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Abstract: Identifying, counting and measuring particles is an important component of many research
studies. Images with particles are usually processed by hand using a software ruler. Automated
processing, based on conventional image processing methods (edge detection, segmentation, etc.)
are not universal, can only be used on good-quality images and need to set a number of parameters
empirically. In this paper, we present results from the application of deep learning to automated
recognition of metal nanoparticles deposited on highly oriented pyrolytic graphite on images
obtained by scanning tunneling microscopy (STM). We used the Cascade Mask-RCNN neural
network. Training was performed on a dataset containing 23 STM images with 5157 nanoparticles.
Three images containing 695 nanoparticles were used for verification. As a result, the trained neural
network recognized nanoparticles in the verification set with 0.93 precision and 0.78 recall. Predicted
contour refining with 2D Gaussian function was a proposed option. The accuracies for mean
particle size calculated from predicted contours compared with ground truth were in the range
of 0.87–0.99. The results were compared with outcomes from other generally available software,
based on conventional image processing methods. The advantages of deep learning methods for
automatic particle recognition were clearly demonstrated. We developed a free open-access web
service “ParticlesNN” based on the trained neural network, which can be used by any researcher in
the world.

Keywords: particle recognition; deep neural networks; scanning tunneling microscopy; particles

1. Introduction

In heterogeneous catalysis, the catalyst usually consists of an active component deposited on
a support. Active catalyst components are often nanoparticles where the catalytic reaction occurs and
reaction products are formed. One of the main characteristics of catalytic activity is the “turnover
frequency” of reaction (TOF), defined as the amount of product obtained at one active center per time
unit [1]. To calculate TOF, it is necessary to know the particle’s parameters (amount, size, coverage of
the surface, etc.). A variety of physical and chemical research methods are currently used to study
the characteristics of catalysts e.g., electron microscopy, specific surface analysis, scanning probe
microscopy (STM, atomic force microscopy) [1,2]. As a rule, calculating TOF requires processing
data on hundreds of particles from several points of the catalyst, the more the better. A similar
task arises for researchers in the synthesis and characterization of quantum dots [3–6]. Software
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products, widely used in probe methods, including scanning tunneling microscopy, such as WSxM [7],
Gwyddion [8], allow the operator to measure particle parameters manually. Their programs implement
an automatic selection mode for the image parts with heights above the threshold and show satisfactory
results on good-quality images with uniform backgrounds. However, they are unacceptable for
noisy pictures or images with an intensity gradient and do not provide a fully automatic mode for
recognition of objects and their size determination. Using image preprocessing for stochastic noise
elucidation is not always reliable. For example, it is well known that smoothing procedures lead to
expanding object boundaries, influencing measured sizes. From this point, median or Fourier filters
are better but still can cause artifacts. At the same time, achieving good-quality STM images is not
always possible; for example, for in situ STM experiments, for the samples after hard treatments or
after chemical reaction (Figure 1) [2]. Complete “cleaning” of such images by processing without
deformation is not always implementable too. Moreover, recording a single STM image can take hours
as an operator may prefer manual counting instead of rerecording the image to get the desired quality
for automatic processing.
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Figure 1. Examples of scanning tunneling microscopy (STM) images of the Pt/highly oriented pyrolytic
graphite (HOPG) catalyst in the initial state (a) and after treatment in NO2 (b). Images were recorded
in the study, described in [2], unpublished.

Therefore, high-level microscopists still must spend a lot of time tediously counting and manually
measuring particle size using a software ruler.

Since 2012, a new approach to image analysis has been actively developing. This method takes
into account the context in which objects are located and allows for use of images with marked objects to
train the recognition software in automatic mode. It is based on deep convolutional neural networks [9].
The first neural networks were primarily used to classify images. Currently, software products based
on deep neural networks can determine the type of object and perform semantic image segmentation,
that is, identify pixels belonging to this object [10,11].

In recent years, there have been publications devoted to the use of deep learning for automatic
object recognition in materials science and related fields. For example, a number of studies were
aimed at searching for defects in metals [12–16] including images of atomically resolved scanning
transmission electron microscopy [17], classification of objects in scanning electron microscope
images [18], and determining bubbles sizes in thermophysical processes [19].
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It is worth noting that in the past few years, decent results have been achieved in the
field of transmission electron microscope (TEM) images processing, both using semiautomatic
tools and using neural networks. Semiautomatic tools, as a rule, include preprocessing of noisy
TEM-images; for example, averaging and background subtracting, level-based segmentation and edge
detection [20–22]. The main complication of this approach is the mandatory selection of empirical
parameters, which leads to a loss of the universality of the approach. In 2019, simultaneously our first
work [23], our colleagues applied the MO-CNN neural network [24] and the Mask-RCNN [25] to find
the localization of nanoparticles on TEM-images, the size of round particles was finally determined by
fitting by circles. Meanwhile, TEM-images analyzed in the cited papers are characterized by uniform
and homogenous noise, the particles are clearly visualized and have a rounded shape. Our task of
recognizing nanoparticles on STM images is more complicated and provides specific issues.

In this communication in continuation of our first work [23], we describe in detail the procedures
of training the Mask-RCNN, fitting particles by 2D Gaussian function and make a comparison with
available software that uses conventional semiautomatic tools of particle detection. Besides, we have
created and describe a web service “ParticlesNN” for automatic search and recognition of nanoparticles
on images of probe microscopies using a neural network trained by us. The web service is available to
any researcher from anywhere in the world.

2. Materials and Methods

2.1. STM Data

A model catalyst consisting of platinum and palladium nanoparticles (99.99%, Alfa Aesar,
Ward Hill, MA, USA) deposited on highly oriented pyrolytic graphite (HOPG, SPI Supplies,
West Chester, PA, USA) was used in this work. The particles were deposited by thermal vacuum
vapor deposition [2].

The STM studies were conducted using a scanning tunneling microscope SPM 100 VT (RHK Technology,
Troy, MI, USA). Measurements were taken in the constant-current mode using cut Pt–Ir tips (RHK).
The resulting raw STM images were analyzed using XPMPro 2.0 (RHK) and WSxM software packages
(Nanotec Electrónica, Madrid, Spain) [7].

For the neural network training and verification we used STM images, which were obtained from
the raw data without any further quality improve image processing, such as smoothing, denoising,
etc., since: (a) additional processing can distort the image and some information can be lost; (b) correct
processing cannot be always possible. Besides, noise and distortions are not crucial for the human eye,
which is able to skip them, and thus, the human-like tool based on a neural network also has to be able
to process raw data.

2.2. Datasets

The training dataset consists of 23 STM images and the corresponding COCO format files [26]
with the annotations of 5157 nanoparticles labeled by the operator.

Dataset images were obtained from original STP files, which were saved in an ASCII matrix file
format. This file format comprises a header with general information and a height map measured in
the experiment. Height at the pixel location Hpix was further converted to the intensity of pixels Ipix of
an 8-bit grayscale image:

Ipix =
Hpix −Hmin

Hmax −Hmin
·255 (1)

where Hmax, Hmin are the maximal and minimal heights recorded in the experiment. The 255 multiplier
coefficient was set to match a 256 grayscale format. Finally, images were converted to RGB format by
setting the same value of color intensity in all three RGB channels.
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Particles were labeled as polygons in the LabelMe program [27] on images colored in a fiery-palette
(Julio palette in WSxM). After being unloaded from LabelMe, JSON files with annotations were
converted to COCO format, forming files with the annotations of particles.

The test dataset was prepared in the same way. It contains three images with 695 labeled particles
and the corresponding COCO format files.

2.3. Neural Networks

Neural networks in the Cascade Mask-RCNN family [28] were used with backbones of either
X-101-64 × 4d-FPN or HRNetV2p-W32 and pretrained on the COCO dataset [26]. The networks were
fine-tuned for 500 epochs with a learning rate of 0.001 in epochs 0–99; 0.0001 in 100–250 epochs and
0.00001 for the following epochs. Both the original height maps 512 × 512 resolution and resized copies
(2× and 3×; the 4× rescaled image failed to fit a single GPU memory) of the images were used for
training by adjusting the img_scale parameter of the config file to the required image size.

2.4. Evaluation

The mean averaged precision mAP [29] with a set of threshold values (0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9 and 0.95) was used as a quality metric for predicted nanoparticles. In brief, metrics
estimate the extent of the intersection of union between prediction and ground truth averaged over all
classes, and the set of threshold values. Values of mAP of 0 (or 0%) correspond to poor predictions
while mAP close to 1 (or 100%) signals pixel-to-pixel coincidence of predictions and ground truth.
mAP metrics were evaluated using a COCO API tool [30] with annotations (annType) of the “bbox”
type and a maximum particle number (maxDets) of 500.

Training and recognition were carried out on the HPE Apollo 6500 Gen10 graphics server with
eight NVIDIA Tesla V-100 graphics accelerators at the Novosibirsk State University Higher College
of Informatics.

2.5. Postprocessing

While neural networks produce predictions of particle contours, it is important to have
a well-defined, clear algorithm to refine contours of predicted particles that uses a conventional
approach for particle contour determination. In this work, we used a 2D Gaussian fit to approximate
particle shape. This is a widely used approach for size evaluation [31–34].

We realized postprocessing procedure, which consists of fitting the particles with a 2D Gaussian
surface with seven parameters:

H(x, y) = H0 + Hm·exp

− (x− x0)
2

s2
x

−
(y− y0)

2

s2
y

−
(x− x0)(y− y0)

s2
xy

 (2)

where H0 is the offset of the surface, Hm is the amplitude of the Gaussian surface, x0, y0 are the
coordinates of the surface maximum and sx, sxy, sy are the dispersions. Predicted masks were taken as
an initial guess on the location of particles. For each mask, an outer contour was evaluated. Effective
particle size deff was calculated as a diameter of the circle of the same area as the area of the mask.
The entire image was then Gaussian smoothed with a deff/4 size kernel. Then, the predicted contour
was doubled in linear size while its center of mass was still in the same position. Finally, for close
particles, the fit area was refined to exclude intersecting parts as shown in Figure 2. The height map
inside the extended contour was approximated with a 2D Gaussian function to obtain fit parameters.
Finally, half height was calculated as:

Hmin = max
(
H0, Hmin_pred

)
(3)

Hmax = min
(
Hmax_ f it, Hmax_pred

)
(4)
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Hhal f =
Hmin + Hmax

2
(5)

where Hmin_pred, Hmax_pred are the minimal and maximal experimental heights inside the extended
contour after smoothing, and H0, Hmax_fit are the parameters in the Gaussian fit equation and the
value of the Gaussian fit function at x0, y0, respectively. The cross-section of the horizontal plane with
Gaussian fit at the half height was considered as the refined border of the particle.

Finally, the width and height of each particle was calculated as the length and width of minimal
bounding rectangles for the predicted contour and for the refined contour.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 17 
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3. Results

3.1. Training on a ”Rough” Dataset

The goal of this research was to obtain a credible automatic statistical analysis of STM data.
The required data include particle concentration on the surface and particle size distribution. Our first
approach was to find particles using a convolutional neural network, then refine the particle borders
using a predetermined algorithm. To accomplish this, the training data set was labeled without paying
much attention to the actual particle size and greater attention to the total number of particles. We refer
to this dataset as “rough”. The crop of labeled data is depicted in Figure 3. The “rough” training
dataset comprises 15 images with 3791 particles.

Our fitting results were very sensitive to the size of STM images used during training (Table 1),
Nos. 1–3. To a lesser extent, results depend on the backbone type, Nos. 3 and 5. A Cascade Mask-RCNN
powered by an X-101-64 × 4d-FPN backbone and trained at three-times rescaled images, No. 3,
demonstrated the best particle count accuracy, determined as the ratio of correct predictions to the
total number of ground truth contours. It should be noted that the 1536 × 1536 image size is close to
the limit of the NVIDIA Tesla V-100 state-of-the-art server graphic accelerator. The four-times rescaled
image failed to fit a single GPU memory. The poor mAP metrics can be apparently explained by
the low intersection of predicted contours with ground truth contours because of the training on the
“rough” dataset.
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Figure 3. Crop of the STM image labeled without paying attention to actual particle borders, the “rough”
dataset. Ground truth labels are shown as blue contours.

Table 1. The results of particle recognition by Cascade Mask-RCNN with various backbone types and
the sizes of STM images used during training.

No. Backbone Type Image Size (Rescale) Dataset Contours Batch Size Accuracy mAP

1 X-101-64 × 4d-FPN 512 × 512 (1 times) Rough Predicted 12 0.24 0.000
2 X-101-64 × 4d-FPN 1024 × 1024 (2 times) Rough Predicted 4 0.73 0.000
3 X-101-64 × 4d-FPN 1536 × 1536 (3 times) Rough Predicted 1 0.83 0.000
4 X-101-64 × 4d-FPN 1536 × 1536 (3 times) Rough Fitted 1 0.51 0.000
5 HRNetV2p-W32 1536 × 1536 (3 times) Rough Predicted 1 0.82 0.000
6 X-101-64 × 4d-FPN 1536 × 1536 (3 times) Precise Predicted 1 0.78 0.279

Figure 4 illustrates the difference in particle recognition by the neural network, trained on different
dataset image sizes. While the image count quality improves with the size of the training image,
the quality (mAP) of the contours prediction by the neural network remains poor. Fitting the predicted
particle profiles with a Gaussian surface improves the situation to some extent. Gaussian refined
contours follow ground truth much better than the raw predicted contours. However, in almost half of
the cases, the Gaussian fitting failed to refine particle contours. On the test dataset, only 353 contours
were successfully refined of 624 predicted, when the total amount of ground truth particles in the
dataset was 695. Thus, almost half of the particles were outside statistical measurement which is
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unacceptable for credible measurements of size distribution. We consider the particle clumping as the
main obstacle to a Gaussian fitting.

Thus, a neural network trained on a “rough” dataset shows the high accuracy of particle recognition.
Postprocessing by Gaussian fitting refined the predicted contours to a high extent. However, if there
are clumped particles on the surface, the fitting procedure reduces the number of analyzed particles,
which can significantly diminish the statistical plausibility of determining the particle size.
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Figure 4. The results of particle recognition on an image from the test dataset by X-101-64 × 4d-FPN
backboned Cascade Mask-RCNN network trained on 1-, 2- and 3-times rescaled training images of the
“rough” dataset, (a), (b) and (c) correspondingly. Ground truth contours are red, predicted contours are
green and Gaussian fitted contours are blue.

3.2. Training on a ”Precise” Dataset

Our next approach was to provide a high-quality dataset with credible particle borders. In order
to get such a training dataset, eight images containing 1186 particles were carefully labeled by an expert
along the visual borders of the particles, forming ground truth contours. The widely used Julio color
scheme was applied to diminish labeling errors. Figure 5 shows that such labeling along the visual
borders of the particles is reasonable. Meanwhile, an additional check for this labeling technique
accuracy was done for one of the test images. The diameters of 39 arbitrarily chosen particles from
the image were measured in the WSxM program using manual precise profile analysis. The average
diameter was 6.1 nm. The projected diameter (diameter of a circle, which has the same area as the
particle) for the same 39 ground truth contours was averaged and it was 5.8 nm. A 5% value of
discrepancy for this small subset of the test dataset looks reasonable and can be explained by the
ambiguity of manual measurements.

A Cascade Mask-RCNN network powered by an X-101-64 × 4d-FPN backbone was trained on a”
precise” dataset using a 3× rescale of the training images (last line in Table 1). While there was a small
loss in the number of correctly determined particles, we observed a huge jump in mAP. Visual inspection
reveals a very good correspondence of predicted contours with ground truth counterparts (Figures 6–8).
We attribute the slightly lower mAP value of 27.9% as compared with state-of-the-art mAP of about 40%
for the Cascade Mask-RCNN fitting of the COCO dataset [28] to the small size of the training dataset.
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Figure 5. Illustration of the contour quality check. (a) Julio color scheme colored STM image with two
particles ground truth labeled contours. (b) Particle profile, extracted from STM data using WSxM
software, showing the position of ground truth labeled contour on the profile of the particle.

To analyze the quality of neural network prediction, we distribute predicted contours into three
general categories:

(a) Predicted and ground truth contours to a large extent coincide, or at least mark the same particle.
(b) Predicted contours to a large extent missed any ground truth contours.
(c) Ground truth contour has no close correspondence to predicted contours.
These cases can be considered as true positive (TP), false positive (FP) and false negative (FN)

predictions, respectively. Using this classification, one can calculate precision and recall (accuracy) for
each recognized image and the test dataset as a whole:

precision =
TP

TP + FP
, recall =

TP
TP + FN

(6)

Any predicted contour with a center inside of the ground truth contour was considered a TP
prediction. Other predicted contours were FP. Ground truth contours passed by any predicted contours
were set as FN. If predicted contour included more than one ground truth contour, only one ground
truth contour was set as a TP and all other included contours as FN. Table 2 summarizes the inference
results for all three test images with respect to the quality of the particle count.

Table 2. Summary on the quality of the particle count in the test dataset.

Image No.
Particle Count

Precision Recall (Accuracy)
TP FP FN

1 266 6 111 0.98 0.71
2 115 3 31 0.97 0.79
3 158 32 14 0.83 0.92

Total 539 41 156 0.93 0.78

It was noted that when images had a larger number of particles recognized, the number of
particles left unrecognized increased considerably, see Figure 6 and corresponding recall in Table 2.
Currently, our practice shows that to improve the accuracy of recognition, one should avoid more than
200 particles on the analyzed image.
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3.3. Refining Predicted Contours

Table 3 lists numbers of ground truth, predicted and Gaussian fitted contours for each image from
the test dataset. Unfortunately, there were a very limited number of cases when the Gaussian surface
fit particles. STM particle shapes are far from ideal, including statistical current noise, instrumental
artifacts and complications that arise when particles are close to each other.

Table 3. Numbers of different types of contours, on the test dataset images.

Backbone Type
Number of Contours Found

Ground Truth Predicted Gaussian Fitted

1 377 272 172
2 146 118 95
3 172 190 147

Different types of contours are visualized in Figure 9. As mentioned previously, the number of
refined (blue) contours is much lower than the number of ground truth (red), or predicted (green)
contours. On the other hand, histograms calculated for both predicted and Gaussian fitted contours
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follow ground truth surprisingly well. This is even more surprising after visual inspection of the
fitted contours, which are often very far from ground truth labels. However, one can observe the
tails in the larger diameter region of the fitted contours histogram. These tails arise from distorted
elongated fitted contours that failed to refine particle borders properly. The average projected particle
diameters calculated from histograms considered as mean particle sizes confirm this observation
(Table 4). Mean particle sizes calculated from Gaussian fitted contours are systematically higher than
the ground truth values for the reasons described above.

Table 4. Mean particle sizes calculated from histograms of different types of contours. The accuracies
for predicted and Gaussian fitted contours compared with ground truth are shown in parenthesis.

Image No.
Mean Particle Size, nm

Ground Truth Predicted Gaussian Fitted

1 5.19 4.87 (0.94) 5.38 (0.96)
2 3.82 3.85 (0.99) 4.15 (0.92)
3 5.32 4.62 (0.87) 5.33 (0.99)

Thus, we should summarize that our attempt to provide a universal, clear and reliable algorithm
for refining particle contours has not been reached. Today, deep neural networks are probably the only
solution to obtain nearly human quality image processing.

3.4. Comparison with Other Software

It is reasonable to compare the results of particle recognition by the trained neural network with use
of software that is not based on deep learning algorithms. Unfortunately, advanced semiautomatic tools,
which include preprocessing (averaging and/or background subtracting), level-based segmentation
and edge detection [20,22] are not generally available. So, we used the “flooding” procedure in WSxM
software products. The procedure highlights areas that are higher than the threshold defined by
the operator [7].
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Figure 9. Particle size distributions (left panels) and corresponding particle contours (right panels),
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contours are marked red, predicted contours are green and Gaussian fitted contours are blue.

In Figure 10a the results of the application of the “flooding” procedure in WSxM software products
for Image 1 are shown. Some unusual features are clear such as the procedure works poorly for image
areas with an intensity gradient and, moreover, the program defines all noises as objects. So with
higher intensity islands, the operator has to fix the higher threshold which leads to a decrease in
particle size, still leaving islands of increased intensity that are considered by the procedure as a single
particle. Finally, the procedure loses a number of particles, reduces the size of the found particles and
defines artificial big particles.

Figure 10b shows a comparison of the size distributions of the contours on Image 1 as defined by
WSxM software products, by the trained neural network and by the operator (ground truth). In Table 5,
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the statistical parameters for distributions are shown. It can be seen that “flooding” gives wrong and
artificial numbers of particles. The mean particle size for this image happened to be close to the ground
truth one, although the standard error of mean is considerably higher. Figure 10b clearly shows the
broader histogram for particles, determined by “flooding”. A similar analysis was performed for
Images 2 and 3, see Figures S1 and S2 and Tables S1 and S2.
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Figure 10. Processing of Image 1: (a) Results of the application of the “flooding” procedure in WSxM
software products; (b) Size distributions of the 196 contours defined by WSxM software (purple),
272 particles recognized in our work (green) as well as 377 contours of ground truth (red), x-scale
presented in log10 units.

Table 5. Processing of Image 1: number of particles and their mean particle sizes calculated from
histograms of different types of the contours.

Method for Determining Particle Size Number of Particles Mean Particle Size, nm Standard Error of Mean

Procedure “flooding”, WSxM software 196 1 4.93 1 0.33 1

Neural network Cascade Mask-RCNN,
used in this work (predicted) 272 4.87 0.07

Ground truth 377 5.19 0.06
1 Depends on threshold.

3.5. Online and Public Resources

To make it possible for any user, anywhere in the world to use the results of our work on particle
recognition on STM images, we have been developing a web service “ParticlesNN” [35], see the short
description in the Supplementary Materials and more detailed on the service’s website.

Additionally, on the website of the service, we have released training and test dataset files:
initial STM data in TXT format, corresponding BMP images and files with annotations of labeled
particles in COCO format.

4. Conclusions

In this study, we used deep learning for the automatic recognition of nanoparticles on STM
images. The results of the proposed approach were compared with the outcomes of other software
products based on conventional image processing methods. The advantages of using deep learning
methods for automatic particle recognition were clearly demonstrated. Based on the trained neural
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network, we developed a web service “ParticlesNN” that has the following features that differ from
other software products:

1. It is possible to process images containing noise, artifacts that are typical for probe microscopy
images, without additional processing;

2. The user can adjust automatically determined contours with the help of external software products;
3. Joint statistical processing of the image sets is available;
4. Processing results are displayed in the form of a histogram and tables where information on all

identified objects is available.

This approach to particle recognition using neural networks allows us to improve the quality of
recognition over time by accumulating marked data. To the best of our knowledge, this is the first
time that computer vision based on deep learning has been successfully applied to the automated
recognition of nanoparticles on STM images. In addition, the web service is able to work with images
of any objects represented as intensity spots such as microparticles (obtained for example by SEM),
biological cells, etc.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1285/s1,
Figure S1. Processing of Image 2: Results of the application of the “flooding” procedure in WSxM software
products; Size distributions of the 69 contours defined by WSxM software, 118 particles recognized in our work as
well as 146 contours of ground truth. Table S1. Processing of Image 2: number of particles and their mean particle
sizes calculated from histograms of different types of the contours. Figure S2. Processing of Image 3: Results of
the application of the “flooding” procedure in WSxM software products; Size distributions of the 115 contours
defined by WSxM software, 190 particles recognized in our work as well as 172 contours of ground truth. Table S2.
Processing of Image 3: number of particles and their mean particle sizes calculated from histograms of different
types of the contours. Web service description.
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