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Abstract: Photocatalysts are the most important technology in air pollution removal and the
detoxification of organic materials. Doping and complexation are among the most used methods to
improve the efficiency of photocatalysts. Titanium dioxide and zinc oxide nanomaterials are widely
used materials for photocatalysts and the degradation of toxic materials. Their mixed structure can be
fabricated by many methods and the structure affects their properties. Nanofibers are efficient materials
for photocatalysts due to their vertically formed structure, which improves the charge separation of
photoelectrons. We fabricated them by an electrospinning process. A precursor consisting of titanium
4-isopropoxide, zinc acetate dihydrate and polyvinylpyrrolidone was used as a spinning solution
for a mixed structure of titanium dioxide and zinc oxide with different molar ratios. They were
then calcined, crystallized by heat treatment and analyzed by thermogravimetric-differential thermal
analysis (TG-DTA), X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM)
and energy-dispersive spectroscope (EDS). After annealing, the average diameters of the Ti–Zn
complex oxide nanofibers were 237.6–278.6 nm with different salt ratios, and multiple crystalline
structures were observed, namely TiO2, ZnO, ZnTiO3 and Zn2TiO4. We observed the photocatalytic
performance of the samples and compared them according to the photodegradation of methylene
blue. The methylene blue concentration decreased to 0.008–0.650 after three hours, compared to an
initial concentration of 1, with different metal oxide structures.
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1. Introduction

Titanium dioxide has excellent chemical, electrical and optical properties, as well as chemical
stability. For that reason, it is used in many different fields of study and industry, in photocatalysts,
dye-sensitized solar cells, perovskite sensitized solar cells, metal oxide semiconductor gas sensors,
dental implants, interferometric sensors, photonic crystals and other applications [1–12]. It is a very
useful material and is commonly used for photocatalysts due to its photoactivity, high stability, low cost
and safety for the environment and humans [13–15]. Photocatalysts are the most important technology
for air pollution removal and the detoxification of organic materials. When an electron is stimulated
with light energy equal to or greater than the bandgap of TiO2, photocatalytic reactions begin [6]. As the
photo-excited electrons are transferred from the valence band to the conduction band, electron-hole
pairs are produced and a powerful oxidation reaction occurs. To increase the photo-activity and
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efficiency of photocatalysts, researchers have fabricated and reported many nanostructures of TiO2, such
as nanoparticles, nanofibers and nanotubes [1,5–7,9–12,15–21]. Their nanostructures were fabricated by
the sol-gel method, hydrothermal treatment, anodic oxidation and electrospinning [1,3–16,18–20,22,23].
Electrospinning is an efficient practical technique that is low cost and has high efficiency, and many
studies have reported producing these various nanofibers. In electrospinning, the precursor solution
flows at a constant rate through a pump in such a way as to create a continuous nanofiber, and then
electrodes are connected to the inflowing electrospinning solution and other electrodes are connected
to the appliance plate. At this time, if a high voltage is applied, it is emitted in a conical shape by
surface tension at the end of the electrospinning solution [21,24–27]. The charge is subsequently stored
in the electrospinning solution, and the mutual repulsion causes the cone to be radiatively stretched to
a jet when the surface tension of the electrospinning solution is exceeded. In the radiation-stretched
electrospinning solution, volatilization of the solvent occurs before it collects in the plate, which
may result in disorderly arranged nanofibers in the plate. Doping and complexation are among the
most used methods to improve the efficiency of photocatalysts. Many other materials were co-doped
and mixed as impurities and composites to introduce additional states in the TiO2 bandgap [6].
With fewer energy transitions required, these impurity levels cause visible light absorption. TiO2

band gap impurity levels are induced by substituting metal ions for Ti4+ closest to the conduction
band. Zinc oxide is also widely used as a photocatalyst [28–32]. Nanostructured ZnO has frequently
been fabricated, and it has been used in composites with TiO2 for photocatalysts. Many ZnO–TiO2

composite structures have been reported [6,18,19,33–36].
To investigate the photocatalytic performance of Ti–Zn complex oxide nanofibers, we fabricated

Ti–Zn complex oxide nanofibers by electrospinning and used them as photocatalysts for
methylene blue degradation with different molar ratios of Ti and Zn. The electrospinning
precursors were composed of titanium 4-isopropoxide (TTIP), zinc acetate dihydrate (ZnAc),
polyvinylpyrrolidone (PVP), acetylacetone (ACAC), anhydrous ethyl alcohol (EtOH) and deionized
water. Their thermogravimetric analysis (TGA) curves and differential thermal analysis (DTA) curves
were observed by thermogravimetric-differential thermal analysis (TG-DTA) in an air atmosphere.
After heat treatment and crystallization, their crystal structures were analyzed by X-ray diffractometer
(XRD). Microstructure changes were measured and compared before and after heat treatment by
a field emission scanning electron microscope (FE-SEM) and the composition was analyzed by
energy-dispersive spectroscope (EDS). Their photocatalytic activity was also observed and compared
by ultraviolet–visible (UV-Vis) spectroscopy.

2. Materials and Methods

2.1. Materials

ACAC and TTIP were purchased from Junsei Co., Ltd. (Tokyo, Japan). PVP (molecular weight
1,300,000) was purchased from Alfa Aesar Korea Co., Ltd. (Incheon, Korea). EtOH was purchased
from Samchun Chemical Co., Ltd. (Seoul, Korea). ZnAc was purchased from Daejung Chemicals &
Metals Co., Ltd. (Gyeonggi, Korea).

2.2. Fabrication of Ti–Zn Complex Oxide Nanofibers by an Electrospinning Process

Ti–Zn complex oxide nanofibers were prepared by a multi-nozzle electrospinning process. Figure 1
shows a schematic diagram of the multi-nozzle electrospinning process. The fibrous structure was
fabricated at a high voltage by high potential and volatilization of the solvent. The electrospinning
solution was prepared with 5 wt% titanium and zinc salt, 5 wt% ACAC and 10 wt% PVP in a 16:64
mixture of deionized water and EtOH. TTIP and ZnAc were used for salts. The titanium and zinc salts
were composed of different molar ratios according to the zinc content, and they were labelled TZ1,
TZ2, TZ3, TZ4 and TZ5. Table 1 shows the molar ratios. After solution preparation, the samples were
loaded into a plastic syringe and connected to a five-hole multi-nozzle adaptor. The spinning nozzle
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diameter was about 0.34 mm (23 gauge). The distance between the needle and the collector was 25 cm,
and a high voltage of 22 kV was applied to the spinning solution by a direct current power supply.
The as-spun nanofibers were collected on grounded aluminum foil.
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Table 1. Sample names with the different Ti/Zn molar ratios of the electrospinning precursors.

Sample Name TZ1 TZ2 TZ3 TZ4 TZ5

Ti/Zn molar ratio 10:0 9:1 5:5 1:9 0:10

2.3. Microstructural, Thermal and Crystalline Characterization

The thermal behavior of the as-spun Ti–Zn complex oxide nanofibers was analyzed by TG-DTA
(STA 409, NETZSCH Korea Co., Ltd., Paju, Korea) from room temperature to 800 ◦C at a rate of 5 ◦C/min
in 30 mL/min of air atmosphere, and the annealing temperature was determined. The samples were
annealed for 5 h at 600 ◦C in an electric furnace. After heat treatment and crystallization, their crystal
structures were analyzed by XRD (AXS-D8, Bruker Korea Co., Ltd., Gyeonggi, Korea, which was
radiated by Cu Kα). Microstructure changes with different ratios of Ti and Zn salt were measured and
compared before and after heat treatment by FE-SEM (Inspect F, FEI Korea Co., Ltd., Gyeonggi, Korea)
and the compositions were analyzed by EDS.

2.4. Photocatalytic Methylene Blue Degradation

Before use as a photocatalyst, 0.2 g of each sample was distributed in 20 mL deionized water
by ultrasonic treatment. The samples were then put into 200 mL of 5 mg/L methylene blue aqueous
solution, and the mixture was continuously stirred by a magnetic stirrer. The photocatalytic methylene
blue decomposition reaction was carried out using a UV lamp (6 W, 365 nm) at room temperature as
an irradiation light source. The irradiation distance between the lamp and the sample was fixed to
10 cm. During UV irradiation, every 15 min, 2 mL of the solutions was extracted and analyzed by
UV-Vis spectroscopy (G1103A, Agilent Technologies Korea Co., Ltd., Seoul, Korea) and absorption
spectra were compared according to the different times of each sample.

3. Results and Discussion

3.1. Thermal Properties of Ti–Zn Complex Oxide Nanofibers

Figure 2 shows TGA and DTA curves of as-spun Ti–Zn complex oxide nanofibers with different
molar ratios of Ti and Zn in an air atmosphere. After the thermal analysis, 12.4%, 13.6%, 15.7%, 15.6%



Nanomaterials 2020, 10, 1311 4 of 12

and 17.2% of mass remained for TZ1, TZ2, TZ3, TZ4 and TZ5, respectively. The first exothermic reaction
occurred at 311.36, 312.04, 318.40, 344.57 and 351.22 ◦C in TZ1, TZ2, TZ3, TZ4 and TZ5, respectively,
with the zinc content increases. The loss was due to the decomposition and combustion of PVP by
oxygen. The second exothermic reaction occurred at 444.61, 427.89, 432.74, 466.55 and 477.11 ◦C
in TZ1, TZ2, TZ3, TZ4 and TZ5, respectively, with the zinc content increases. The loss was due to
crystallization of Ti–Zn complex oxide. For TZ1 and TZ5, these transformations were in agreement
with the literature [29,37]. For TZ2, TZ3 and TZ4, the temperature of the exothermic reaction peak
changed as the ratio of Ti and Zn changed. For TZ3, a third exothermic peak at 634.44 ◦C was observed.
A similar exothermic peak was reported in a previous report [38], but the peak was not identified.
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Figure 2. (a) Thermogravimetric analysis (TGA) and (b) differential thermal analysis (DTA) curves of
as-spun Ti–Zn complex oxide nanofibers with different molar ratios of Ti and Zn in an air atmosphere
(TZ1: 10:0, TZ2: 9:1, TZ3: 5:5, TZ4: 1:9 and TZ5: 0:10).
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3.2. Microstructural, Chemical and Crystalline Properies of Ti–Zn Complex Oxide Nanofibers

Figures 3 and 4 show FE-SEM images, the diameter histogram and the average diameter of
the as-spun and annealed Ti–Zn complex oxide nanofibers. For each sample, the diameter of the
nanofibers was measured at 20 intersecting points made by five vertical lines and four horizontal lines
in the FE-SEM image of 40,000 magnifications, and five FE-SEM images were used to obtain a total of
100 diameter values. The average diameter and standard deviation were calculated with 100 diameter
values and the histogram was plotted. Before annealing, the average diameters of TZ1, TZ2, TZ3,
TZ4 and TZ5 were 777.5, 643.7, 704.8, 696.2 and 746.8 nm, respectively. After annealing, the average
diameters decreased to 261.0, 237.2, 254.5, 278.6, 244.1 nm, respectively. In TZ4 and TZ5, which had a
high concentration of zinc salt, spherical particles were formed on the surface of the nanofibers, and
this agrees with the literature [30,39].
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Figure 3. Field emission scanning electron microscope (FE-SEM) images of as-spun nanofibers with
different molar ratios of Ti and Zn ((a): TZ1, (b): TZ2, (c): TZ3, (d): TZ4 and (e): TZ5) and annealed
Ti–Zn complex oxide nanofibers with different molar ratios of Ti and Zn ((g): TZ1, (h): TZ2, (i): TZ3, (j):
TZ4 and (k): TZ5).
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Figure 5 shows EDS spectra of TZ1, TZ2, TZ3, TZ4 and TZ5, and Table 2 shows their chemical
composition in atomic percent. In the EDS spectra, titanium peaks of 0.42 and 4.50 keV, zinc peaks
of 1.02 and 8.62 keV and an oxygen peak of 0.52 keV were observed. In the order of TZ1, TZ2, TZ3
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and TZ4, the Ti concentration of the annealed complex oxide nanofibers were 26.04, 31.57, 14.16, and
4.72 at%, respectively. In the order of TZ2, TZ3, TZ4 and TZ5, the Zn concentration of the annealed
complex oxide nanofibers were 3.28, 13.83, 39.67, and 44.91 at%, respectively. As the Ti concentration
of the precursor solution decreased and the Zn concentration increased, when comparing the ratio of
Ti and Zn, the Ti concentration decreased and the Zn concentration increased. The molar ratio of the Ti
and Zn of the annealed complex oxide nanofibers was found to be close to that of the metal salt of the
initial electrospinning precursor solution.
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10:0, TZ2: 9:1, TZ3: 5:5, TZ4: 1:9 and TZ5: 0:10).

Table 2. Chemical composition in atomic percent of TZ1, TZ2, TZ3, TZ4 and TZ5.

Sample Elements TZ1 TZ2 TZ3 TZ4 TZ5

Ti 26.04 31.57 14.16 4.72 -
Zn - 3.28 13.83 39.67 44.91
O 73.96 65.15 72.01 55.61 55.09

To observe the chemical composition of the spherical particles of TZ4 and TZ5 shown in Figure 3,
EDS point analysis was conducted. Figure 6 shows their FE-SEM image and EDS spectra with different
areas, and Table 3 shows their chemical composition in atomic percent. The Zn/Ti ratios in the TZ4
sample were 13.31 at area 1 and 8.24 at area 2, respectively. This reveals that spherical particles have a
Zn-rich phase. Spherical particles in the TZ5 sample also have higher zinc concentration than the body
of fibers.
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Table 3. Chemical composition in atomic percent of TZ4 and TZ5 by EDS point analysis.

TZ4 TZ5

Area 1 Area 2 Area 1 Area 2

Zn 16.90 16.48 7.23 16.98
Ti 1.27 2.00 - -
O 81.82 81.52 92.77 83.02

The crystal structure of TZ1, TZ2, TZ3, TZ4 and TZ5 with different Ti and Zn ratios was analyzed
by XRD. Figure 7 shows their diffraction spectra. From the XRD pattern of the TZ1 sample, the peaks
of TiO2 anatase and TiO2 rutile were identified, and this result indicates that the nanofibers prepared
under the TZ1 conditions have a complex structure of dual phases of titanium dioxide. In the XRD
pattern of TZ2, peaks of TiO2 anatase, TiO2 rutile, ZnTiO3 and Zn2TiO4 were identified, and in the
XRD pattern of TZ3, peaks of Zn2TiO4, ZnTiO3, TiO2 anatase and ZnO were identified. In addition,
peaks of Zn2TiO4 and ZnO were identified in the XRD pattern of TZ4. The nanofibers fabricated under
TZ2, TZ3 and TZ4 conditions were mixed with Ti and Zn, and multi-metal oxide structures, namely,
peaks of ZnTiO3 and Zn2TiO4, were observed by the reaction of TiO2 and ZnO. In the TZ5 sample,
a peak of ZnO was identified and a single oxide structure was observed.
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Figure 7. X-ray diffractometer (XRD) spectra of annealed Ti–Zn complex oxide nanofibers with different
molar ratios of Ti and Zn (TZ1: 10:0, TZ2: 9:1, TZ3: 5:5, TZ4: 1:9 and TZ5: 0:10).

3.3. Photocatalytic Properties of Complex Oxide Nanofibers with Different Ti and Zn Ratios

Figure 8 shows the absorption spectra to evaluate the photocatalytic performance of Ti–Zn complex
oxide nanofibers observed by UV-Vis spectroscopy. The spectra show the absorbance of methylene
blue aqueous solution after photocatalytic degradation without catalysts with TZ1, TZ2, TZ3, TZ4
and TZ5. Figure 9 shows that the intensity changed every 15 min. Without catalysts, the absorption
intensity did not decrease. With TZ1, TZ2, TZ3, TZ4 and TZ5, the absorption intensities decreased, and
the concentration decreased to 0.067, 0.167, 0.650, 0.245 and 0.008 after 180 min compared to the initial
concentration of 1. These results show improved performance compared to the literature with similar
experimental conditions [12]. TZ5 has a methylene blue degradation rate of 99.2%, which is about
14.2% higher than the remaining 85.0% in the literature. TZ1 had a higher photodegradation rate than
TZ2, TZ3 and TZ4, which have multiple crystalline structures with Ti and Zn. The mixed structure of
TZ1, which had an anatase and rutile phase, produced a better performance than the mixed structure
with zinc added. Moreover, TZ5 exhibited a higher photodegradation rate than TZ1, which was due to
a higher absorption rate of ZnO at 365 nm UV [40].
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4. Conclusions

Photocatalysts are the most important technology for air pollution removal and the detoxification
of organic materials. Doping and complexation are among the most used methods to improve the
efficiency of photocatalysts. In this study, for use as photocatalysts, we fabricated Ti–Zn complex oxide
nanofibers by a multi-nozzle electrospinning process with different molar ratios of Ti and Zn. According
to the characterization and experimental results, the nanofibers had a 1-dimensional structure, and
their average diameters were 237.2–278.6 nm. Multiple crystalline structures were observed and were
composed of TiO2 anatase, TiO2 rutile, ZnTiO3, Zn2TiO4 and ZnO. We evaluated the photocatalytic
performances by the degradation of methylene blue with UV irradiation. In all the nanofibers, the
microstructures and phases were stable against physical damage such as ultrasonification and could
be reused as photocatalytic materials by filtering and drying. A higher performance was achieved in
single metal oxide structures of Ti and Zn by the multicrystalline structure of anatase and rutile, and
a higher UV absorbance. In the single metal oxides of Ti and Zn, the methylene blue concentration
decreased to 0.067 and 0.008, respectively, after three hours compared to the initial concentration 1,
which shows the difference in photocatalytic performance in the mixed structure of TiO2 and ZnO,
which are the most widely used photocatalyst materials. The results of this study can be used to
improve the performance of photocatalysts through various process controls.
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