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Abstract: An Aflatoxin B1 (AFB1) biosensor was fabricated via an Ag nanoparticles assembly
on the surface of a porous anodized aluminum (PAA) membrane. First, the Raman reporter
4-Aminothiophenol (4-ATP) and DNA (partially complementary to AFB1 aptamer) were attached to
the surface of Ag nanoparticles (AgNPs) by chemical bonding to form a 4-ATP-AgNPs-DNA complex.
Similarly, the surface of a PAA membrane was functionalized with an AFB1 aptamer. Then, the PAA
surface was functionalized with 4-ATP-AgNPs-DNA through base complementary pairing to form
AgNPs-PAA sensor with a strong Raman signal. When AFB1 was added, AgNPs would be detached
from the PAA surface because of the specific binding between AFB1 and the aptamer, resulting in a
reduction in Raman signals. The detection limit of the proposed biosensor is 0.009 ng/mL in actual
walnut and the linear range is 0.01–10 ng/mL. The sensor has good selectivity and repeatability; it can
be applied to the rapid qualitative and quantitative detection of AFB1.

Keywords: surface-enhanced Raman scattering (SERS); Ag nanoparticles; porous anodized aluminum
membrane; Aflatoxin B1

1. Introduction

Aflatoxins are listed as Class I carcinogen by the World Health Organization [1]. Among them,
Aflatoxin B1 (AFB1) has increasingly attracted public attention because of its strongest toxic effect
and high carcinogenicity [2–4]. Aflatoxin is widely used in food ingredients such as peanuts, milk,
cereals [5,6]. It is not easily inactivated during cooking. Due to the serious harm to humans and
animals, many countries have strict regulations on the limits of aflatoxins B1 in foods [7,8]. For example,
the limit in Romania and European Commission (EU) is 2 ng/mL, and in Australia is 5 ng/mL.

There are many traditional techniques that have been developed to detect AFB1 in multifarious
samples, including gas chromatography (GC) [9], high-performance liquid chromatography
(HPLC) [10], enzyme-linked immunosorbent assay (ELISA) [11,12], and LC coupled with tandem mass
spectrometry (LC–MS/MS) [13]. However, these methods usually need precise equipment, professional
technical personnel, and generally require hours or days to obtain data. Therefore, it is necessary to
develop a reliable, convenient method for detecting AFB1

Surface-enhanced Raman scattering (SERS) has been applied in many fields [14], such as food
chemistry [15–17], environmental science [18], and biotechnology [19–21]. At present, there are many
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reports about detection of AFB1 via SERS technology [22–26]. A popular SERS substrate consists
of noble metallic nanostructures, which can sustain surface plasmon resonance and enhancing the
signal of Raman reporter [27–29]. Nanorods, nanostars [30] and nanoparticles [31] are often used
as substrates. Among them, Ag nanoparticles (AgNPs) are a common substrate due to its simple
preparation and higher activity than gold and copper [26]. Li et al. [29]. It has been reported that the
gold nanostar core–Ag nanoparticle satellite sensor can be used to detect AFB1 content in peanut milk.
The regression coefficient was 0.995 and the limit of detection (LOD) was 0.48 pg/mL. However, this
method will cause the dispersed nanoparticles easily agglomerate in solution. As a typical example
of a biosensor, a porous anodized aluminum (PAA) membrane has the characteristic features of a
surface modification, good mechanical stability and easy preparation [32–36]. If a PAA membrane is
combined with SERS technology, it can prevent the aggregation of free nanoparticles in solution and
also reduce the relative standard deviation [16,20]. Liu et al. [20] showed that vancomycin (Van)-coated
Ag nanoparticles were used as a SERS substrate, which can be used for label-free bacterial analysis on
a PAA nanochannel array. However, this method can only provide qualitative analysis of the sample.

In this work, a new type of AgNPs-PAA biosensor was fabricated to detect AFB1 based on aptamer
competition recognition, as shown in Scheme 1. First, 4-ATP-AgNPs-DNA complexes were prepared
by modifying DNA (partially complementary to the AFB1 aptamer) and 4-aminothiophenol (4-ATP,
the Raman reporter) on the surface of AgNPs. At the same time, the surface of the PAA membrane
was functionalized with AFB1 aptamer. Then, the PAA membrane surface was functionalized with
4-ATP-AgNPs-DNA by the base-pairing of aptamer and DNA. In the presence of AFB1, it will compete
with DNA for aptamers, resulting in the detachment of ATP-AgNPs-DNA from a PAA membrane and
a reduction in 4-ATP Raman intensity. This method can achieve high sensitivity detection of AFB1

in food.
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Scheme 1. Schematic illustration of the fabrication of Surface-enhanced Raman scattering (SERS) active
Ag nanoparticles-porous anodized aluminum (AgNPs-PAA) sensor assemblies for the detection of
Aflatoxin B1 (AFB1).

2. Materials and Methods

2.1. Reagents and Materials

Silver nitrate (AgNO3) was bought from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). Sodium citrate (Na3C6H5O7·2H2O) was supplied by Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). (3-Aminopropyl) trimethoxysilane (APTMS) and 4-Aminothiophenol
(4-ATP, C6H7NS) were bought from Adamas Reagent, Ltd., (Shanghai, China). AFB1 aptamer (NH2-5′-
GTTGGGCACGTGTTGTCTCTCTGTGTCTCGTGCCCTTCGCTAGGCCCACA-3′) and SH-DNA
(HS-5′-CAGAGAGACAACACGTGCCCAAC-3′, partially complementary of AFB1 aptamer) were
bought from Sangon Biotech Co., Ltd. (Shanghai, China). Aluminum foil with a thickness of 0.1 mm
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and a purity of 99.999% was from Trillion Metals Co., Ltd. (Beijing, China). All other reagents were
analytically pure and used without purification. All of the solutions were prepared with ultrapure
water (Milli-Q, Merck, Darmstadt, Germany).

2.2. Instrument

UV-Visible absorption spectra were obtained with a (Hitachi, U-3900H) spectrometer (Beijing,
China). Transmission electron microscopy (TEM, JEOL, JEM-1400, Akishima City, Tokyo, Japan) was
performed at 80 kV to determine the sizes of AgNPs.

Scanning electron microscopy (SEM) was performed at 5 kV to observe the shape of PAA (Tescan
Co., Ltd., TMIRA3, Czech Republic). Portable Raman spectrometer (Ocean Optics, SR-510 Pro, Beijing,
China) was used to acquire the spectral signals.

2.3. Preparation of 4-ATP-AgNPs-DNA

At first, 50 nm AgNPs were prepared via reducing sodium nitrate solution with sodium citrate.
2 mL of 1% sodium citrate solution was quickly added to the boiling silver nitrate solution (100 mL,
0.18 g/L) and reacted for 1 h. The final color of the solution was yellow-green, and it was stored at 4 ◦C
after the silver colloid was cooled down. One mL AgNPs were centrifuged (8000 rpm, 10 min) and
re-dispersed in 900 µL 10 mM PBS (pH 7.4) buffer. Then, 10 µL 10 µM SH-DNA (complementary to
aptamer), 10 µL 10 µM 4-ATP and 100 µL 100 mM sodium chloride solution was added sequentially.
Next, it was incubated at 37 ◦C for 8 h to form the 4-ATP-AgNPs-DNA complex. After the reaction,
the excess DNA was removed by centrifugation (8000 rpm, 10 min) and washed 3 times. Finally,
the precipitate was suspended in 1 mL 10 mM PBS buffer.

2.4. Preparation and Surface Modification of PAA Membrane

As previously reported, a pore diameter of 20 nm PAA membrane was prepared by a two-step
anodization method [37]. Briefly, high-purity (99.999%) aluminum foils were annealed at 500 ◦C for 2 h.
Then the aluminum was placed in acetone for 5 min. The aluminum foils were put into the mixture
of perchloric acid/ethanol (1:4, v/v) for electrochemical polishing (20 V, 3 min) before the anodization.
The first anodization was carried out under a constant cell potential of 27 V in 0.3 M sulfuric acid
solution at 2 ◦C for 2 h. The first anodization aluminum was foiled in a mixture of 6 wt% phosphoric
acid and 1.8 wt% chromic acid at 60 ◦C for 40 min. The conditions of second anodization were the
same as above, and the oxidation time was 10 h. After the anodization was completed, the aluminum
foils put in to the mixture of perchloric acid/ethanol (1:1, v/v) for electrochemical peeling (37 V, 3 s).

The PAA membrane was boiled in 30% H2O2 for 15 min. Then, PAA membrane was soaked in 5%
APTMS (acetone solution) for 6 h to surface silanization, rinsed thoroughly with acetone and water,
followed by drying at 110 ◦C for 1 h to form a silane layer. Next, it was soaked in 2.5% glutaraldehyde
at 4 ◦C for overnight. PAA membrane was immersed at 20 µM AFB1 aptamer for 12 h at 4 ◦C. Finally,
the remained aldehyde groups on the PAA surface were terminated with 0.2% n-propylamine, and
then the PAA was washed with NaCl (0.1 M) solution and ultrapure water following this order.

2.5. Fabrication of AgNPs-PAA Biosensor

The AgNPs-PAA sensor was fabricated as follows. Briefly, PAA membrane was immersed in
300 µL of 4-ATP-AgNPs-DNA in the dark for 2 h, then washed with water. During this process,
the color of the PAA membrane changed from white to gray. Then tape was used to connect the side
without AgNPs to the aluminum foil for easy detection.

2.6. Detection of AFB1 with AgNPs-PAA Biosensor

To investigate whether the AgNPs-PAA sensor can be used for AFB1 detection, the AgNPs-PAA
was immersed in 300 µL AFB1 standard solution (methanol as a solvent) of different concentrations
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(0, 0.1, 0.5, 1, 5, 10 ng/mL) in the dark for 2 h, then washed with water and dried at room temperature.
Finally, the Raman signal of the sensor was detected by the Raman spectrum. The Raman probe was
used to detect the PAA membrane in a card slot (Ocean Optics, Beijing, China). The probe working
distance was 7.5 mm and the spot diameter was less than 2 mm. The excitation wavelength of the
Raman spectrum was 785 nm. Without special introduction, the measured Raman intensity was from
three different points on the PAA membrane, and the integration time was 3 s.

At the same time, the AgNPs-PAA biosensor was also used to detect AFB1 in walnuts. Before
detecting, walnut samples need to be pre-treated as follows: 1.00 g of walnuts sample was ground and
dried thoroughly. Two mL of methanol/water (volume ratio of 8:2) was added. Then, it was sonicated
for 0.5 h and centrifuged for 20 min (12,000 rpm). One mL extraction solution was collected and AFB1

was added to form different concentration of AFB1 (0, 0.01, 0.05, 0.1, 1, 5, and 10 ng/mL). The following
steps were consistent with the detection of the AFB1 described above.

2.7. Detection of Specificity and Repeatability in AgNPs-PAA Biosensor

To investigate the specificity of the prepared biosensor, three mycotoxins (AFG1, AFB2 and OTA)
were used as negative control 10 ng/mL of AFG1, AFB2, OTA and AFB1 standard were added to walnut
samples to prepare corresponding sample solutions. The following steps were consistent with the
detection of the AFB1.

To study the repeatability of the sensor, the same batch of 30 AgNPs-PAA biosensors were soaked
in 0.1 ng/mL AFB1 spiked walnut sample for 2 h in the dark, then washed with water and dried at
room temperature. Finally, the Raman signals of the sensor were detected. The detection process was
the same as the detection AFB1 described above.

3. Results and Discussion

3.1. Representation of Sensors

The TEM image of AgNPs as shown in Figure 1a, the average size of the AgNPs ranged from 50
to 60 nm. As shown in Figure 1b, the UV-vis absorption peak width of AgNPs is narrow, indicating the
particle size of AgNPs is average. The localized surface plasmon resonance (LSPR) peak of the AgNPs
is 406.5 nm. The spectrum of 4-ATP-AgNPs-DNA shows a red shift of 6.5 nm. This indicates that
DNA and 4-NTP are attached on the surface of AgNPs and changed the constant around the dielectric
AgNPs. On the other hand, a broad band appeared at 625 nm can be prove that the distance between
the AgNPs has changed and some small aggregates have formed after surface modification. Figure 1c
shows that the average pore diameter of the PAA membrane is about 20 nm, and the arrangement is
regular. The surface of the membrane is clean, which facilitates functional modification. Figure 1d
shows the SEM image of PAA membrane functionalized with AgNPs. A large number of AgNPs based
pairing of aptamer and DNA, are captured on the surface of the PAA membrane to form a uniform Ag
layer. It means that the 4-ATP-AgNPs-DNA biosensor has been fabricated successfully.
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Figure 1. The characteristics of the biosensor. (a) Transmission electron microscopy (TEM) image
of AgNPs. (b) Ultraviolet-visible (UV-Vis) absorption spectra of AgNPs and 4-Aminothiophenol
(4-ATP)-AgNPs-DNA. (c) Scanning electron microscopy (SEM) image of top surface of PAA membrane.
(d) SEM image of PAA membrane functionalized with AgNPs (Inset: magnified view).

3.2. Selection of Substrate in SERS Sensor

The Raman signal of 4-ATP is difficult to detect in aqueous solution [29], so the Raman detection
took place after drying. The Raman signal of 4-ATP solution with and without AgNPs is presented
in Figure 2. Compared with no added AgNPs (Figure 2, blue curve), the addition of AgNPs can
significantly enhance the characteristic peak of Raman reporter 4-ATP and the Raman intensity of
4-ATP has a maximum value at 1080 cm−1 (Figure 2, red curve). Therefore, in the subsequent Raman
analysis, AgNPs are used to enhance the signal, and the peak intensity at 1080 cm–1 was used for SERS
intensity analysis.

In order to explore whether the PAA membrane is a suitable Raman substrate, it is compared with
other Raman substrates, such as glass sheets and silicon wafers, as shown in Figure 2. When the glass
sheet was used as a Raman substrate, a broad peak appears at 1400 cm−1 [38] and the characteristic
peak of 4-ATP (1080 cm−1) is small (Figure 2, black curve). Compared with the Raman signal using a
silicon wafer as a substrate (Figure 2, green curve), the Raman signal of 4-ATP with the PAA membrane
as the substrate is stronger (Figure 2, red curve). The reason is that the rough surface of PAA promotes
Raman enhancement effect in some extent [39]. In addition, the PAA membrane does not affect the
signal of surface plasmon enhancement (Figure 2, pink curve). Therefore, the PAA membrane is
selected as the Raman substrate.
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Figure 2. Raman spectroscopy measurement on different substrates.

3.3. SERS Detection of AFB1 in Standard Solution and Walnut Sample

Figure 3a shows the Raman spectra of AFB1 at different concentrations detected by the AgNPs-PAA
sensor. The SERS intensity of 4-ATP decreases with the increase of AFB1 concentration in the range of
0.1 to 10 ng/mL. This is because AFB1 preferentially binds to aptamers, causing 4-ATP-AgNPs-DNA to
detach from the surface of PAA. Therefore, the Raman signal is decreased. Figure 3b is a linear plot of
Raman signal intensity at 1080 cm−1 versus AFB1 concentration, which is linearly correlated in the
range of 0.1 to 10 ng/mL. The linear regression equation is y = 14,582.673 − 2285.185lgx, the correlation
coefficient R2 = 0.977, and the limit of detection of AFB1 is 0.083 ng/mL (LOD = 3SD/k, where SD and k
are the standard deviation of the blank and the slope of the calibration graph respectively).

The sensor’s ability to detect interstitial samples has been verified through the addition of AFB1

in walnut samples. When the walnut samples were tested, it was found that the concentration is not
within the linear range of AFB1 standard solution mentioned above (Figure 3a,b). This phenomenon
may be due to the presence of some complex compounds (such as fatty acids, carbohydrates [40,41])
in the walnut samples that interfere with the Raman signal. Therefore, the calibration curve of the
standard sample is not applicable to the actual sample, and a new standard curve will be required
when the actual sample is tested. Here, AFB1 standard solutions of different concentrations (0, 0.01,
0.05, 0.1, 1, 5, 10 ng/mL) were added to walnut samples to create a new standard curve and calculate the
concentration of AFB1 in walnuts, as demonstrated in Figure 3c,d. The Raman signal decreases with
increasing AFB1 concentration (Figure 3c). Figure 3d shows the linear relationship between Raman
intensity of 4-ATP and AFB1 concentration at 1180 cm−1. The concentration range of AFB1 is 0.01
to 10 ng/mL. The linear regression equation is y = 6555.400 − 1528.247lgx, the correlation coefficient
R2 = 0.980, and the limit of detection is 0.009 ng/mL. After calculation, AFB1 in walnut is approximately
0.002 ng/mL. It can be considered that the concentration of AFB1 in walnut sample is negligible, because
the calculation result is lower than the minimum detection limit of the sample. However, the method
is still suitable for the detection of actual samples, because the EU limit (2 ng/mL) for AFB1 in food is
within the linear range of the method.
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3.4. Specificity and Repeatability of AgNPs-PAA Biosensor

As shown in Figure 4a, the concentrations of all mycotoxins are 10 ng/mL, and the test results
are the similar level as the blank samples. In contrast, the intensity of SERS obtained by testing AFB1

is lower than that of the negative control. The results confirm that the AgNPs-PAA sensor has an
excellent selectivity to detect AFB1 based on the specific recognition of the AFB1 aptamer.
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Figure 4. Specificity and repeatability of AgNPs-PAA sensor. (a) SERS intensity of the sensor to detect
AFB1, AFB2, AFG1, OTA. The concentration of samples was 10 ng/mL. Error bars show the standard
deviation of three experiments; (b) SERS spectra of 0.1 ng/mL AFB1 spiked samples, repeated 30 times.

Signal instability is a common situation in Raman detection, which is caused by the uneven
distribution of nanoparticles during the fabrication process of SERS substrates. The detection efficiency
of AgNPs-PAA sensor is affected from reproducibility. The reproducibility of this method was studied.
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The statistical Raman spectrum is shown in Figure 4b. The relative standard deviation (RSD) of the
Raman peak at 1180 cm−1 is 11.14%. This indicates that the AgNPs-PAA sensor has good reproducibility
in actual sample detection.

4. Conclusions

In this study, an AgNPs-PAA biosensor is constructed based on aptamer competition recognition
to achieve rapid detection of AFB1. The results show that Raman intensity decreases as the AFB1

concentration increasing. There is a good linear relationship between the range 0.01–10 ng/mL
(R2 = 0.980) and the detection limit is approximately 0.009 ng/mL in actual samples. The sensor has
good selectivity and repeatability and it can be applied to the rapid qualitative and quantitative
detection of AFB1.
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