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Abstract: This study reports the utilization of controlled radical polymerization as a tool for
controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various
polymer brushes with controlled molecular weight and narrow molecular weight distribution were
grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP).
The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA),
poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA)
was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared
spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy
(XPS). Various grafting densities of GO-based materials were investigated, and conductivity was
elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction
of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated
the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted
polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated
using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation
capability, was investigated. It was shown that in addition to the modification of conductivity, the
dipole moment of the pendant groups of the grafted polymer chains also plays an important role in
the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix,
and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency.
The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness
and thus the ability to reversibly respond to the external light stimulation.
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1. Introduction

Particle surface chemistry is a crucial factor that influences the performance of two-phase systems,
where the particles create a discontinues phase dispersed in a continues one. The surface properties
determine the affinity of the discontinuous phase/material to the matrix environment and thus affect
the interface performance. The effects can be observed through the estimation of the degree of
dispersion and homogeneity of distribution of the particles, control of morphology, and selective
particle localization in immiscible blends or block copolymer matrices [1,2]. The surface chemistry, in
fact, has a strong impact on the final physical properties of the blend such as thermal, mechanical or
electrical properties of the systems [3]. Even more interesting are the effects in smart systems, such as
liquid or solid stimuli-responsive materials.

Photomechanical actuators belong to the class of stimuli-responsive materials as they can provide
mechanical motion as a response to external light stimuli. Such materials find utilization in engineering
applications such as robots [4], pens for molecular printing [5], smart curtains, light-driven motors [6],
or treating of amphiphilic nano-objects by light-induced charge separation [7]. Photo-actuators
are based on hybrid particles with certain specific characteristic features. They contain hard and
soft phases, where the hard phase provides the shape stability, and the soft phase enables the
shape changes [8]. The properties of the polymer matrix network also play an important role,
since it determines the stability of the materials during actuation. Systems based on both chemical
and physical cross-linking have been studied. The latter includes thermoplastic elastomers (TPE)
such as styrene-isoprene-styrene [9], poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl
methacrylate) [10,11], ethylene-vinyl acetate [12,13], ethylene terpolymer containing epoxy, butyl
and ethylene groups [14]. The main advantages of TPEs is their easy and reversible processing,
and cost-effectivity when commercially available materials are used. The risk of the utilization of
TPEs is connected with the thermal stability of the physical cross-linking, which can be disturbed
during applications at high temperatures. Additionally, the utilization of fillers may even hinder
the formation of the physical cross-linking network, such as for example, the dispersion of carbon
nanotubes (CNT) in polystyrene-b-polyisoprene-b-polystyrene (SIS) due to strong π-π interactions
of styrene groups with the conjugated structure of added CNT [15]. However, suitable surface
modification can provide a solution of this issue, to some extent. Nonetheless, the utilization of
the cross-linked systems overcomes this disadvantage. The systems based on liquid crystals have
been studied intensively [9,16–18]. The actuation response has been enhanced by the addition of
azo-moieties, that are however highly toxic, into polymer structures [19,20]. Compared to previously
mentioned matrix materials, poly(dimethyl siloxane) is easy to process, is nontoxic and provides the
ability for sufficient photo-actuation [14,21–23].

Carbon-based fillers have been studied intensively since they provide a photo-actuation response
to infrared light [9] and it has been revealed that the alignment of CNTs enhances the responsive
efficiency [24]. Polymer chains tend to align along the CNT surface and thus CNT facilitates polymer
chains orientation in the direction of actuation and enhance the actuation stroke. Nevertheless, the
shape of the particles plays a more significant role. Graphene-based particles have been determined to
be better candidates due to their two-dimensional shape, as well as large surface area [25]. Graphene
particles are of particular interest since they provide high electrical conductivity, excellent mechanical
properties and high thermal conductivity, that facilitate heat transfer within the sample [26], and can
also improve the photo-actuation capability [27]. However, the dispersion and distribution of neat
graphene nanoparticles in a polymer is rather problematic due to the strong π-π interaction between
the graphene sheets [28]. Graphene surface properties can be altered to overcome this drawback.
Oxidation of the surface, thereby introducing oxygen-containing functional groups poses an efficient
strategy for surface modification [29]. Depending on the degree of oxidation, the GO loses electrical
conductivity since the conjugated structure is disturbed [30], however the modified particles possess
better compatibility with the surrounding polymer matrix [31]. In addition, the functional groups also
enable further post-modification reactions to obtain surface chemistry compatible with any targeted
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polymer matrix [32,33]. SI-ATRP is the most versatile modification method. It allows control over
the molecular chain length, grafting density, topology [34,35], and as was demonstrated recently, the
electrical conductivity of GO [36,37].

Similar to research in photomechanical actuators, research in rheological fluids have also turned
attention to graphene-based systems [38,39]. Graphene oxide particles have been examined as a
promising dispersed phase due to several specific properties, i.e., they can be prepared in a suitable
range of electrical conductivity, they are lightweight, and therefore do not significantly form a sediment,
as similar to hybrid particles of titanate nanotubes and polypyrrole [40]. Moreover, they can be
prepared in a cost-effective way. In our previous research using SI-ATRP for preparation of hybrid
particles, we proved that graphene oxide polymer hybrids with tailored polymer chain architecture,
possessing good affinity to silicone oil, and with controlled electrical conductivity to fit parameters
needed for ER applications can be efficiently prepared. The shear stress of materials obtained by our
discussed methods reached 5 to 95 Pa at a low concentration of particles (10 wt. %) [41,42], which are
promising values for real-life applications.

We limited our study to silicone-based systems, i.e. silicone oil as a continuous liquid phase
and silicone elastomer as a continuous phase of a solid-like system. Silicone oil is used as a carrier
liquid in electrorheological suspensions, while silicone elastomer has been proved as a suitable matrix
for the preparation of mechanical actuators [43,44]. Our previous research showed that SI-ATRP is
a powerful tool for tailoring the ER performance of ER fluids based on graphene oxide and silicone
oil [45]. Similarly, the studies of poly(dimethyl silioxane) (PDMS) filled with graphene oxide polymer
hybrids (GO-g-polymer) photo-actuators also revealed that through surfaced modification we were
able to improve the affinity GO-g-polymer particles to a PDMS matrix. SI-ATRP enables one to finely
tune the properties of the chemical cross-linking network in terms of decreasing the activation energy
of glass transition (systems possess enhanced flexibility of the PDMS network) that finally improves
the ability for photo-actuation [21,22,27].

Herein, we extend the research to examine GO grafted with four different compositions of
polymer chains to modulate GO surface chemistry and provide the complex comparison of the surface
modification with respect to affinity to two types of silicon-based environment. Thus, the GO hybrids
were tested both in silicon oil, a liquid commonly used in ER fluids, and in PDMS, a solid like matrix,
with potential photomechanical actuation capability. The polymer brushes on the GO surface were
synthesized by SI-ATRP. Comparable structures with respect to polymer chain length and grafting
density of the polymers chains on the GO surface were prepared. The influence of the GO hybrids
structure on the final properties of the stimuli-responsive systems were elucidated.

2. Materials and Methods

2.1. Materials

Graphite (powder, synthetic, average particle size lower than 20 µm) was used and was purchased
from (Sigma Aldrich, Poznan, Poland). Sulfuric acid (H2SO4, 95–98%), sodium nitrate (NaNO3, ACS
reagent, 99%), potassium permanganate (KMnO4, 97%) and hydrogen peroxide (H2O2, ACS reagent,
29.0–32.0 wt % H2O2 basis) from (Sigma Aldrich, Poznan, Poland) were used as the chemical reagents
for the exfoliation conditions required to form the GO sheets. Glycidyl methacrylate (98%), methyl
methacrylate (98%), n-butyl methacrylate (98%), 2-(trimethylsilyloxy)ethyl methacrylate (HEMATMS,
99%), anisole (98%), copper bromide (CuBr, 97%), N,N,N′,N”,N”-pentamethyldiethylenetriamine
(PMDETA, 98%), ethyl 2-bromoisobutyrate (EBiB, 98%), 2-bromoisobutyryl bromide (BiBB, 98%) were
acquired from (Sigma Aldric, MO, USA) and used without further purification. Tetrahydrofuran
(THF) (POCH, Gliwice, Poland) and triethylamine (Et3N) 98% from (Fluka, Buchs, Switzerland) were
dehydrated over sodium before the use. Silicone elastomer (PDMS) Sylgard 184 and silicone oil (SO)
Lukosiol M200 were purchased from (Dow, Midland, MI, USA) and (Lukoil, Prague, Czech Republic),
respectively. Acetone p.a., dimethylformamide p.a. and diethyl ether p.a. (LachNer, Neratovice, Czech
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Republic) were used as received. Hydrochloric acid (HCl, ACS reagent, 37%) was supplied by (Sigma
Aldrich, Poznan, Poland) [46].

2.2. Methods

2.2.1. Preparation of GO from Graphite

The surfaces of graphite particles were oxidized using a modified Hummers method. Instead
of oxidation for two hours as is discussed in the original paper [46] in this case the oxidation was
performed over 8 h to generate the desired carboxyl, hydroxyl and epoxy functional groups. In this
procedure, 5 g of graphite was stirred with 100 mL of H2SO4. The mixture was cooled down to 5 ◦C in
an ice/water bath and stirred for 8 h. In the next step, 300 mL of deionized water was added dropwise
to the dispersion, while the temperature was kept below 40 ◦C. Then, 40 mL of concentrated H2O2 was
added resulting in a color change. The color was brilliant brown, indicating oxidation of the graphite
surface. Finally, the product was separated using a high-speed centrifuge (Sorvall LYNX 4000, Thermo
Scientific, Waltham, MA, USA) at 10,000 rpm at 25 ◦C for 20 min. The collected product was cleaned
by re-dispersion in 0.1 M HCl and re-separated under centrifugation. This step was repeated several
times using deionized water until the pH of the contacting water reached a value of 7. Finally, GO
particles were freeze-dried to remove residual water.

2.2.2. Modification of GO Surface with ATRP Initiator (GO-I)

A 1000 mL three-neck round-bottom flask with 10 g of GO was subjected to three freeze-thaw-pump
cycles. Freshly distilled THF (300 mL) was injected into the flask and then the flask and contents
were sonicated for 4 min. Et3N (21.7 mL, 27 mmol) was added to the reaction flask followed by the
dropwise addition of the ATRP initiator, 2-bromoisobutyryl bromide (16.5 mL, 27 mmol). The reaction
mixture was left under stirring overnight at RT and then the reaction was heated to reflux at 80 ◦C
for one-hour. The resulting GO-I product, was purified using a poly(tetrafluoroethylene) (PTFE)
0.2 µm membrane. The solid collected on the membrane was washed with acetone (100 mL). GO -I
was then dispersed in DMF (200 mL) and sonicated for 30 s. Then it was filtered and washed with
acetone. The above-mentioned procedure of purification was repeated three times. Finally, the GO-I
was washed with diethyl ether and left in a vacuum oven at 60 ◦C for 12 h.

2.2.3. General Procedure for SI-ATRP from GO-I Surface

1.5 g of GO-I and a magnetic stirrer was placed into a 100 mL Schlenk flask. The content of the
reactor was degassed using three freeze-thaw-pump cycles. Anisole (30 mL) was purged with argon
and added to the Schlenk flask. PMDETA and the sacrificial initiator, EBiB were injected into the
reaction mixture which was sonicated in an ultrasonic bath for 1 min. 30 mL of monomer previously
deoxygenated with argon, was added to the Schlenk flask followed by four freeze-pump-thaw cycles.
During the final cycle CuBr was added to the frozen contents of the Schlenk flask under argon flow.
The precise amount of the individual components in reaction mixture can be calculated from the Table 1.
Then, the polymerization was conducted at 70 ◦C and stopped after 2 h by removing Schlenk flask from
the bath and opening the flask to air. The reaction mixture was dissolved in another 15 mL of acetone
and purified according to the procedure described in 2.2.2. Molar ratios of all reagents are presented
in Table 1 together with the monomer conversion calculated based on the 1H NMR spectra as well
as average number molar mass (Mn) and molar masses dispersity (Đ) determined by gel permeation
chromatography for polymer prepared by initiation from the added sacrificial initiator.

2.2.4. Methods for GO and GO-g-Polymer Hybrids Characterization

A gel permeation chromatograph, PL-GPC220 (Agilent, Tokyo, Japan), was used for the
determination of Mn and Đ of the polymer chains initiated from the sacrificial initiator (flow
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rate = 1.0 mL min−1, solvent: THF). Anisole was used as an internal standard and polystyrene
as a standard.

Monomer conversions were checked by proton nuclear magnetic resonance (1H NMR) using a
400 MHz VNMRS Varian NMR spectrometer equipped with 5 mm 1H-19F/15N-31P PFG AutoX DB
NB probe. Samples were measured in deuterated chloroform at 25 ◦C.

The morphology of neat GO and GO after surface modification was studied utilizing a Philips
CM12 transmission electron microscope (Philips, Amsterdam, The Netherlands) with a resolution of
0.35 nm. A dispersion of particles in chloroform (1 mg mL−1) was sonicated in an ultrasonic bath for
3 min, and then drop cast onto a carbon-plated copper grid.

The number of GO layers before and after modification was estimated using atomic force
microscopy (AFM, Dimension ICON) manufactured by Bruker company (Billerica, MA, USA).
A dispersion of particles in chloroform (1 mg mL−1) was sonicated in an ultrasonic bath for 3 min,
and then drop cast onto a freshly cleaned silicon wafer substrate. The observation was performed
immediately after the solvent evaporated.

The surface area of GO and GO-g-polymer hybrids powders was characterized using a volumetric
sorption analyzer, Belsorp mini-II (Microtracbel, Tokyo, Japan).

X-ray diffraction (XRD MiniFlex600, Rigaku, Japan) was used to determine the distance between
the layers in both GO and GO-g-polymer hybrids powders. The XRD diffractometer was equipped
with Co Kα source (λ of 0.17903 nm, 40 kV and 20 mA) and scans were collected in the range 2θ
between 5◦ and 90◦.

The Fourier transform infrared (FTIR) spectra of neat GO and GO-g-polymer hybrids powders
were collected using a Nicolet iS10 (Thermo Scientific, Waltham, MA, USA). FTIR equipment was
coupled with the TGA (Labsys evo, Setaram Instrumentation, France), while the components formed
during the decomposition over the range from 50 to 650 ◦C at a heating rate 5 ◦C min−1 were
continuously analyzed by IR.

X-ray photoelectron spectroscopy (XPS) measurements of GO and GO-g-polymer hybrids powders
were carried out using a TFA XPS instrument (Physical Electronics, Feldkirchen, Germany). The base
pressure in the analytical chamber was approximately 6 × 10−8 Pa. Monochromatic Al Kα1,2 radiation
at 1486.6 eV was used for sample excitation. Photoelectrons entered a hemispherical analyzer at an
angle of 45◦ with respect to the normal of the sample surface. XPS survey-scan spectra were taken at
pass energy of 187.9 eV, using an energy step of 0.5 eV, whereas high-resolution spectra of carbon C 1s
were measured at pass energy of 29.35 eV using an energy step of 0.13 eV. MultiPak v8.1c software
(Version 8.1c, Ulvac-Phi Inc., Kanagawa, Japan, 2006) from Physical Electronics was used for spectra
analysis. All spectra were referenced to the main carbon atom C 1s peak, which was assigned a value
of 284.8 eV. C1s spectra were fitted using a symmetrical Gauss-Lorentz function and Shirley-type
background subtraction was applied to decompose spectral peaks.

The Raman shift was investigated utilizing a Nicolet DXR spectrometer (Thermo Scientfic, Madison,
WI, USA) resolution of 2 cm−1, excitation wavelength of 532 nm, 3 scans. The laser power on the
surface was set to 1 mW and the integration time was 30 s. The samples were in the form of the powder.

For conductivity measurements, powders of synthesized neat GO and modified GO-PGMA
samples were pressed into pellets of 13 mm diameter and 0.3–0.4 mm thickness at 400 MPa. For the
density determination, the prepared GO-based pellets were weighted in the air and then immersed
in decane by means of Analytical Balances Sartorius R160P (Sartorius AG, Goettingen, Germany).
The conductivity of GO samples was measured via the van der Pauw method using Keithley 6517B
electrometer (Keithley, Solon, OH, USA) at room temperature.

Contact angle measurements (CA) of prepared GO-based pellets were performed through the
static sessile drop method utilizing a Surface Energy Evaluation device with a CCD camera (Advex
Instruments, Brno, Czech Republic). The drop of silicone oil Lukosiol M200 used for investigation had
a volume of 5 µL and the values presented are the average number with standard deviation from 5
individual measurements.
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2.2.5. Methods for Electrorheological Suspensions Characterization

Suspensions for sedimentation stability measurements, as well as for rheological measurements,
were prepared by mixing neat GO or polymer modified GO particles with the corresponding amount
of Lukosiol M200 silicone oil (density dc = 0.970 cm–3, viscosity çc = 200 mPa s, loss factor tg δ = 0.0001,
relative permittivity ε´ = 2.89). The tested suspensions contained 5 wt.% of particles in silicone
oil. The prepared suspensions were stirred by mechanical stirrer and then were sonicated for 30 s.
The sedimentation stability was studied using a UV-vis spectrometer Varian (Varian, Palo Alto,
CA, USA).

Rheological measurements were carried out by means of Bohlin Gemini rotational viscometer
(Malvern Instruments, Malvern, United Kingdom) under controlled-shear-rate (CSR) mode at 25 ◦C.
Parallel plates with a diameter of 40 mm and a gap of 0.5 mm were used.

2.2.6. Methods for Composites Photo-Actuation Characterization

Samples in the form of the stripes with a length of 15 mm, width of 2.5 mm and thickness of
0.26 mm were cut from the prepared polymer composite (0.1 vol.% of neat GO or polymer modified GO
particles in PDMS matrix), and were subjected to 10% pre-strain and exposed to irradiation of the red
light emitting diode, LED, Luxeon Rebel (Philips, Amsterdam, Netherlands) for 10 s. The irradiation
wavelength was 627 nm and source intensity – 6 mW light. The maximum value of actuation was
characterized by changing the length of the sample during irradiation, ∆L = (L0 − L)/L0, where L0 is the
length of unexposed to the light sample mounted between 10 mm clamps and L is the length of the
irradiated sample. Actuation describes a material’s ability to undergo reversible shape changes when
subjected to an external light stimulus.

The thermal conductivity of the composite samples was performed on films, of the same specified
shape and size, that were placed on the sensor and investigated using contact method and evaluated
by the TCi model (C-term technologies, Fredericton, NB, Canada).

For optical images of the composites (Figure S1) a table microscope Leica (Leica, Tokyo, Japan)
was used.

3. Results and Discussion

GO was prepared from the graphite by a modified Hummers method. The resulting synthesized
particles were analyzed using XRD (Figure S2) and it was shown that there is just one peak at 17◦

indicating a well-exfoliated system. Further characterization was performed using AFM (Figure S3)
to clearly show the morphology of this system and that there is only single layer sheet with 2 nm
thickness and 2 µm width [46]. Surface area of GO was 9.04 m2 g−1.

GO surface modification with PBMA, PMMA, PHEMATMS and PGMA was successfully
performed using SI-ATRP. All polymerizations were stopped after two hours and then the formed
GO-polymer hybrids were characterized. The characteristics of the polymer chains are summarized in
Table 1. It can be seen that all materials have narrow Đ indicating good control over polymerization,
while the monomer conversion was in the range of 41–67%. Thus, the degree of polymerization (DP)
of the grafted polymers chains differed slightly. The DP was expected to increase in the following
order: PBMA < PGMA < PMMA < PHEMATMS. Monomer conversion calculated from 1H NMR
corresponded to the results from GPC. The grafted GO particles with various polymer moieties
are summarized in Scheme 1, together with the scheme of initiator immobilization for subsequent
polymer grafting.
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Table 1. Molar ratios of individual reactants and characterization of polymers grown form
sacrificial initiator.

Sample Name M a I a L a CuBr Mn
b (g mol−1) Đ b Conversion c (%)

GO-PMMA 100 1 4 1 5620 1.18 59
GO-PBMA 100 1 4 1 5210 1.21 41
GO-PGMA 100 1 4 1 5920 1.23 53

GO-PHEMATMS 100 1 4 1 12,600 1.19 67
a M, I, L stays for monomer, sacrificial initiator and ligand; b according to the GPC; c according to the 1H NMR.
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TEM, TGA-FTIR, XPS and CA measurements were performed in order to directly confirm the
success of grafting polymer chains from the GO surface. As can be seen in Figure 1, all samples, neat
GO as well as modified analogues, possess a 2D shape. The proper exfoliation of neat GO particles
(Figure 1a) can be seen and only several layers of individual GO sheets are present. After polymer
modification, the contrast of the GO sheet is more pronounced, indicating the presence of a compact
polymer layer (Figure 1b–e). For PBMA and PGMA moieties (Figure 1c,d), the contrast is even darker.
This is most probably caused by several layers of modified GO sheets lying on top of each other.
However, due to the fact that the edges of the GO sheets are smoother than the edges of neat GO,
successful grafting can be determined. A similar situation is observed for GO-PHEMATMS (Figure 1e).
In this case the DP and Mn of the coating are higher than for the rest of the samples and therefore, the
contrast is the most pronounced. However, it also provides confirmation of a very compact layer and
smooth edges. The neat GO was also investigated from the AFM point of view to show that we have
nearly one layer GO with thickness up to 2 nm and width of several micrometers (Figure S3).
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methacrylate) (PGMA), (e) GO-poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS).

To confirm further the successful modification TGA, with coupled FTIR analysis, was performed
to on-line monitor and evaluate the generated gas phase. The FTIR spectra shown in Figure 2b,d,f,h,j
were collected in the temperature range of polymer decomposition, highlighted in colors. The neat GO
(Figure 2a) had the highest amount of the oxygen-containing functional groups. Moreover, the position
of the peak is at higher temperature indicating a relatively stable GO system [47]. The sharpness
of the peak indicates the rather high thermal expansion of the neat GO system when high heating
rates are used [47], while polymer modification slightly suppresses this effect. Moreover, in a case of
polymer grafting from the GO surface, this peak is shifted to the lower temperatures, indicating that
polymer bearing moieties allow the easier thermal decomposition of these functional groups, which is
similar to results found by other authors [48]. Based on the FTIR it can be confirmed that -OH, -COOH
as well as -C=O functional groups are present on the GO particles with absorption bands around
3500, 1428 and 1723 cm−1, respectively. For the GO hybrids modified by various polymer chains, the
polymer decomposition is highlighted by color strip, while each color belongs to the specific moiety
and sustains through the manuscript also for other characterizations. Here the absorption bands for
methacrylate unit are the same for all polymers showing the absorption bands around 2950, 2800 and
1720 cm−1, for -CH3, -CH2 and -C=O, respectively. In a case of PGMA there is an additional significant
peak at about 750 cm−1 due to the presence of the epoxy ring in the polymer structure. PHEMATMS
differs owing to the presence of the Si-O and Si-C bands at 1047 cm−1 and 1201 cm−1. It can also be
seen in Table 2, that the density of the particles changed slightly after SI-ATRP indicating the presence
of polymer layer at the GO surface.
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The XPS spectra of neat GO (Figure 3a) also confirmed that functionalization during oxidation was
successful because a significant amount of oxygen was detected. The oxygen containing groups in neat
GO consisted of 54% C-O, 22% C=O and 24% of COOH. The ratio between C1s and O1s was changed
after the grafting of GO with PMMA chains, due to the presence of the polymer as well as partial
reduction of accessible GO surface. A similar trend was observed for the GO-PBMA and GO-PGMA,
showing the increased C/O ratio. The successful modification with PHEMATMS was further confirmed
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by the appearance of new absorption bands from Si 2s and Si 2p, showing the covalent bonding of the
polymer layer. The atomic content of all investigated samples is shown in Table 2.
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Figure 3. XPS spectra of: (a) the neat GO, (b) GO-PMMA, (c) GO-PBMA, (d) GO-PGMA,
(e) GO-PHEMATMS.

Table 2. Densities, surface elements content and conductivities of neat GO and GO-modified particles.

Sample Name Density
(g cm−3)

Surface Element Content a Conductivity
(S cm−1)C O Si C/O

neat GO 2.68 66.7 33.3 0 2.00 1.2 × 10−8

GO-I 2.64 67.2 32.8 0 2.05 1.9 × 10−8

GO-PMMA 2.53 69.1 30.9 0 2.24 6.3 × 10−8

GO-PBMA 2.34 70.9 29.1 0 2.43 2.1 × 10−7

GO-PGMA 2.28 72.3 27.7 0 2.61 3.0 × 10−7

GO-PHEMATMS 2.39 73.1 24.9 2.0 2.94 6.0 × 10−6

a based on XPS.
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GO particle reduction during SI-ATRP modification was confirmed by two independent methods;
conductivity investigations (Table 2) and Raman spectroscopy (Figure 4). Both techniques showed that
the reduction of GO took place and the conductivity was finely tuned by the structure of the polymer
grafts. The D and G peaks intensities were elucidated to properly investigate the GO reduction and
quantify the degree of reduction. The increase ID/IG from 0.9 to 1.05, 1.08, 1.08 and 1.09 for neat GO,
GO-PMMA, GO-PBMA, GO-PGMA and GO-PHEMATMS, respectively, was observed. The slight
reduction during the SI-ATRP is caused by the presence of the excess of a tertiary amine, commonly
used as a ligand complexing the copper catalyst, as was already observed and described previously by
our group [37]. The reduction usually depends on the reaction conditions such as polymerization time,
tertiary amine concentration and tertiary amine to GO and tertiary amine to monomer ratio. Due to
the same polymerization conditions for all graftings reported in this study, the highest conductivity for
GO-PHEMATMS can be attributed to the highest polarizability of the pendant groups.
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The compatibility of the neat GO and polymer-grafted GOs with the silicone-based environment
was investigated by contact angle measurements (Figure 5), determination of the sedimentation ratio
(Figure 6a) and the steady shear viscosity profiles (Figure 6b). As shown in Figure 5, the contact angle of
neat GO and GO hybrids decreased from 49.9◦ ± 3.2◦ to 38.7◦ ± 2.7◦, 28.7◦ ± 2.7◦, 30.1◦ ± 1.7◦and 26.3◦ ±
3.0◦ for neat GO, GO-PMMA, GO-PBMA, GO-PGMA and GO-PHEMATMS, respectively. These results
confirmed the enhanced ability of the system to be compatible with the silicone-based environment.

It can be observed from the sedimentation stability profiles that the GO-PHEMATMS system
exhibited significantly enhanced stability, which also correlates with steady shear investigations where
the off-state viscosity is also the highest. The results followed the trend from the CA measurements
and confirmed that the compatibility of the hybrid particles with the environment could be modulated
over a wide range by the polymer graft structure. Thus, tailoring of the properties of the system could
be achieved.
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Finally, electrorheological (Figure 7a) and photo-actuation (Figure 7b) investigations were
performed, in order to prove the impact of the different moieties on the capability of the
stimuli-responsive properties. In the first case, the yield stress, τy, as a measure of the rigidity of the
internal chain-like structures, was plotted versus external electric field strength, E. The power-law
model τy = q Em was used for investigation of the ER performance, where q corresponds to stiffness of
the internal chain-like structures and the exponent (m) reaches values 1.5 for conductivity mechanism
(medium and particles conductivity mismatch is responsible for chain-like structure development)
and reaches 2 for the polarization mechanism (medium and particles relative permittivity mismatch
is accountable for ER behavior). All systems exhibited the conductivity mechanism [49,50] of the
chain-like structure formation (Figure 7a) since the dependence for all samples essentially followed
the slope of 1.5 (Table 3) rather than 2.0, as was observed elsewhere [37]. Moreover, based on the
results from conductivity (Table 2) the ER performance is mainly depended on the conductivity
mismatch between silicone oil and the particles. Therefore, the highest deviation from the ideal
behavior was found for neat GO exhibiting the yield stress just of 40 Pa at 2.5 kV mm−1, while the
GO-PHEMATMS system shows ideal behavior and has the best ER performance with yield stress of
200 Pa at 2.5 kV mm−1.
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means of sample contraction, where: neat GO is (�) and solid black line, GO-PMMA is (�) and orange
dash-dot line, GO-PBMA is (©) and blue dash-dot-dot line, GO-PGMA is (4) and red dotted line and
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Table 3. Parameters of power-law model fits of neat and polymer modified GO particles suspensions.

Sample Code q [Pa] m

GO 7.6 1.47
GO-PMMA 20.8 1.48
GO-PBMA 24.6 1.48
GO-PGMA 28.7 1.49

GO-PHEMATMS 41.6 1.5

In the case of a photo-actuation investigation, the ∆L was used as the contraction length after
irradiation. Here the contraction ability is mainly affected by the stiffness of the polymer matrix and
proper redistribution of the heat within the sample, which is ensured by appropriate particle dispersion.
In this case, the better heat redistribution also is associated with higher electric conductivity of samples,
where the GO-PHEMATMS benefits. It has to be noted, that the slower and in fact delayed response of
the neat GO-based composite to the light stimulus is connected to the abovementioned reasons such as
improper particle distribution, as well as low electrical properties (Table 2). Therefore the determined
thermal conductivity for neat GO, GO-PMMA, GO-PBMA, GO-PGMA and GO-PHEMATMS was equal
to 0.134, 0.153, 0.155, 0.161 and 0.167 W m−1 K−1, respectively. Due to these facts the heat redistribution
in the sample is more complicated and transformation from light to mechanical energy needs more
time. As was also investigated by our group, the short polymer chains act as plasticizers, and even if
they are grafted from the reinforcing surface like carbon nanotubes or carbonyl iron, the mechanical
properties are lower [10,15,51]. In good agreement with the literature, all types of polymer chains
grafted from GO provided a plasticizing effect, therefore the photo-actuation performance was better
in comparison to the neat GO. The best properties could be seen for GO-PHEMATMS, which also
exhibited the best compatibility with the silicone-based environment and thus provided the system
with the best particle dispersibility and the best heat redistribution. This sample showed nearly 30 µm
contraction after 10 s of irradiation, which is enormously high in comparison to other GO hybrids
and/or previously investigated PDMS based systems [9,25]. Unfortunately, as already mentioned
30 µm of actuation for our best chemically cross-linked PDMS systems are not that high in comparison
to those GO-hybrids dispersed in the TPEs, due to the fact the physical cross-linking provides better
flexibility of the systems, however this is not that stable from the long-term on/off cycling point of
view [52,53].
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4. Conclusions

This study discusses the approach of modification of the GO surfaces by various polymethacrylates
with simultaneous partial reduction of the GO to the degree applicable in electrorheology systems.
The various polymers such as PMMA, PBMA, PGMA and PHEMATMS were grafted from GO and
characterized. The GO reduction was confirmed by Raman spectroscopy as well as conductivity
measurements showing that GO-PHEMATS provided a material with finely tuned conductivity. This
was due to the involvement of the effect of the dipole moment of the pendant groups of the grafted
polymer chains. The effect of compatibility of the fillers with the silicon-base environment was
investigated using three separate approaches; contact angle, sedimentation stability and steady shear
viscosity investigation, and all methods provided the same trend confirming the best compatibility of
GO-PHEMATMS thanks to the similarity of its structure to the silicone-based environment. Finally, since
the GO-PHEMATMS possessed the best electric properties, it also provided the best ER performance,
where the yield stress increasing in the row neat GO < PMMA < PBMA < PGMA < PHEMATMS,
showing values 40, 68, 79, 110 and 200 Pa, respectively. Such results are very promising for potential
application especially for such low particles loading. Furthermore, thanks to the significantly improved
particles compatibility their improved dispersibility in PDMS could be expected, and together with
considerable plasticizing effect and improved heat redistribution the GO-PHEMATMS also provided
a system with enhanced contraction length upon irradiation in the same row as in electrorheology,
showing contraction nearly of 7, 9, 11, 19 and 30 µm, respectively, which is very promising value and
was not observed on PDMS-based systems under similar testing conditions. Our studies confirmed
the importance of tailoring the nature of the particles surface to obtain the best compatibility with
the continuous phase and thus to achieve desired final properties of the material for applications in
electrorheology or as photo-mechanical actuators.
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to the silicone-based environment. Finally, since the GO-PHEMATMS possessed the best electric 
properties, it also provided the best ER performance, where the yield stress increasing in the row neat 
GO < PMMA < PBMA < PGMA < PHEMATMS, showing values 40, 68, 79, 110 and 200 Pa, 
respectively. Such results are very promising for potential application especially for such low 
particles loading. Furthermore, thanks to the significantly improved particles compatibility their 
improved dispersibility in PDMS could be expected, and together with considerable plasticizing 
effect and improved heat redistribution the GO-PHEMATMS also provided a system with enhanced 
contraction length upon irradiation in the same row as in electrorheology, showing contraction nearly 
of 7, 9, 11, 19 and 30 m, respectively, which is very promising value and was not observed on PDMS-
based systems under similar testing conditions. Our studies confirmed the importance of tailoring 
the nature of the particles surface to obtain the best compatibility with the continuous phase and thus 
to achieve desired final properties of the material for applications in electrorheology or as photo-
mechanical actuators. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Optical 
images of the prepared PDMS composites containing 0.1 vol.% of neat GO (a), GO-PMMA (b), GO-PBMA(c), 
GO-PGMA (d) and GO-PHEMATMS (e), Figure S2: XRD pattern for graphite and corresponding neat GO, Figure 
S3: AFM image of neat GO, Figure S4: TGA spectra of the neat GO and GO hybrid particles. Color strip 
corresponds to the color strip in the manuscript and reflecting the decomposition of the oxygen containing 
groups (Figure S4a) and individual polymer grafts (Figure S4b–S4e). 
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