
nanomaterials

Article

Role of Rotating Cylinder toward Mixed Convection
inside a Wavy Heated Cavity via Two-Phase
Nanofluid Concept

Ammar I. Alsabery 1,2 , Mohammad Ghalambaz 3,4 , Taher Armaghani 5, Ali Chamkha 6,7,*,
Ishak Hashim 2 and Mohsen Saffari Pour 8,9

1 Refrigeration & Air-conditioning Technical Engineering Department, College of Technical Engineering, The
Islamic University, Najaf 54001, Iraq; alsabery_a@ukm.edu.my

2 Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia,
UKM Bangi 43600, Selangor, Malaysia; ishak_h@ukm.edu.my

3 Metamaterials for Mechanical, Biomechanical and Multiphysical Applications Research Group, Ton Duc
Thang University, Ho Chi Minh City 758307, Vietnam; mohammad.ghalambaz@tdtu.edu.vn

4 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
5 Department of Engineering, Mahdishahr Branch, Islamic Azad University, Mahdishahr 75915-35618, Iran;

armaghani.taher@yahoo.com
6 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
7 Institute of Theoretical and Applied Research (ITAR), Duy Tan University, Hanoi 100000, Vietnam
8 Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;

mohsensp@kth.se
9 Division of Processes, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
* Correspondence: alichamkha@duytan.edu.vn

Received: 14 April 2020; Accepted: 31 May 2020; Published: 9 June 2020
����������
�������

Abstract: The mixed convection two-phase flow and heat transfer of nanofluids were addressed
within a wavy wall enclosure containing a solid rotating cylinder. The annulus area between the
cylinder and the enclosure was filled with water-alumina nanofluid. Buongiorno’s model was applied
to assess the local distribution of nanoparticles in the host fluid. The governing equations for the mass
conservation of nanofluid, nanoparticles, and energy conservation in the nanofluid and the rotating
cylinder were carried out and converted to a non-dimensional pattern. The finite element technique
was utilized for solving the equations numerically. The influence of the undulations, Richardson
number, the volume fraction of nanoparticles, rotation direction, and the size of the rotating cylinder
were examined on the streamlines, heat transfer rate, and the distribution of nanoparticles. The
Brownian motion and thermophoresis forces induced a notable distribution of nanoparticles in the
enclosure. The best heat transfer rate was observed for 3% volume fraction of alumina nanoparticles.
The optimum number of undulations for the best heat transfer rate depends on the rotation direction
of the cylinder. In the case of counterclockwise rotation of the cylinder, a single undulation leads to
the best heat transfer rate for nanoparticles volume fraction about 3%. The increase of undulations
number traps more nanoparticles near the wavy surface.

Keywords: mixed convection; thermophoresis and Brownian motion; wavy cavity; two-phase
nanofluid concept; wavy heater; rotating circular cylinder

1. Introduction

Natural convection and heat transfer mechanisms in the annulus spaces have been the topic of
many pioneer investigations due to its essential engineering applications. Such tools into enclosed
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spaces give strong non-linear behavior due to the effective coupling between the flow and heat
equation. Shu et al. [1] modeled the free convection heat transfer within a square outer cylinder and
a circular central cylinder. The authors assumed an isothermal hot temperature at the cylinder and
cold isothermal temperature at the enclosure boundaries. Shu et al. [1] probed the influence of the
location of a cylinder toward the measure of the heat transfer and fluid circulation. They found that
the top portion within the enclosure boundaries and cylinder has a significant use in the formation
of the natural convection plume. In another study, Shu and Zhu [2] investigated the outcome of the
aspect ratio (the ratio of cavity size/cylinder diameter) at the natural convection heat transfer, and
they reported that both Rayleigh number and aspect ratio are critical to the flow patterns and thermal
fields. The natural convection heat transfer in the annulus space among a cylinder and a square was
also investigated by Ding et al. [3], Angeli et al. [4], and Alsabery et al. [5].

The present study involves the conjugate heat transfer, rotating cylinder, wavy wall enclosures
and nanofluids. Hence, the literature works related to these topics are explored here. The natural
convection heat transfer in enclosures containing solid thermal conductive blocks has been studied in
some recent studies. The presence of a solid block contributes to the heat transfer inside the enclosure
while it affects the fluid circulation. This type of problems is classified as conjugate heat transfer as the
liquid and solid are in thermal interaction. Kuznetsov and Sheremet [6] modeled the free convection
within an air-filled enclosure containing a solid block. The block enclosed a heat source. Jami et al. [7]
examined the heat transfer in a cavity filled including solid cylinder at various locations. These authors
reported that the area of the cylinder is the critical parameter testing the flow circulation and heat
transfer.

Sheremet [8] examined the mechanism of heat transfer into a cylindrical cavity holding a solid
heated block toward the bottom portion. The results show that a cylindrical cavity can be of essential
advantages for the cooling of electronic components. Butler et al. [9] experimentally inspected the
conjugate natural convection mechanism and heat transfer over a cylinder enclosed inside an air-filled
cubic enclosure. The left and right vertical sidewalls of the cavity were at temperature difference
while the other walls were insulated. The observations indicate that the presence of the cylinder could
interfere with the structure of natural convection flow circulation in the enclosure. Various aspect of
conjugate heat transfer toward a cavity such as radiation [10], mixed convection [11], and turbulent
effects [12] have been addressed during past years.

The presence of a moving or rotating object changes the natural convection flow to the mixed
convection. The moving objects have found numerous applications in engineering designs. For
instance, a shaft of turbine or pump enclosed in a shell, rotation of gears in a casing, vibration of
a thermal fin in an enclosed space, and fluid bearings with a slow rotation, and the receiver of a
solar collector are just a few examples. Costa and Raimundo [13] displayed the combined convection
and heat transfer mechanisms within a square hollow holding a rotating solid cylinder. The vertical
surfaces of the cavity occurred with cold and hot temperatures, and the top and bottom surfaces
remained insulated. The cylinder was rotating at a certain angular velocity and contributed into the
flow circulation and heat transfer. The results show that the cylinder’s size induces a notable impact
on the fluid circulation and transfer since it confines the liquid area for fluid flow inside the cavity.
However, the angular velocity of the cylinder is another important parameter. The cylinder rotation
could improve the rate of the heat transfer at the enclosure aspect ratio (the cylinder radius to the
cavity size) is large. However, in the case of small aspect ratio (small cylinder), the rotation of the
cylinder could deteriorate the overall heat transfer inside the cavity. Wang et al. [14] studied the mixed
convection technique and entropy generation of a rotating hollow cylinder within a square hollow.
They found that the increase in rotation velocity boosts the total entropy generation. Many aspects of
mixed convection and heat transfer mechanisms within the geometry of a rotating cylinder in a square
cavity have been addressed. For example, the appearance of a porous medium layer [15], the location
of rotating cylinder [16], rotation speed [17,18], and two rotating cylinders [19] have been explored in
the literature.
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Enclosures with wavy (curved) walls have numerous practical applications in solar systems, heat
exchangers, and reactors. Hence, the convective heat transfer in enclosures with wavy walls has been
investigated in numerous recent studies. Adjlout et al. [20] questioned the natural convection flow,
including heat transfer in a tilted wavy wall cavity. They explored the influence of the number of the
undulations of the wall on the heat transfer. The undulation of hot wall reduced the heat transfer
rate for an inclination angle greater than 75◦. Bhardwaj et al. [21] analyzed the natural convection
heat transfer toward a porous-filled triangular cavity including a curved cold wall. They found that
undulations on the cold wall improve the heat transfer rate. Considering the wavy wall forms, the
entropy generation [22,23], non-uniform heating [24], partially heated wall [25,26], and micropolar
fluids [27] have been investigated in recent years.

Using nanotechnology in the improvement of heat transfer, by scattering nanosized solids with
high conductivity such as metal, metal oxide, and carbon single- and multi-layer tube in such base
fluids as water, oil, and other standard coolants has been investigated in the past decades [28]. Using
nanofluids is considered as a proper choice in fluid-based cooling. Heat transfer of nanofluids has,
therefore, a wide variety of applications such as cooling electronic devices and chips. Considering the
considerable bulk of calculations and hence the generated heat, CPU and electronic chips need fluids
to be cooled, so nanofluids are cutting edge technology in this regard [29,30]. Therefore, modeling
the nanofluid heat transfer is a significant problem in this field. Accurate modeling of the motion of
nanoparticles into the base liquid has complexities. One of the recommended models for simulating the
heat transfer of nanofluids is Buongiorno’s two-phase approach. In this model, two bold movements
of nanoparticles, due to changes of temperature and volume fraction distribution, are analyzed as
valid parameters, along with other aspects of the classic equations of survival [31]. In addition, in this
model, the non-uniform distribution of nanoparticles is studied. On the other hand, the migration
of particles has an important role in heat transfer of nanofluid. As shown by Buongiorno [31], two
migration term called Brownian movement and thermophoresis effects have a significant role in heat
transfer of nanofluids. Many researchers have used Buongiorno’s two-phase model to simulate the
flow and heat transfer of nanofluids [32–39].

The accordance of mixed convection heat transfer due to the rigid rotating body is one of the
challenges of nanofluids heat transfer, about which few articles have been published. In this study, by
using Buongiorno’s model, mixed convection of a nanofluid in the cavity, along with warm corrugated
wall and a rigid rotating body, was analyzed. To the authors’ knowledge and according to the
literature mentioned above, the current study is unique and initiative. Moreover, when a nanofluid
is synthesized, it is placed into the application to see how the synthesized nanofluid could improve
the heat transfer. Various aspects, such as dynamic viscosity and migration of nanoparticles, would
participate in the heat transfer behavior of a nanofluid.

2. Mathematical Formulation

The mixed convective heat transfers into a wavy-walled cavity by length L and continues as
a rotating solid cylinder inside the center with radius r, as outlined in Figure 1. The left vertical
surface preserves a fixed cold temperature (Tc) while the right wavy surface remains at a higher
isothermal temperature (Th). The bottom and top surfaces are maintained adiabatic. All the edges of
the examined domain are expected to be impermeable, the fluid inside the hollow is a water-based
nanofluid having Al2O3 nanoparticles, and the Boussinesq approximation remains applicable. In the
present laminar flow study, the surface effects on the concentration distribution of nanoparticles are



Nanomaterials 2020, 10, 1138 4 of 22

neglected. Examining the assumptions mentioned above, the continuity, momentum, and energy
equations regarding the laminar and steady convection are as follows:

∇ · v = 0, (1)

ρn f v · ∇v = −∇p +∇ · (µn f∇v) + (ρβ)n f (T − Tc)~g, (2)

(ρCp)n f v · ∇T = ∇ · (kn f∇T)− Cp,p Jp · ∇T, (3)

v · ∇ϕ = − 1
ρp
∇ · Jp, (4)

Since the inner cylinder denotes a moving mass block including an associated force, the energy
equation up the solid cylinder is:

(ρCp)svs · ∇T = ∇ · (ks∇T), (5)

where v is the velocity vector, vs = r×ω is the vector velocity over the solid cylinder surface, ~g means
the gravitational acceleration vector, ϕ denotes the local nanoparticles volume fraction, and Jp is the
mass flux of nanoparticles. According to the two-phase nanofluid model, nanoparticles mass flux can
be formulated as:

Jp = Jp,B + Jp,T , (6)

Jp,B = −ρpDB∇ϕ, DB =
kbT

3πµ f dp
, (7)

Jp,T = −ρpDT
∇T
T

, DT = 0.26
k f

2k f + kp

µ f

ρ f T
ϕ. (8)

Tc

LL

L g r
Θ

Solid

Water

Al O2 3

w

0 0( ,    )x y

Tc
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L g r
Θ
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(a) Case 1 (ω) (b) Case 2 (−ω)

Figure 1. Schematic diagram of the physical model together with the coordinate system for: (a) Case 1,
counterclockwise (CCW); and (b) Case 2, clockwise (CW).

The thermophysical properties of nanofluids including effective thermal diffusivity, heat
capacitance, thermal expansion coefficient, and effective density are addressed as, respectively,

αn f =
kn f

(ρCp)n f
, (9)

(ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)p, (10)

(ρβ)n f = (1− ϕ)(ρβ) f + ϕ(ρβ)p, (11)

ρn f = (1− ϕ)ρ f + ϕρp. (12)



Nanomaterials 2020, 10, 1138 5 of 22

The thermal conductivity ratio of Al2O3-water nanofluids calculated by the Corcione model [40]
is:

kn f

k f
= 1 + 4.4Re0.4

B Pr0.66

(
T

Tf r

)10(
kp

k f

)0.03

ϕ0.66, (13)

where ReB is shown as [40]:

ReB =
ρ f uBdp

µ f
, uB =

2kbT
πµ f d2

p
. (14)

Here, kb = 1.380648× 10−23(J/K) is the Boltzmann constant, l f = 0.17 nm is the mean path of
fluid particles, and d f is the molecular diameter of water given by Corcione [40] as:

d f =
6M

N∗πρ f
, (15)

where M denotes the molecular weight of the base liquid, N∗ means the Avogadro number, and ρ f is
the density of the base liquid toward the regular temperature (310 K).

We propose the following non-dimensional variables:

X =
x
L

, Y =
y
L

, V =
vL
ν f

, P =
pL2

ρn f ν2
f
, ϕ∗ =

ϕ

φ
,

D∗B =
DB
DB0

, D∗T =
DT
DT0

, δ =
Th − Tc

Tc
,

θ =
T − Tc

Th − Tc
, θs =

Ts − Tc

Th − Tc
, R =

r
L

, Ω =
ωL2

α f
. (16)

Applying the variables mentioned above, the following dimensionless governing equations are
derived:

∇ ·V = 0, (17)

V · ∇V = −∇P +
ρ f

ρn f

µn f

µ f

1
Re
∇2V +

(ρβ)n f

ρn f β f
Ri · θ, (18)

V · ∇θ =
(ρCp) f

(ρCp)n f

kn f

k f

1
Re · Pr

∇2θ +
(ρCp) f

(ρCp)n f

D∗B
Re · Pr ·Le

∇ϕ∗ · ∇θ

+
(ρCp) f

(ρCp)n f

D∗T
Re · Pr ·Le · NBT

∇θ · ∇θ

1 + δθ
, (19)

V · ∇ϕ∗ =
D∗B

Re · Sc
∇2 ϕ∗ +

D∗T
Re · Sc · NBT

· ∇
2θ

1 + δθ
, (20)

Vs · ∇θ =
(ρCp)n f

(ρCp)s

ks

kn f
∇2θ, (21)

where V shows the dimensionless vector of velocity (U0, V0), DB0 = kbTc
3πµ f dp

is the reference coefficient of

Brownian diffusion
(

D∗B = DB
DB0

)
, DT0 = 0.26

k f
2k f +kp

µ f
ρ f Tc

φ is the reference coefficient of thermophoretic

diffusion
(

D∗T = DT
DT0

)
, Sc =

ν f
DB0

is Schmidt number, NBT = φDB0Tc
DT0(Th−Tc)

is the parameter of diffusivity

ratio (Brownian diffusivity/thermophoretic diffusivity), Le =
k f

(ρCp) f φDB0
is the Lewis number, Re =
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U0L
ν f

is Reynolds number, Ri = Gr
Re2 is Richardson number, and Pr = ν f /α f is the Prandtl number for

the base fluid. The dimensionless boundary conditions of Equations (17)–(21) are:

On the adiabatic top horizontal wall:

U = V = 0,
∂ϕ∗

∂n
= 0,

∂θ

∂n
= 0, (22)

On the cold left vertical wall:

U = V = 0,
∂ϕ∗

∂n
= −

D∗T
D∗B
· 1

NBT
· 1

1 + δθ

∂θ

∂n
, θ = 0, (23)

On the heated right wavy wall: A(1− cos(2NπX)), 0 ≤ Y ≤ 1

U = V = 0,
∂ϕ∗

∂n
= −

D∗T
D∗B
· 1

NBT
· 1

1 + δθ

∂θ

∂n
, θ = 1, (24)

On the adiabatic bottom horizontal wall:

U = V = 0,
∂ϕ∗

∂n
= 0,

∂θ

∂n
= 0, (25)

θ = θs, at the outer solid cylinder surface, (26)

U = −Ω(Y−Y0), V = Ω(X− X0),
∂ϕ∗

∂n
= −

D∗T
D∗B
· 1

NBT
· 1

1 + δθ

∂θ

∂n
,

∂θ

∂n
= Kr

∂θs

∂n
, (27)

where Kr = ks/kn f is the thermal conductivity ratio upper the surface of the rotating conductive
cylinder.

The boundary conditions for nanoparticles are dictated from the physics of nanofluid, in which
the nanoparticles cannot penetrate the surface of the enclosure. The hydraulic boundary conditions
are prescribed from the fact that the velocity of a fluid and the adjacent surface should be identical.
The thermal boundary conditions simulate the heat transfer of a rotating shaft in a housing. The cavity
is cooled by the side walls while the other side is subject to a process system of hot temperature.

Regarding the nanoparticles, we employed Buongiorno’s mathematical model to investigate the
concentration distribution of nanoparticles in the host fluid when the liquid is exposed to temperature
gradients. The size of variation in the size of the nanoparticles can affect the concentration distribution
of nanoparticles. As we used the average size of nanoparticles in a sample, the produced concentration
distribution would also show the average of possible concentration distributions. Such outcomes
could be adequate for most of the engineering designs.

The local Nusselt number (Nun f ) evaluated at the hot wavy wall of the cavity is represented by:

Nun f = −
kn f

k f

(
∂θ

∂W

)
W

. (28)

In addition, we can define the interface local Nusselt number (Nui) evaluated at the interface wall
between the rotating conductive cylinder and the wavy-walled cavity as follows:

Nui = −
(

∂θs

∂S

)
S

. (29)

where W and S represent the total length of the wavy heater and the interface wall around the rotating
solid cylinder, respectively. The average Nusselt number evaluated at the hot wavy wall is defined as
follows:

Nun f =
∫ W

0
Nun f dW. (30)
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3. Numerical Method and Validation

The dimensionless form of the governing equations in Equations (17)–(21) controlled by
dimensionless boundary conditions in Equations (22)–(27) were solved by the Galerkin weighted
residual finite element method. First, we transferred the momentum equations in Equation (18) to the
Cartesian X and Y coordinates as follows:

The momentum equation in the X-direction:

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+
ρ f

ρn f

µn f

µ f

1
Re

(
∂2U
∂X2 +

∂2U
∂Y2

)
. (31)

The momentum equation in the Y-direction:

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂Y

+
ρ f

ρn f

µn f

µ f

1
Re

(
∂2V
∂X2 +

∂2V
∂Y2

)
+

(ρβ)n f

ρn f β f
Ri θ (32)

The Finite Element Method (FEM) was employed to solve the governing equations. Applying the
FEM to the momentum in Equations (31) and (32) leads to the following process:

Primary, we applied the penalty FEM by excluding the pressure (P) including a penalty parameter
(λ) as:

P = −λ

(
∂U
∂X

+
∂V
∂Y

)
. (33)

This led to the following momentum equations:

U
∂U
∂X

+ V
∂U
∂Y

=
∂λ

∂X

(
∂U
∂X

+
∂V
∂Y

)
+

ρ f

ρn f

µn f

µ f

1
Re

(
∂2U
∂X2 +

∂2U
∂Y2

)
,

U
∂V
∂X

+ V
∂V
∂Y

=
∂λ

∂Y

(
∂U
∂X

+
∂V
∂Y

)
+

ρ f

ρn f

µn f

µ f

1
Re

(
∂2V
∂X2 +

∂2V
∂Y2

)
+

(ρβ)n f

ρn f β f
Ri θ. (34)

The weak (or weighted-integral) formulation of the momentum equations was obtained by
multiplying the equation with an internal domain (Φ) and integrating it over the computational
domain. The following weak formulations were then obtained:

∫
Ω

(
ΦiUk ∂Uk

∂X
+ ΦiVk ∂Uk

∂Y

)
dXdY = λ

∫
Ω

∂Φi
∂X

(
∂Uk

∂X
+

∂Vk

∂Y

)
dXdY

+
ρ f

ρn f

µn f

µ f

1
Re

∫
Ω

Φi

(
∂2Uk

∂X2 +
∂2Uk

∂Y2

)
dXdY, (35)

∫
Ω

(
ΦiVk ∂Vk

∂X
+ ΦiVk ∂Vk

∂Y

)
dXdY = λ

∫
Ω

∂Φi
∂Y

(
∂Uk

∂X
+

∂Vk

∂Y

)
dXdY

+
ρ f

ρn f

µn f

µ f

1
Re

∫
Ω

Φi

(
∂2Vk

∂X2 +
∂2Vk

∂Y2

)
dXdY +

(ρβ)n f

ρn f β f
Ri
∫

Ω
Φiθ

kdXdY, (36)

where the superscript k is the relative index. The interpolation functions including any of the velocity
distribution, temperature, and the nanoparticle distribution are approximated by employing a basis
set {Φj}N

j=1 as,

V ≈
N

∑
j=1

VjΦj(X, Y), θ ≈
N

∑
j=1

θjΦj(X, Y), ϕ∗ ≈
N

∑
j=1

ϕ∗j Φj(X, Y). (37)
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Then, the residual form of equations was computed by integrating the weak form of equations
over a discrete domain:

R(1)i =
m

∑
j=1

Uj

∫
Ω

[(
m

∑
j=1

UjΦj

)
∂Φj

∂X
+

(
m

∑
j=1

VjΦj

)
∂Φj

∂Y

]
ΦidXdY

+λ

[
m

∑
j=1

Uj

∫
Ω

∂Φi
∂X

∂Φj

∂X
dXdY +

m

∑
j=1

Vj

∫
Ω

∂Φi
∂X

∂Φj

∂Y
dXdY

]

+
ρ f

ρn f

µn f

µ f

1
Re

m

∑
j=1

Uj

∫
Ω

[
∂Φi
∂X

∂Φj

∂X
+

∂Φi
∂Y

∂Φj

∂Y

]
dXdY, (38)

R(2)i =
m

∑
j=1

Vj

∫
Ω

[(
m

∑
j=1

UjΦj

)
∂Φj

∂X
+

(
m

∑
j=1

VjΦj

)
∂Φj

∂Y

]
ΦidXdY

+λ

[
m

∑
j=1

Uj

∫
Ω

∂Φi
∂Y

∂Φj

∂X
dXdY +

m

∑
j=1

Vj

∫
Ω

∂Φi
∂Y

∂Φj

∂Y
dXdY

]

+
ρ f

ρn f

µn f

µ f

1
Re

m

∑
j=1

Vj

∫
Ω

[
∂Φi
∂X

∂Φj

∂X
+

∂Φi
∂Y

∂Φj

∂Y

]
dXdY

+
(ρβ)n f

ρn f β f
Ri
∫

Ω

(
m

∑
j=1

θjΦj

)
ΦidXdY, (39)

where the relative index is denoted by the superscript k and subscripts of i and j represent the residual
and node number, respectively. Here, m shows the iteration number. The integrals were performed
by second-order Gaussian quadrature. The Newton–Raphson iteration algorithm was applied to
iteratively solve the residual equations with the following stopping condition for every field variable:∣∣∣∣Γm+1 − Γm

Γm+1

∣∣∣∣ ≤ η. (40)

where m represents the iteration number and η is the convergence criterion.
To verify the current numerical data, the outcomes were compared with earlier published

numerical outcomes achieved by Costa and Raimundo [13] concerning the problem of mixed
convection heat transfer into a cavity filled with pure liquid and heated vertically into the presence
of rotating cylinder, as depicted in Figure 2. The streamlines indicate the CW rotation for Ω = −500,
0, and 500. At Ω = 500, the streamlines are more powerful than Ω = 0 and 500. In addition, the
isotherms show horizontal lines for Ω = 0 for both works. Besides, comparisons performed among
the existing streamlines, isotherms, and nanoparticles volume fraction inside a free cavity and the
numerical ones received by Corcione et al. [41] and Wang et al. [42] are demonstrated in Figure 3,
where similar nanoparticle distribution is recorded. In addition, for natural convection flow in a cavity
filled with nanofluid utilizing Buongiorno’s two-phase model as exhibited in Figure 4a, the average
heat transfer matched the experimental results of Ho et al. [43] and numerical outputs of Sheikhzadeh
et al. [44] and Motlagh and Soltanipour [36] with various Rayleigh numbers toward φ = 0.03. Figure 4b
displays a comparison among the current outcomes and the experimental arrangements of Putra et
al. [45] and the numerical result of Corcione et al. [41] using Buongiorno’s model and for various
Rayleigh numbers at φ = 0.01, N = 0, and R = 0. Figure 5 gives alternative observations concerning
the enhancement in the thermal conductivity and dynamic viscosity due to the addition of the Al2O3

nanoparticles with two different experimental outcomes and the numerical outcomes of Corcione et
al. [41] as well. The maximum accuracy of the measurements of thermal conductivity in the study of
Chon et al. [46] (experimental) was 3.90%. The accuracy of viscosity measurements in the study of
Ho et al. [43] (experimental) was 1%. Based on those validations, the numerical results of the actual
numerical code significance to a great level of reliability.
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Figure 2. Comparisons between the results of (top) Costa and Raimundo [13] and (bottom) the present
work for Ω = −500 (left), Ω = 0 (middle), and Ω = 500 (right) of streamlines (a) and isotherms (b) at
Ra = 105, N = 0, Kr = 1, R = 0.2, and Pr = 0.7.

Figure 3. Validations of (left) streamlines, (middle) isotherms, and (right) nanoparticle distribution
for (a) Corcione et al. [41], (b) Wang et al. [42], and (c) the present study at Ra = 3.37× 105, φ = 0.04,
N = 0, and R = 0.
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Figure 4. Comparisons of the average Nusselt number of the current numerical work with: (a) the
experimental outcomes of Ho et al. [43], numerical outcomes of Sheikhzadeh et al. [44], and numerical
outcomes of Motlagh and Soltanipour [36] with various Rayleigh numbers for φ = 0.03; and (b) the
experimental outcomes of Putra et al. [45] and the numerical outcomes of Corcione et al. [41] with
various Rayleigh numbers at φ = 0.01, N = 0, and R = 0.
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Figure 5. Comparisons of: (a) thermal conductivity ratio between the current numerical results, Chon
et al. [46] (experimental), and Corcione et al. [41] (numerical); and (b) dynamic viscosity ratio of the
current results with Ho et al. [43] (experimental) and Corcione et al. [41] (numerical) at Ra = 3.37× 105,
N = 0, and R = 0.

4. Results and Discussion

Current segment displays numerical outcomes concerning the streamlines, isotherms, and
nanoparticle distribution among two cases of the angular rotational velocity (Ω and −Ω), Richardson
number (0.01 ≤ Ri ≤ 100), nanoparticle volume fraction (0 ≤ φ ≤ 0.04), number of undulations
(0 ≤ N ≤ 4), and dimensionless radius of the rotating cylinder (0.05 ≤ R ≤ 0.25), where the values of
other parameters are fixed at Re = 100, ks = 0.76, Pr = 4.623, Le = 3.5× 105, Sc = 3.55× 104, Θ = 360,
and NBT = 4.1. The thermophysical properties of the base liquid and solid Al2O3 phases are tabulated
in Table 1. Following the Buongiorno’s model, the suspension of nanoparticles is assumed a dilute
suspension, and, hence, the outcomes could be valid for low volume fractions of nanoparticles, i.e.,
φ < 0.05.
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Table 1. Thermophysical properties of base liquid with Al2O3 nanoparticles at T = 310 K [36,47].

Physical Properties Base Liquid Phase (Water) Al2O3

k (Wm−1K−1) 0.628 40
µ× 106 (kg/ms) 695 –

ρ (kg/m3) 993 3970
Cp (J/kgK) 4178 765

β× 105 (1/K) 36.2 0.85
dp (nm) 0.385 33

Figures 6 and 7 show the changes of streamlines and isotherms among the changes of Richardson
number (Ri) and also with clockwise and CCW rotations of the rigid body. In these figures, distribution
of volume fraction and remarkable changes with the variations of Ri can be observed. In general,
considering the momentum equation, the velocity of nanofluid increases with an increase of Ri, which
is indicated in maximum amounts of streamlines. Another notable point observed in streamlines in
both states is the occurrence of tiny whirlpools created by the increase of Ri. When Re is constant, an
increase of Ri leads to increase of Gr, and with the addition of buoyancy, the pattern of flow increase
and some whirlpools are observed at high values of Ri. In two states, as Ri increases, isothermal
lines change with a certain trend, so that with the increase of Ri, isothermal lines of corrugated wall
get closer to each other, as clearly observed at the lower corner of cavity. In the mentioned model,
nanoparticles movement is affected by two factors: Brownian and thermophoresis. In the state of
the low gradient for Ri, the temperature is very high. Thus, nanoparticles travel from the cool wall
toward the warm one, as a result of the temperature gradient. Among the rise of Ri and drop of the
gradient of temperature, the movement of nanoparticles will be confined to a couple of lines. However,
due to Brownian motion, the movement of nanoparticles near the rotating rigid body is observable;
therefore, as shown in Figure 6, the nanoparticles travel from the right wavy surface and middle of the
cavity to the bottom and left walls, especially the corners of the left wall. This trend can also be seen
for nanoparticle distribution in Figure 7. Furthermore, the thermophoresis force tends to move the
nanoparticles in a direction opposite to the temperature gradient. At the hot side of a nanoparticle,
the liquid molecules are with more energy, and the impact of collision of nanoparticles and the liquid
molecules induces a net force. This net force, thermophoresis force, tends to move the nanoparticles
from hot to cold. The Brownian motion tends to make the nanoparticles in the liquid uniform. Hence,
the Brownian motion exerts a net force on the nanoparticles to move them from a high concentration
area to a low concentration one. This way, the Brownian motion and thermophoresis forces adjust the
distribution of nanoparticles in a liquid in the presence of notable temperature gradients.

Figure 8 reveals the variations of local Nu against the warm wall and rotating rigid body, with an
addition of Ri. Since Ri raises, isothermal lines shown in Figure 6, near the corrugated wall, get closer
and become more dense and therefore the temperature gradient increases. Local Nu is also expected
to increase. The density of isothermal lines at the concave points of the corrugated wall is much higher
than at the convex points, and hence the local Nu gets its maximum value at the concave points. By
moving along the circumference of the rotating rigid wall, temperature gradient decreases and gets a
negative value. This negative gradient firstly increases and then drops. Afterwards, isothermal lines
will have a positive slope, and after passing the maximum point, the negative gradient decreases.
This trend accounts for the occurrence of a minimum and a maximum location at the local Nu of the
rotating rigid body. The same pattern is noticed for local Nu results in Figure 9.
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Figure 6. Variations of the (left) streamlines, (middle) isotherms, and (right) nanoparticle distribution
evolution by Richardson number (Ri) for Case 1 (Ω), φ = 0.02, N = 3, and R = 0.15.
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Figure 7. Variations of the (left) streamlines, (middle) isotherms, and (right) nanoparticle distribution
evolution by Richardson number (Ri) for Case 2 (−Ω), φ = 0.02, N = 3, and R = 0.15.
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Figure 8. Variations of local Nusselt number interfaces with (a) W and (b) S for different Ri at Case 1
(Ω), φ = 0.02, N = 3, and R = 0.15.
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Figure 9. Variations of local Nusselt number interfaces with (a) W and (b) S for different Ri at Case 2
(−Ω), φ = 0.02, N = 3, and R = 0.15.

Figure 10 shows the distribution of nanoparticles at the middle plane of the cavity (Y = 0.5)
along the X-direction. Figure 10a,b depicts the results for the rotating Cases 1 and 2, respectively. As
seen, both cases show similar behavior except the concentrations near the rotating cylinder. In both
figures, a sharp variation of particles concentration next to the hot and cold surfaces can be observed.
A high level of nanoparticles could be located at the cold surface. That is due to the thermophoresis
effect, which tends to move the nanoparticles of hot to cold zones. Close to the heated surface, the
concentration of nanoparticles is low. This is again due to the thermophoresis effect, which sweeps
the particles away from the hot surface. The intensity of the concentration boundary layer remains
minimum compared to the temperature and hydrodynamic boundary layers. This thin boundary layer
is the results of the vast Lewis and Schmidt numbers for nanofluids.
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Figure 10. Variations of local normalized solid volume fraction interfaces with the horizontal center
line (Y = 0.5) for different Ri at (a) Case 1 (Ω) and (b) Case 2 (−Ω) for φ = 0.02, N = 0, and R = 0.15.

Far from the walls, where the temperature gradients are smooth, a uniform concentration of
nanoparticles could be found. The consistent level of nanoparticles at such regions is due to the
Brownian motion effects, which tend to move the nanoparticles of an enormous concentration area
toward a low concentration one. At the center of the cavity, where the rotating disc is located, there are
no nanoparticles, and, hence, there is no concentration gradient. In the case of low Richardson number,
the influence of the cylinder’s rotation on the concentration distribution is minimal since the rotation
of the solid cylinder remains slow compared via the natural convection flow. In the case of high Ri, the
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concentration profiles are greatly affected by the rotation and shifted downward. This downward shift
is due to the change of the cold flow toward the down bottom of the cylinder.

Figure 11 represents the continuous increase of the average Nu, i.e. the heat transfer rate, with
an increase of Ri, for both cases. However, the maximum increase of heat transfer is observed at the
volume fraction of 3%. To investigate this trend with more analysis at constant amounts of Ri, the
effects of variations of volume fraction toward the average Nu was analyzed (Figure 12). For all values
of Ri, except for the case of Ri = 0.01, an optimum point is observed for the average Nu number.
This means that, given a constant Re, Gr increases with the increase of Ri. Thus, forced convection is
overshadowed by the free type. In the free convection of nanofluids, an addition of volume fraction
along with the rise in viscosity points to the decrease of heat transfer and, hence, for the geometry
studied, an increase of volume fraction after passing the maximum score heads to the reduction of Nu.
φ = 0.03 may be considered as the optimum point for volume fraction.
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Figure 11. Variations of the average Nusselt number with Ri for different φ for (a) Case 1 (Ω) and (b)
Case 2 (−Ω) at N = 3 and R = 0.15.
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Figure 13 reveals the impact of increasing the number of grooves toward the flow patterns,
temperature, and heat transfer. At the two sides regarding the rigid body, streamlines have CCW
rotations, so that they are pulled toward the corrugations as the right warm wall gets corrugated. The
maximum value of streamline is seen at N = 2. Isothermal lines have a remarkable density above the
cool wall and below the warm wall, so that the density will be highly noticeable at the concave points
as the warm wall becomes corrugated. Primarily, the movement of nanoparticles has a meaningful
symmetry around the rigid body, so that with corrugating the warm wall and accordingly the change
of flow pattern and temperature, they are pulled into the concave regions of the warm wall (Figure 13).
Generally, via increasing N, the nanoparticles migration decreases. The concentration of nanoparticles
near the rotating cylinder at N = 4 is higher than other parts of the cavity. In different values of N,
the level of nanoparticles at the corner of the left and bottom walls is very notable. Considering the
isothermal lines, the maximum value of local Nu of the warm wall is seen at N = 4. However, at
X = L and Y = 0, the maximum value of Nu happens at N = 0. As noted above, local Nu has some
peaks at the concave points. For local Nu, the rotating rigid body has its minimum and maximum
values as a result of its high temperature gradient (Figure 14).

Figure 13. Variations of the (left) streamlines, (middle) isotherms, and (right) nanoparticle distribution
evolution by number of undulations (N) for Case 1 (Ω), Ri = 10, φ = 0.02, and R = 0.15.
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Figure 14. Variations of local Nusselt number interfaces with (a) W and (b) S for different N at Case 1
(Ω), Ri = 10, φ = 0.02, and R = 0.15.

As displayed in Figure 15, the rate of heat transfer increases by the growth of Ri. At a relatively
low number of undulations N = 1, the highest volume of heat transfer rate and also the maximum
increase of it is observed by the rise of volume fraction of nanoparticles. The maximum amount of
heat transfer rate is seen at 0.02 < φ < 0.03.
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Figure 15. Variations of the average Nusselt number with (a) Ri and (b) φ for different N at Case 1 (Ω),
R = 0.15.

Figures 16–18 show the effects of size of rotating rigid body toward the patterns of flow and heat
transfer. Since the volume grows, vortexes get nearer to the body, and the rotations get more prominent
because the route of nanofluid has more barriers as the area of rigid body has more cases and thus
more massive vortexes are generated. At low values of R, the flow pattern makes the isothermal lines
become horizontal at a large area of the middle region of cavity. However, with the increase of R,
isothermal lines get a circle shape at the middle region and are still dense at the concave points of
warm wall. For all values of R, nanoparticles move from the left corner of the lower surface toward
the warm wall, especially the highest point of it. In addition, because of the movement of rigid body
and the corroboration of the Brownian motion of nanoparticles, the accumulation of nanoparticles is
also noticeable near the moving wall. This accumulation is maximum at R = 0.05.
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Figure 16. Variations of the (left) streamlines, (middle) isotherms, and (right) nanoparticle distribution
evolution by the radius of the rotating cylinder (R) for Case 1 (Ω), Ri = 10, φ = 0.02 and N = 3.

Considering the density of isothermal lines, the maximum amount of local Nu is seen at the
first concave region of all amounts of R. At the second concave region, considering the proximity of
rotating rigid body, the value of local Nu is maximum for large values of R, especially for R = 0.25. At
the last concave region, density of isothermal lines becomes very low and Nu is expected to be lower at
the third peak, compared to the other two peaks. This is clearly observed in Figure 17a. At R = 0.25, as
a result of density at the first two peaks and remarkable reduction of temperature gradient at the last
concave region, the behavior of local Nu is highly noticeable. Considering the isothermal lines, Nu of
rotating body may be described this way: nearly at the beginning of motion on the wall, temperature
gradient is negative, while at the symmetrically opposite region is positive. Thus, a Sin behavior in the
Nu of rotating wall, including a negative minimum and a positive maximum, is observed. Considering
the aggregation of temperature gradient at R = 0.25 and the presence of vortexes, local Nu has a
remarkable growth at its positive maximum, in comparison with other values of R (Figure 17b).
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Figure 17. Variations of local Nusselt number interfaces with (a) W and (b) S for different R at Case 1
(Ω), Ri = 10, φ = 0.02, and N = 3.

Considering Figure 18, the maximum value of the average Nu is seen at R = 0.05, while for low
amounts of Ri, the maximum amount of average Nu occurs at R = 0.25. From Ri ≥ 10 and at all
values of R, the most significant heat transfer is detected at R = 0.05. With the increase of φ, a different
behavior for heat transfer is seen with various values of R. For all values of R, an optimum value of
φ is seen and, for various states of R, the following values for volume fraction can be offered, which
result in the highest amount of heat transfer: 0.05 < R < 0.2 and φ = 0.025 as well as R = 0.25 and
φ = 0.01.

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

16

35 36 37 38

11

11.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

φ

N
u
n
f

 

 

R = 0.05
R = 0.1
R = 0.2
R = 0.25

(a) (b)

Figure 18. Variations of the average Nusselt number with (a) Ri and (b) φ for different R at Case 1 (Ω),
N = 3.

5. Conclusions

Combined convection flow and heat transfer mechanisms toward an enclosed cavity including
heated wavy surface and rotating circular cylinder were examined numerically using Buongiorno’s
two-phase approach. The current outcomes have directed the following concluding statements:

1. An addition of the average Nu with the rise of Ri, for both CW and CCW rotating, is experienced.
In addition, the maximum increase of heat transfer is perceived toward the nanoparticles volume
fraction of 3%.

2. The most significant amount of streamline is noticed at a relatively high number of undulations
N = 2.



Nanomaterials 2020, 10, 1138 20 of 22

3. In the situation of rotating the solid cylinder in counterclockwise (Case 1), the maximum mean
Nusselt number is observed at singular undulation N = 1 and the nanoparticles volume fraction
in the range 0.02 < φ < 0.03.

4. For the case of ruled natural convection (Ri ≥ 10) and all amounts of R, the maximum significance
of heat transfer is recognized at R = 0.05.

5. For all amounts of R, an optimum value of φ is seen and, for various states of R, the following
values for volume fraction can be offered, which result in the highest amount of the heat transfer
rate: 0.05 < R < 0.2, φ = 0.025, and R = 0.25, φ = 0.01.
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