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Abstract: An outbreak of a bacterial contagion is a critical threat for human health worldwide. Recently,
light-activated heterostructured nanomaterials (LAHNs) have shown potential as antibacterial agents,
owing to their unique structural and optical properties. Many investigations have revealed that
heterostructured nanomaterials are potential antibacterial agents under light irradiation. In this review,
we summarize recent developments of light-activated antibacterial agents using heterostructured
nanomaterials and specifically categorized those agents based on their various light harvesters.
The detailed antibacterial mechanisms are also addressed. With the achievements of LAHNs
as antibacterial agents, we further discuss the challenges and opportunities for their future
clinical applications.

Keywords: heterostructured nanomaterial; antibacterial agent; antibacterial mechanism; reactive
oxygen species; light-activated; synergistic effect

1. Introduction

Antibacterial studies have become more significant because of the increased of multidrug-resistant
(MDR) bacteria in this era [1–10]. Various mechanisms can stimulate antibacterial resistance, including
overuse of antibiotics and the delivery of bacteria by different routes [11–13]. A recent report indicates
that by 2050, antibacterial resistance will be a tremendous public health threat with the potential
to cause the death of ten million people each year [14]. Therefore, development of new types of
antibacterial agents against MDR bacteria is an urgent task. The development of new antibacterial
agents inspired the researchers for the investigation of nanomaterials which can eliminate MDR bacteria
without the help of antibiotics [15–19].

Nanomaterials—including metals, metal oxide, semiconductors and polymers—have been
extensively studied for applications in nanoscience and nanotechnology, due to their superior chemical
and physical properties [20–35]. Among nanomaterials, the heterostructured nanomaterials have
shown unique optical properties, including the increase of light absorption and the extension of
absorption region [36–41]. Recently, great advancements have been reported in the application of
LAHNs as antibacterial agents. With the rise of light absorption and the extension of absorption
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region, heterostructured nanomaterials have shown superior antibacterial activity, based on reactive
oxygen species (ROS) generation under light illumination [42–48]. The emphasis of this review is
on the mechanism study of light-induced ROS generation from heterostructured nanomaterials by
synergistic effect. Recent achievements with the uses of LAHNs as antibacterial agents are classified by
their various light harvesters. Finally, challenges and perspectives for LAHNs as antibacterial agents
are also provided.

2. Antibacterial Nanomaterials Based on Light-induced ROS Generation

Titanium dioxide (TiO2) materials have been found to possess remarkable biocompatibility and
low cell toxicity with significant antibacterial activity [49–58]. Recently, TiO2-based nanomaterials were
popular materials with substantial amount of antibacterial activities, and their antibacterial activities
could be further enhanced by light irradiations with various wavelengths, including ultraviolet
(UV) light, visible light and near-infrared (NIR) light due to the increase of ROS generation [59–67].
For example, with UV light irradiation, heterostructured Ag-TiO2 nanoparticles have displayed
higher bactericidal activity compared to that of only UV irradiation, Ag nanoparticles under UV
irradiation or TiO2 nanoparticles under UV irradiation (Figure 1) [68]. With UV light illumination, the
augmentation of bactericidal activity of hybrid Ag-TiO2 nanoparticles indicated that Ag nanoparticles
loaded onto TiO2 nanoparticles served as electron traps to prevent recombination of electron and hole
in hybrid Ag-TiO2 nanoparticles. The photo-exited electrons were generated and then transferred to Ag
nanoparticles to extend the life of electron-hole pairs. In the system of hybrid Ag-TiO2 nanoparticles,
the increases of electron-hole pairs enhanced ROS generation for the destruction of bacterial membrane
or DNA [69–74]. In the work, hybrid Ag-TiO2 nanoparticles provided more effective bactericides with
light irradiations; however, the uses of hybrid Ag-TiO2 nanoparticles as an antibacterial agent were
challenging in practical application due to their high cytotoxicity and facile accumulation in tissues
and organs.
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Figure 1. IC50 values of different hybrid Ag-TiO2 nanoparticles with and without UV light irradiations.
TiO2 P25 (Degussa P25) and TiO2 R-902 (DuPont Ti-Pure R-902) were two commercial TiO2 nanoparticles.
Two different molar ratios of AgNO3 and TiO2 including 1:10 and 1:50 were respectively employed
to prepare Ag nanoparticles deposited onto the TiO2 nanoparticles by NaBH4 reduction and UV
photoreduction to form the samples of Ag-P25 1:10 NaBH4, Ag-P25 1:50 NaBH4, Ag-P25 1:50 UV,
Ag-R902 1:10 NaBH4, Ag-R902 1:50 NaBH4 and Ag-R902 1:50 UV. Ag nanoparticles and AgNO3 were
purchased from QuantumSphere, Inc. Reproduced with permission from ref. [68]. Copyright© 2011,
American Chemical Society.
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Nanocomposites of AgVO3 quantum dots (QDs) deposited onto TiO2 nanospheres (TiO2/AgVO3)
have shown high-performance photocatalytic capability with visible light irradiation [75–77].
TiO2/AgVO3 nanocomposites incubated with E. coli have been investigated to study their light-induced
bacterial inactivation with illumination of visible light. In the control experiment, after visible light
irradiation over 120 min, TiO2 nanospheres were inactivated only 0.13 log of E. coli. With the use of
TiO2/AgVO3 nanocomposites as photocatalysts, all of E. coli were killed under visible light irradiation
over 120 min. After TiO2/AgVO3 nanocomposites incubated with E. coli, with visible light irradiation;
the shape of E. coli was destroyed. Moreover, there were no obvious changes of bacterial inactivity
of TiO2/AgVO3 nanocomposites after three cycling antibacterial tests under visible light irradiation
indicating that TiO2/AgVO3 nanocomposites were good photocatalysts with superior stability. For
the photocatalytic disinfection mechanism, AgVO3 QDs were excited to offer light-induced pairs of
electrons and holes with visible light illumination and then the light-induced electrons located in
the conduction band of AgVO3 QDs were easily delivered to the conduction band of TiO2 (Figure 2).
The light-induced electrons in the conduction band of TiO2 could react with oxygen in medium to
form ·O2

−. Moreover, the holes located in the valence band of AgVO3 QDs could be delivered to their
surface to inhibit the growth of E. coli. To sum up, the light-induced electron-hole pairs in TiO2/AgVO3

nanocomposites were efficiently separated to improve the light-induce antibacterial activity of E. coli.
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Reproduced with permission from ref. [75]. Copyright© 2019, Elsevier.

Natural polymers of cellulose are intensively used in daily life [78–80]. However, the application of
cellulose has been limited, due to its susceptibility to microorganism growth. In recent advancements,
a simple sol-gel approach has been used to conjugate the cellulose scaffold with Ag/TiO2 nanoparticles
(Ag/TiO2/cellulose) against bacteria (Figure 3) [81]. The antibacterial activities of nanocomposite
film of Ag/TiO2/cellulose, film of pristine cellulose and nanocomposite film of TiO2/cellulose have
been investigated with E. coli with and without UV light irradiation. The bactericidal performance
of the nanocomposite film of Ag/TiO2/cellulose with Ag content of 0.030 wt% has shown the best
99.9% inactivation of E. coli with UV light illumination. The results suggest that the nanocomposite
film of Ag/TiO2/cellulose exhibit superior bactericidal performance against E. coli because of the
synergistic effect of Ag nanoparticles and anatase TiO2 nanoparticles. Under UV light irradiation,
TiO2 nanoparticles may generate ROS—including ·OH, ·O2

− and H2O2—prompting bacterial death.
Moreover, Ag nanoparticles may capture electrons, restraining the recombination of photon-induced



Nanomaterials 2020, 10, 643 4 of 16

electron/hole pairs for the increase of ROS formation. Overall, the bactericidal performance of the
nanocomposite film of Ag/TiO2/cellulose was significantly enhanced under UV light irradiation.
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Figure 3. Schematic illustration of preparation of the nanocomposite film of Ag/TiO2/cellulose and its
antibacterial mechanism. Reproduced with permission from ref. [81]. Copyright© 2018, MDPI.

Au-TiO2 nanocomposites embedded into a degradable and antibacterial sodium alginate films
have been developed by food packaging industries against bacteria [82]. Sodium alginate/Au-TiO2

nanocomposite (SAT) films were enabled to absorb light form UV to visible wavelength and to
improve their hydrophilicity and shape stability. As shown in Figure 4, both sodium alginate/TiO2

nanocomposite (ST) films and SAT films exhibit distinct antibacterial activities for S. aureus and E.
coli in dark. With the use of SAT films, 90% of S. aureus and 97.1% E. coli were killed without light
illumination, respectively. However, after light illumination for 20 min, the antibacterial abilities of
SAT films were respectively improved ~60% and ~50% for S. aureus and E. coli. The improvement of
antibacterial abilities of SAT films may be attributed to that the nanocomposites of Au-TiO2 increased
light absorption and transfer capability due to their plasmonic effect. The plasmonic Au nanoparticles
in SAT films may harvest light to produce light-induced photons for the increase of ROS to kill bacteria.
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The nanocomposites of lithium-titanate (Li-TiO2) in the low-density polyethylene (LDPE) matrix
have shown a significant increase in killing efficiency for S. aureus with visible light illumination [83].
In the heterostructured nanocomposites of Li-TiO2/LDPE, the oxygen vacancies of Ti3+ and interaction
of Li-O-Ti bond reduced the band gap of TiO2 nanoparticles, resulting in their response to visible
light (Figure 5). LDPE alone did not show any antibacterial activity for S. aureus. With the dopant
of Li-TiO2 of 1 wt%, the heterostructured nanocomposites of Li-TiO2/LDPE inhibited the growth of
S. aureus by 94% after visible light irradiation for 6 h, then raised the inhibition rate to 99% within
12 h under visible light irradiation. From the results of the scavenger test, the intensified bactericidal
effect of the heterostructured nanocomposites of Li-TiO2/LDPE were ascribed to the productions of
powerful oxidants including ·OH and ·O2

− under visible light irradiation. These powerful oxidants
may particularly react with the polyunsaturated phospholipid composition of the bacterial membrane
to form water and carbon dioxide.
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Figure 5. The antimicrobial mechanism of the heterostructured nanocomposites of Li-TiO2/LDPE
against S. aureus. Abbreviation: valence band: VB; conduction band: CB. Reproduced with permission
from ref. [83]. Copyright© 2019, Elsevier.

The heterostructured nanomaterials of copper-doped TiO2 (Cu-TiO2) have been applied as an
antibacterial agent against E. coli and S. aureus with visible light illumination [84]. By utilizing dopant
of oxidizing copper, Cu-TiO2 nanomaterials revealed the increase of absorption in visible region and
the band gap of Cu-TiO2 nanomaterials was reduced to 2.8 eV. The photo-induced bactericidal activity
of Cu-TiO2 heterostructured nanomaterial have been respectively executed with and without visible
light illumination (Figure 6). Without photocatalysts, the E. coli and S. aureus bacteria continued
growing under light and dark conditions. Moreover, in the dark, the Cu-TiO2 nanomaterials, anatase
TiO2 nanoparticles and rutile TiO2 nanoparticles had no significant bacterial growth after culture for
90 min. After visible light irradiation for 30 min, the Cu-TiO2 nanomaterials had achieved 99.9999%
bacterial reduction. However, to obtain 99.9999% bacterial reduction, both anatase and rutile TiO2

nanoparticles required light irradiation for 60 and 90 min, respectively. In comparison with anatase
and rutile TiO2 nanoparticles, Cu-TiO2 nanomaterials showed better antibacterial activity. The results
indicate that the dopant of Cu in Cu-TiO2 nanomaterials may improve the visible absorption efficiency
to enhance bacterial inactivation. After the absorption of light, the charge carriers formed on p-n
junction of Cu2O-TiO2 nanomaterials and then reacted with the oxygen and water incorporated on
the surface of Cu2O-TiO2 nanomaterials to become radicals to disrupt bacterial membrane and cause
bacterial gene alteration to kill bacteria.
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Figure 6. Mechanisms of photocatalytic antibacterial activity (a) p-n junction by heterostructured
Cu2O and TiO2 (b) Type-2 heterostructures of anatase and rutile TiO2 nanoparticles. Images of S.
aureus colonies in the agar plates with (right) and without (left) Cu-TiO2 nanomaterials after 30 min
illumination. Reproduced with permission from ref. [84]. Copyright© 2018, MDPI.

The thin film of photocatalyst of α-Fe2O3 nanograin chains incorporated with anatase TiO2

nanolayer (TiO2/Fe2O3) exhibited bactericidal activity against E. coli with visible light illumination [85].
The bacterial inactivation of the anatase TiO2, α-Fe2O3 and TiO2/α-Fe2O3 thin films has been studied
in the bacterial model of E. coli under visible light illumination, with and without H2O2 (Figure 7).
As shown in Figure 7, TiO2/α-Fe2O3 thin film reveals the reduction rate of 2.6 × 10−2 and 6.5 × 10−2

min−1 without and with H2O2 for E. coil, reflecting a better antibacterial activity than anatase TiO2 and
bare α-Fe2O3 thin film. The better bacterial inactivity of TiO2/α-Fe2O3 thin film may be ascribed to
the heterostructure of TiO2/Fe2O3. Through visible light irradiation onto TiO2/Fe2O3 heterojunction,
electrons located in the valence band of Fe2O3 may be excited to the conduction band—and then,
electrons located in the valence band of TiO2 may be driven into the valance band of Fe2O3. Therefore,
the anatase TiO2 nanolayer coated with TiO2/α-Fe2O3 thin film could be applied to enhance of the
photocatalytic capability of the coated Fe2O3 nanograins. The anatase TiO2 nanolayer could increase
the production of Fe2+ to react with the H2O2 for the generation of OH radicals resulted from the
reactions of Fenton and photo-Fenton. Furthermore, water or hydroxyl groups adsorbed onto anatase
TiO2 nanolayer may be used to trap the holes to produce ROS of hydroxyl radicals for the bactericidal
activity enhancement to bacteria.

Recent developments of implants have focused on the design of their surface in terms of
bacterial inactivation and reusable feasibility. The dopants nitrogen (N) and bismuth (Bi) in TiO2—
incorporated with the plasma electrolytic oxidation (PEO)—revealed light-induced antibacterial activity
and re-activation potential [86]. With the dopant Bi, the band gap energy of TiO2 was shifted to the
visible light region. To confirm the in vitro antibacterial effect, the photocatalysts of TiO2 coated with
urea (Urea-TiO2 group), TiO2 doped with Bi (Bi-TiO2 group) and TiO2 co-doped with urea and Bi (Urea,
Bi-TiO2 group) were applied as antibacterial agents for two biofilms, including Streptococcus sanguinis
and Actinomyces naeslundii. The results of the in vitro antibacterial tests indicated that the urea, Bi-TiO2

group presented the best performance in bactericidal activity with visible light illumination. With
a synergistic effect of N and Bi under visible light illumination, the narrowed band gap of Bi2O3

combined with TiO2 could facilitate electrons migration from the valence band to the conduction band
located in TiO2 and Ti3+ sites to react with O2 to form ·O2

− and also ·OH radical could be produced
according to the reaction of holes located in the valence band of TiO2 with H2O (Figure 8). The ROS
of ·O2

− and ·OH may induce damage of bacterial wall, membrane, organelles, proteins and genetic
materials (DNA, RNA) to cause death of bacteria.



Nanomaterials 2020, 10, 643 7 of 16
Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 17 

 

 

Figure 7. Relative number of viable E. coli on surface of (a) the anatase TiO2 (b) the α-Fe2O3 and (c) the 

TiO2/Fe2O3 thin films under visible light irradiation. (d) The α-Fe2O3 and (e) the TiO2/Fe2O3 thin films 

without light illumination. (f) Control samples containing the solution without H2O2 (○) and with 

H2O2 (●) with light illumination. The black circles indicated the samples of a, b, c and f containing the 

solution without H2O2 (○) and with H2O2 (●) with light illumination. Reproduced with permission 

from ref. [85]. Copyright ©  2009, Elsevier. 

Recent developments of implants have focused on the design of their surface in terms of bacterial 

inactivation and reusable feasibility. The dopants nitrogen (N) and bismuth (Bi) in TiO2— 

incorporated with the plasma electrolytic oxidation (PEO)—revealed light-induced antibacterial 

activity and re-activation potential [86]. With the dopant Bi, the band gap energy of TiO2 was shifted 

to the visible light region. To confirm the in vitro antibacterial effect, the photocatalysts of TiO2 coated 

with urea (Urea-TiO2 group), TiO2 doped with Bi (Bi-TiO2 group) and TiO2 co-doped with urea and 

Bi (Urea, Bi-TiO2 group) were applied as antibacterial agents for two biofilms, including Streptococcus 

sanguinis and Actinomyces naeslundii. The results of the in vitro antibacterial tests indicated that the 

urea, Bi-TiO2 group presented the best performance in bactericidal activity with visible light 

illumination. With a synergistic effect of N and Bi under visible light illumination, the narrowed band 

gap of Bi2O3 combined with TiO2 could facilitate electrons migration from the valence band to the 

conduction band located in TiO2 and Ti3+ sites to react with O2 to form O2− and also OH radical could 

be produced according to the reaction of holes located in the valence band of TiO2 with H2O (Figure 

8). The ROS of O2− and OH may induce damage of bacterial wall, membrane, organelles, proteins 

and genetic materials (DNA, RNA) to cause death of bacteria. 

Figure 7. Relative number of viable E. coli on surface of (a) the anatase TiO2 (b) the α-Fe2O3 and (c) the
TiO2/Fe2O3 thin films under visible light irradiation. (d) The α-Fe2O3 and (e) the TiO2/Fe2O3 thin films
without light illumination. (f) Control samples containing the solution without H2O2 (#) and with
H2O2 (•) with light illumination. The black circles indicated the samples of a, b, c and f containing the
solution without H2O2 (#) and with H2O2 (•) with light illumination. Reproduced with permission
from ref. [85]. Copyright© 2009, Elsevier.
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Copyright© 2019, American Chemical Society.

In recent times, nanocomposites of chitosan films containing melon/TiO2 (CTS/MTiO2) have
been applied for self-cleaning of malachite green and light-induced antibacterial surfaces of S. aureus
under light irradiation [87]. As the most common graphitic carbon nitride material (g-C3N4), melon
is a visible-light harvesting molecule. The bacterial inactivation of CTS/MTiO2 nanocomposites was
assessed against S. aureus with light illumination (Figure 9). After incubated with S. aureus for 3 h,
CTS/P25, CTS/MTiO2 and CTS have revealed different antibacterial activities with and without actinic
light irradiations as shown in Figure 9a. Furthermore, in Figure 9b, antibacterial mechanism of
CTS/MTiO2 films has been explained under actinic light irradiation. For the control experiments,
chitosan and CTS/P25 films showed no significant bacterial inactivation with and without actinic light
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irradiation for 3 h. On the other hand, CTS/MTiO2 films exhibited an antibacterial rate 99% of S. aureus
after 3 h of actinic light irradiation. Previous studies indicated that chitosan films combined neat
TiO2 nanoparticles exhibited a bactericidal efficiency of 99.9% for E. coli under light irradiation for 4 h.
However, under actinic light irradiation for 4 h, chitosan films combined neat TiO2 nanoparticles had
no antibacterial activity for S. aureus. In this aspect, CTS/MTiO2 films had superior antibacterial activity
for S. aureus. For the antibacterial mechanism, CTS/MTiO2 films were induced for the formation of
ROS such as ·OH, 1O2, ·O2

− and H2O2 to damage bacterial cell membrane with actinic light irradiation.
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ref. [87]. Copyright© 2019, Elsevier.

Nanocomposites of uniform TiO2 nanoparticles and graphene sheets (TiO2/GSs) have been
fabricated via a facile redox reaction for antibacterial applications [88–93]. TiO2 nanoparticles were
anchored on the surfaces of GSs by chemical bonds. Moreover, nanocomposites of TiO2/GSs exhibited
broad absorption region from UV light to visible light. The photocatalysts of TiO2/GSs were used to
kill E. coli under visible light illumination. Uniform TiO2 nanoparticles showed lower antibacterial
capability in comparison with TiO2/GSs nanocomposites due to their large band gap, resulting in
very low light absorption in the visible region (Figure 10). UV-Vis absorption spectra of pure TiO2

nanoparticles, TiO2/GSs with TiO2/1.4 wt%, TiO2/GSs with TiO2/4.2 wt% and TiO2/GSs with TiO2/7
wt% have shown in Figure 10a. Under visible light illumination for 12 h, viabilities of E. coli incubated
with various TiO2-based nanocomposites have been respectively calculated as shown in Figure 10b.
Under visible light illumination, the nanocomposites of TiO2/GSs with TiO2/4.2 wt% revealed the best
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antibacterial activity in comparison with TiO2/GSs with various weight ratios, including TiO2/1.4 wt%
and TiO2/7 wt%. The superior antibacterial activity of TiO2/GSs nanocomposites may be explained
by the increase of light absorption in visible region and effective separation of photo-generated
electron-hole pairs because graphene could be applied as an electron acceptor and transporter. With
the effective separation of light-generated pairs of electrons and holes, TiO2/GSs nanocomposites may
produce more ROS, including ·OH and ·O2

− for disinfection activity of E. coli. For the nanocomposites
of TiO2/GSs with TiO2/7 wt%, the decrease of antibacterial activity may be ascribed to that the
active TiO2 nanoparticles were covered by a large number of GSs, forming a shield of active sites on
TiO2 nanoparticles.
Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 17 

 

 

 

Figure 10. (a) UV-Vis absorption spectra of pure TiO2 nanoparticles, TiO2/GSs with TiO2/1.4 wt%, 

TiO2/GSs with TiO2/4.2 wt% and TiO2/GSs with TiO2/7 wt%. (b) Viabilities of E. coli incubated with 

various TiO2-based nanocomposites under visible light illumination for 12 h. The insets are the 

corresponding photographs of agar plates. Reproduced with permission from ref. [88]. Copyright ©  

2013, Elsevier. 

Heterostructured nanocomposites of reduced graphene oxide and cuprous oxide (rGO-Cu2O) 

have been prepared by the reduction of copper sulfate on graphene oxide for long-term antibacterial 

activities [94]. The P-type semiconductor of Cu2O may easily separate its electron-hole pairs under 

light condition. In this study, the fresh rGO-Cu2O nanocomposites generated more ROS compared to 

that of fresh rGO and Cu2O (Figure 11). The results indicated that the separation performance of 

photo-excited charges of Cu2O may be distinctly increased by the combination of Cu2O and rGO due 

to the improvement of interfacial charge transfer between Cu2O and rGO. The ROS antibacterial 

mechanism of rGO-Cu2O nanocomposites may be attributed to that the light-induced electrons were 

delivered from Cu2O to rGO to eliminate the recombination of the pairs of electrons and holes [95]. 

The photo-excited electrons and holes from Cu2O may be used for disinfection of bacteria [96]. 

Furthermore, rGO have played an important role for the acceptance of light-induced electrons from 

Cu2O to provide efficient charge transfer between the heterostructured nanocomposites of rGO-Cu2O 

and bacteria. The photo-excited electrons and holes may create intracellular ROS such as H2O2, OH 

and O2−. Eventually, the active substances of ROS could cause damage of nucleic acids, inactivation 

of intracellular protein, disability of the mitochondria and destruction of bacterial membrane. 

Figure 10. (a) UV-Vis absorption spectra of pure TiO2 nanoparticles, TiO2/GSs with TiO2/1.4 wt%,
TiO2/GSs with TiO2/4.2 wt% and TiO2/GSs with TiO2/7 wt%. (b) Viabilities of E. coli incubated with
various TiO2-based nanocomposites under visible light illumination for 12 h. The insets are the
corresponding photographs of agar plates. Reproduced with permission from ref. [88]. Copyright©
2013, Elsevier.

Heterostructured nanocomposites of reduced graphene oxide and cuprous oxide (rGO-Cu2O)
have been prepared by the reduction of copper sulfate on graphene oxide for long-term antibacterial
activities [94]. The P-type semiconductor of Cu2O may easily separate its electron-hole pairs under
light condition. In this study, the fresh rGO-Cu2O nanocomposites generated more ROS compared
to that of fresh rGO and Cu2O (Figure 11). The results indicated that the separation performance of
photo-excited charges of Cu2O may be distinctly increased by the combination of Cu2O and rGO
due to the improvement of interfacial charge transfer between Cu2O and rGO. The ROS antibacterial
mechanism of rGO-Cu2O nanocomposites may be attributed to that the light-induced electrons were
delivered from Cu2O to rGO to eliminate the recombination of the pairs of electrons and holes [95].
The photo-excited electrons and holes from Cu2O may be used for disinfection of bacteria [96].
Furthermore, rGO have played an important role for the acceptance of light-induced electrons from
Cu2O to provide efficient charge transfer between the heterostructured nanocomposites of rGO-Cu2O
and bacteria. The photo-excited electrons and holes may create intracellular ROS such as H2O2, ·OH
and ·O2

−. Eventually, the active substances of ROS could cause damage of nucleic acids, inactivation
of intracellular protein, disability of the mitochondria and destruction of bacterial membrane.
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Zinc oxide-selenium (ZnO-Se) heterojunction nanocomposites have been fabricated as antibacterial
agents for S. aureus [97]. For the control, ZnO nanoparticles showed the zone of inhibition as 3.0 cm for
S. aureus with visible light illumination. In the contrast, ZnO-Se nanocomposites revealed outstanding
antibacterial activity with a zone of inhibition as 5 cm for S. aureus with visible light illumination.
Furthermore, the bactericidal property of ZnO-Se nanocomposites remained for few days to inhibit
the growth of S. aureus. The enhancement of antibacterial activity of ZnO-Se nanocomposites could
be attributed to the increase of light-harvesting capability for sustainable production of ROS to kill
S. aureus (Figure 12). To investigate the role of ROS in the antibacterial mechanism, electron spin
resonance (ESR) was utilized to assess the types of ROS production from ZnO-Se nanocomposites.
The results of ESR experiments demonstrated that ZnO-Se nanocomposite may produce ROS, including
singlet oxygen and reactive OH species. Overall, the ZnO-Se heterojunction nanocomposites had long
term enhancement of their antibacterial activity with visible light illumination and therefore, may be a
potential antibacterial agent.

Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 17 

 

 

Figure 12. Antibacterial mechanisms of ZnO-Se nanocomposites with visible light illumination. 

Reproduced with permission from ref. [97]. Copyright ©  2020, Elsevier. 

3. Challenges and Opportunities 

In this review, we have compiled recent investigations of heterostructured nanomaterials as 

light-activated antibacterial agents in applications such as medicine, food safety, water sterilization 

and the textile industry (Table 1). These investigations have demonstrated that heterostructured 

nanomaterials may be high-performance antibacterial agents due to their synergistic effects under 

light irradiation. With synergistic effects, heterostructured nanomaterials exhibited excellent 

antibacterial activities based on the increase of ROS generation under light irradiation. Furthermore, 

the heterostructures of nanomaterials also inhibited the recombination of photon-induced 

electron/hole pairs for the increase of ROS formation to kill bacteria. Although various 

heterostructured nanomaterials have been shown to be light-activated antimicrobial agents, their 

antibacterial activities still need to be improved. For real clinical applications, the antibacterial 

efficiency of LAHNs should fit the requirement with a 4-log (99.99%) reduction in bacterial viability, 

which is one of the leading causes of nosocomial infections in the world. The first challenge to 

enhance the antimicrobial activity of LAHNs is to increase their synergistic effects. The development 

of LAHNs with novel compositions would be recommended. The second challenge to improve 

antibacterial activity for light-activated antimicrobial agents is to combine with other optical 

properties. For example, the photothermal effect is also used to kill bacteria with light irradiation. 

Therefore, with ROS generation and photothermal effects, LAHNs may provide better antimicrobial 

activities. The third challenge for light-activated antimicrobial agents is to increase their 

biocompatibility for the clinic application. To date, the cytotoxicity of LAHNs is still too high for 

clinic tests. However, in vitro and in vivo studies of light-activated antimicrobial agents of 

heterostructured nanomaterials are a critical step for future clinic application. Overall, to realize the 

antibacterial agents of LAHNs, great efforts are still needed for the improvement of their antibacterial 

activities. With intensive studies, we believe that antibacterial agents of LAHNs can be utilized as the 

important antibacterial agents in the near future. 

Figure 12. Antibacterial mechanisms of ZnO-Se nanocomposites with visible light illumination. Reproduced
with permission from ref. [97]. Copyright© 2020, Elsevier.



Nanomaterials 2020, 10, 643 11 of 16

3. Challenges and Opportunities

In this review, we have compiled recent investigations of heterostructured nanomaterials as
light-activated antibacterial agents in applications such as medicine, food safety, water sterilization
and the textile industry (Table 1). These investigations have demonstrated that heterostructured
nanomaterials may be high-performance antibacterial agents due to their synergistic effects under light
irradiation. With synergistic effects, heterostructured nanomaterials exhibited excellent antibacterial
activities based on the increase of ROS generation under light irradiation. Furthermore, the
heterostructures of nanomaterials also inhibited the recombination of photon-induced electron/hole
pairs for the increase of ROS formation to kill bacteria. Although various heterostructured nanomaterials
have been shown to be light-activated antimicrobial agents, their antibacterial activities still need
to be improved. For real clinical applications, the antibacterial efficiency of LAHNs should fit the
requirement with a 4-log (99.99%) reduction in bacterial viability, which is one of the leading causes of
nosocomial infections in the world. The first challenge to enhance the antimicrobial activity of LAHNs
is to increase their synergistic effects. The development of LAHNs with novel compositions would be
recommended. The second challenge to improve antibacterial activity for light-activated antimicrobial
agents is to combine with other optical properties. For example, the photothermal effect is also used to
kill bacteria with light irradiation. Therefore, with ROS generation and photothermal effects, LAHNs
may provide better antimicrobial activities. The third challenge for light-activated antimicrobial agents
is to increase their biocompatibility for the clinic application. To date, the cytotoxicity of LAHNs is still
too high for clinic tests. However, in vitro and in vivo studies of light-activated antimicrobial agents of
heterostructured nanomaterials are a critical step for future clinic application. Overall, to realize the
antibacterial agents of LAHNs, great efforts are still needed for the improvement of their antibacterial
activities. With intensive studies, we believe that antibacterial agents of LAHNs can be utilized as the
important antibacterial agents in the near future.

Table 1. Light-activated nanomaterials for antibacterial application in this review.

Nanomaterials Light harvester Light Source Bacteria References

Ag-TiO2 Ag UV light B. subtilis and P. putida [68]
TiO2/AgVO3 AgVO3 visible light E. coli [75]

Ag/TiO2/cellulose Ag UV light E. coli [81]
Alginate/Au-TiO2 Au visible light S. aureus and E. coli [82]

Li-TiO2/LDPE Li visible light S. aureus [83]
Cu-TiO2 Cu visible light E. coli [84]

TiO2/α-Fe2O3 α-Fe2O3 visible light E. coli [85]
U,Bi-TiO2 N and Bi visible light S. sanguinis and A. naeslundii [86]

CTS/MTiO2 melon visible light S. aureus [87]
TiO2/GSs TiO2 visible light E. coli [88]

rGO-Cu2O Cu2O sunlight S. aureus and E. coli [94]
ZnO-Se Se visible light S. aureus [97]
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