PEG in-between the particles prevents unspecific
binding, or a second ligand can be presented using artificial lipid bilayers. The Au-particles can be functionalized by thiol–PEG carrying biotin moieties. The latter can ligate
avidin for immobilization of biotin-tagged peptides or proteins. (c) Focused ion beaming in combination with DNA origami: For the immobilization of DNA origami, glass
substrates containing silicon dioxide are patterned with an Au-surface using focused ion beaming (FIB). The silicon in-between is further prepared to present carboxylic groups
for the covalent ligation of the amino anchors of the DNA-origami (EDC-NHS reaction). The DNA origami itself is produced by the self-assembly of single DNA strands which
are forced into a certain configuration by short congruent DNA strands. The distance of functional groups can be pre-determined on the nanoscale, and the amount and
relation of ligands can be adjusted. Different ligands can be functionalized by distinct forms of peptide immobilization, e.g., maleimide-thiol ligation on the one hand and
biotin-streptavidin ligation on the other. (d) Transfer of nanopatterns to gel: Nanopatterns can be transferred to different gels. Especially nanopatterns produced by BCML
have been used for this purpose.
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The second method that is widely used to create nanopatterns to address biological questions is
electron beam lithography (EBL, Figure 2b). This top-down technique uses a focused electron beam
to draw nanoscopic patterns on a surface covered with an electron-sensitive layer [62–64]. The latter
is called a resist. The solubility of the resist is altered by the electron beam, thus allowing selective
solubilizing of either the exposed or non-exposed areas. This creates nanoscopic structures in the resist
with sub-10 nm resolution. Ion beam lithography may yield even higher resolution. The modified
resist is then covered with a metal filling the nano-holes. After lifting off the resist either the exposed
or non-exposed regions remain on the substrate in the previously drawn pattern. Again, gold is
usually used for biological experiments. The so produced Au nanopatterns can be further modified
by pegylation using Pll-g-PEG [65] or lipid bilayers spiked with a second ligand [66]. A considerable
disadvantage of EBL is its production time as for example 1 cm2 large nanopatterns may take 4 days of
electron beam writing [67]. Even though progress has been made towards high-speed production [68],
it is not an appropriate method for mass production.

The creation of nanopatterns with DNA origami (Figure 2c) is a bottom-up method using the
flexible foldability of single-strand DNA. Multiple defined short pieces of corresponding DNA strands
bend it to form a well-defined molecule on the nanoscale. Computer-assisted prediction of DNA
double-helix folding provides access to multiple variable 2D and 3D nanostructures called DNA
origami [69–71]. Various functional groups can be incorporated to enable reactions with surfaces (for
example covalent immobilization on a substrate) or with cells. In this way, DNA origami have been
functionalized with peptide recognition motifs with a well-defined spatial distance of 60 nm and
have been patterned on substrates by covalent ligation to study cell adhesion processes on patterned
matrices [66].

5. Modulation of Tumor Cell Functions by Nanostructured Ligands

Biophysical traits of the microenvironment are crucial for tumor formation [16,72]. They can be
influenced by nanoscopic ligand variation. For example, tumor cells can stimulate their own growth
through autocrine mediators entrapped within the extracellular matrix [72]. Ligands like Epidermal
Growth Factor (EGF) bind to cellular receptors which often oligomerize and activate signaling cascades.
DNA origami in combination with electron beam lithography has demonstrated the relevance of
the EGF ligand architecture and nanoscale distribution for the elicitation of cellular responses [55].
In addition, DNA origami-based multivalent nanomodels unraveled cooperative functions of EGF
and integrin ligands immobilized at distances of 60 nm. These insights highlight the importance of
cooperative ligand functions for central tumor cell functions such as proliferation and spreading [73].

Epithelial tumor cells reduce their cell-cell adhesion, lose their cellular polarity and acquire a
migratory and invasive phenotype in a process called epithelial-to-mesenchymal transition (EMT) [74].
Higher density of certain ligands within the ECM may facilitate EMT and weaken intercellular contacts
between tumor cells [26]. This effect can be modeled on RGD (arginine-glycine-aspartate)-coated
surfaces of different densities showing that RGD rich substrates retained cells in the epithelial phenotype
while reduced RGD density promoted EMT [75].

Tumor cell invasion is promoted by invadopodia formation, actin-rich membrane protrusions
with longitudinal cytoskeletal structures and proteolytic capacities to transform (degrade) the ECM.
Interestingly, invadopodia formation can be initiated by large distances between certain ligands
(i.e., low ligand density), as shown by fibronectin-coated gradient nanopatterns created by electron
beam lithography [62]. Similar fibronectin-coated gradient nanopatterns demonstrated that breast
cancer cells but not normal mammary cells can adapt flexibly to different ligand densities [63].
Marked cellular flexibility on variable ligand densities was also detected in melanoma cells exposed
to Au nanopatterns functionalized with N- or E-cadherin. Indeed, melanoma cells expressing the
corresponding cadherin showed similar cytoskeletal organization and spreading on ligand densities
ranging over one order of magnitude [76] (Figure 3). In addition, the use of this nanotechnological
platform revealed an unexpected heterophilic interaction of E-cadherin-only expressing melanoma
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cells with immobilized N-cadherin at high densities. Such unexpected findings bear implications for
tumor cell behavior in vivo and would not have been possible without the use of nanotechnology.
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Figure 3. Nanotechnology unravels distinct linear and non-linear effects of extracellular ligands
on melanoma cell functions. Human melanoma cells (cell line A375) spread on N-cadherin (upper
panel), VCAM-1 (middle panel) and RGD (lower panel) displayed at densities of 1145, 349, and 120
ligand sites/µm2 (corresponding to lateral distances of 30, 60, and 90 nm), respectively (scale bar = 50
µm). The matrices were produced by identical BCML procedures. The pictures indicate that ligand
density and ligand specificity are both relevant in determining the cellular fate: while melanoma cells
show similar spreading on different densities of N-cadherin, VCAM-1 exerts an inhibitory effect in
a density-dependent linear fashion. Finally, the integrin peptide RGD induces maximum spreading
on intermediate densities of RGD peptides. These ligand-specific biophysical traits were revealed by
nanotechnology and were not discernable from “conventional” ligand-coating experiments.

While nanotechnological approaches uncovered the capacity of tumor cells to flexibly adapt
to different matrix conditions, this trait apparently depends on the specific ligands studied. When
BCML-derived Au nanopatterns with tunable densities ranging from ca. 70 to 1145 ligand sites/µm2

(corresponding lateral distances of 120–30 nm) were functionalized with cyclic RGD (which binds
to the αVβ3 integrin on melanoma cells), an intermediate ligand density of about 365 ligands/µm2

yielded maximum cell spreading as well as activation of the cytoskeleton. Higher or lower densities,
respectively, led to reduced spreading [77] (Figure 3). When Vascular Cell Adhesion Molecule
(VCAM)-1 (an endothelial ligand of the melanoma cell-expressed α4β1 integrin) was presented on
the same nanostructured matrix at densities ranging from 70 to 1145 ligands/µm2 (corresponding
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lateral distances of 120–30 nm), a density-dependent inhibitory effect on cell spreading and cytoskeletal
activation was observed. This unexpected “paradoxical” effect could be abrogated by the additional
presentation of RGD in a bifunctional matrix but only when the VCAM-1 density was reduced to
120/µm2 (lateral distances of 90 nm) [78]. Both observations, non-linear behavior of tumor cells and
“paradoxical” inhibition of cell spreading, respectively, were made possible by nanotechnology. They
shed light on hitherto difficult-to-study tumor cell functions and provide a potential explanation for
the “paradoxical” enhancement of melanoma metastasis by the specific RGD inhibitor, cilengitide, at
suboptimal doses [79]. With murine melanoma cells, the inhibition of spreading by VCAM-1 observed
with nanostructured matrices also corresponded to the function of these melanoma cells observed
in vivo [78]. The differential influences of adhesion ligands on melanoma cell behavior are exemplified
in Figure 3.

In general, biophysical parameters such as ligand density as well as ligand specificity determine
important progression-related functions of tumor cells. On the one hand, tumor cells can adapt
flexibly to different ligand site densities [63,76]. On the other hand, ligand density variations can
induce phenotypic switches resembling EMT [80]. In a context-dependent manner, certain ligand
constellations seem to provide either permissive or inhibiting signals to tumor cells. Misdirected
interactions of tumor cells with the ECM are relevant for tumor progression. Accordingly, cancer can
be defined as “reciprocal interactions among cells” that went out of control [81]. Nanotechnology has
helped to identify some of these biophysical cues that direct cancer cell fate, and it can thus help to
identify environmental conditions that render tumor cells susceptible or resistant to cytotoxic therapies.
Some examples of such applications [55,62,63,73,76–78] are summarized in Table 1.
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Table 1. Overview of selected nanomodel-systems alluded to in the text. The table highlights the methods used, the cell lines and ligands/receptors and the major
findings regarding tumor progression-related functions.

Method Cell Type Ligand Type Nanoscopic Control Tumor Progression-Related
Outcome Reference

BCML
(Block-Copolymer
Nano-Lithography)

Human melanoma cells RGD
- Monovalent
- global density
- spatial distance

Definition of optimum ligand
density [77]

Human melanoma cells VCAM-1 (plus RGD)

- monovalent (plus RGD
background)
- global density
- spatial distance

Antagonistic function of VCAM-1
and RGD upon cell spreading [78]

Human melanoma cells N-cadherinE-cadherin
- monovalent
- global density
- spatial distance

Flexible spreading irrespective of
density [76]

EBL (Electron Beam
Lithography)

Human breast cancer cells
Fibronectin (plus
Laminin/K-casein

background)

- monovalent
- gradient Invadipodia formation [62]

Human breast cancer cells Fibronectin - monovalent
- gradient Flexible spreading [63]

DNA-Origami

Human melanoma cells
- EGF
- A20FMDV2 peptide
(integrin ligand)

- bivalent
- ligand distance
- ligand ratio

Cooperative signaling upon
spreading [55]

Human breast cancer cells EGF
- monovalent
- ligand number and
distribution

EGF ligand architecture determines
cellular response [73]
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6. Limitations of Current Nanomodel Systems

Even though a number of tumor-relevant functions have been unraveled using nanomodel
systems, the current methods have some limitations. First, the model systems described usually work
with two dimensions which of course do not reflect the complex 3D situation in vivo. Second, a major
issue lies in the uncertain stability (over time) of the model-systems during the experiments. Therefore,
the read-out is usually focused on short-term cellular modifications while long-term analysis (several
days and weeks) including proteome modification are difficult to analyze. Toward that end, optical
nanoscopy has improved the illustration of subcellular organelles and the cytoskeleton [82,83]. Finally,
it is a challenge to transfer the experimental data of nanomodels to the in vivo situation as the true
nanoscopic in vivo ligand density is still difficult to determine.

7. Biophysical Cues Modulate Cell Death and Survival

Biophysical parameters can either enhance or diminish cell viability and vulnerability, a notion
that is interesting from a therapeutic point of view. The maximum form of biophysically mediated
cell death is called anoikis [84]. In general, cells rely on signals from their environment conveyed
by ligand interactions. In particular, the availability of integrin ligands promotes cell survival and
proliferation [85]. If cells lose their physical contact with ligands they die—a critical mechanism that
prevents cell growth and dissemination outside their tissue of origin [84]. Many tumor cells are able
to resist this form of controlled cell death and adapt to a reduced availability of ligands [63,86–88].
However, integrin ligands might also exert subtle inhibitory effects controlled by ligand density
variation as has been exemplified by the inhibition of melanoma cell spreading induced by VCAM-1
presented at high densities [78]. In fact, integrins have been shown to actively induce cell death when
appropriate ligands are lacking. Interestingly, this form of cell signaling is also directed by physical
cues which are accessible by nanotechnological approaches [89,90]. Thus, the decision to live or to die
is not only mediated by cytotoxic ligands such as FasL interacting with its receptor Fas—a classical
pathway of apoptosis [91]. Accordingly, cells integrate multiple biochemical and biophysical cues
to generate a response adapted to the distinct challenges. As a consequence of the considerations
presented in this review, it is reasonable to assume that biophysical signals antagonize or potentiate
classical cell death signals like Fas/FasL, TNF mediated signaling pathways, or antitumoral cytotoxic
therapies [92,93].
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