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Abstract: A TiN-based substrate with high reusability presented high-sensitivity refractive index
measurements in a home-built surface plasmon resonance (SPR) heterodyne phase interrogation
system. TiN layers with and without additional inclined-deposited TiN (i-TiN) layers on glass
substrates reached high bulk charge carrier densities of 1.28 × 1022 and 1.91 × 1022 cm−3, respectively.
The additional 1.4 nm i-TiN layer of the nanorod array presented a detection limit of 6.1× 10−7 RIU and
was higher than that of the 46 nm TiN layer at 1.2 × 10−6 RIU when measuring the refractive index of
a glucose solution. Furthermore, the long-term durability of the TiN-based substrate demonstrated by
multiple processing experiments presented a high potential for various practical sensing applications.

Keywords: refractive index; glucose solution; charge carrier density; surface plasmon resonance;
heterodyne phase interrogation; sensitivities; long-term durability; TiN layer

1. Introduction

The detection and treatment or removal of harmful materials in water are essential for
environmental protection. Typically, dissolved material in water can be detected using several
methods such as absorbance spectroscopy, biological oxygen demand (BOD) [1,2] and chemical
oxygen demand (COD) [3,4] evaluation, colorimetry [5], gas chromatography–mass spectrometry
(GC–MS) [6], surface-enhanced Raman spectroscopy [7–10], electrochemical cyclic voltammetry
(CV) [11–13], and electrical conductivity detection. Few biological agents, i.e., bacteria and viruses,
can be detected through polymerase chain reaction (PCR) [14–16]. However, these methods may
require reagents and instrumentation that are cost-intensive. They also are difficult in processing
real-time and long-term applications for drinking water monitoring.

Fortunately, the dissolution of many biological or chemical materials typically leads to sudden
alterations in the refractive index of water. Thus, real-time monitoring of the water refractive index
potentially ensures the overall safety of drinking or effluent water. High-sensitivity sensors and
methods of long-term durability are demanded for ultralow refractive index changes and high stability
in water monitoring [17–19].

The total internal reflection (TIR) of light inside the surface of a prism is sensitive to the change
of the surrounding material (e.g., air or liquid). The sensitivity of the refractive index detection can

Nanomaterials 2020, 10, 1325; doi:10.3390/nano10071325 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-3753-0067
https://orcid.org/0000-0002-5249-8715
https://orcid.org/0000-0003-0752-175X
http://www.mdpi.com/2079-4991/10/7/1325?type=check_update&version=1
http://dx.doi.org/10.3390/nano10071325
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 1325 2 of 14

be improved further through a Kretschmann configuration [20–26]. A subsystem of a fixed small
tank or chamber with inlet and outlet on the surface of a prism can be used to detect the refractive
index of the flowing-through liquid. The detection prism surface is covered with an additional metal,
thin film, which induces surface plasmon resonance (SPR) through TIR coupling of the incident light.
Generation of SPR in the collective oscillation of free electrons at the metal–dielectric interface leads to
a dip in the reflection spectrum. The so-called attenuated total reflection (ATR) method is based on
ultrahigh sensitivity to the changes in the refractive index of the covering dielectric material, i.e., target
solutions [21,27–36].

Moreover, nano roughness or sculptured structures on the thin film [37–43] further provides
high-sensitivity, localized SPR modes and high specific surface area, which can lead to increased
sensitivity to the refractive index of the covering material in many applications [25,27,44–59].
Nanoparticles, nanostructures, and thin films constructed with a metal material can also induce
localized SPR under light illumination [25,27,44–62]. It is beneficial to fabricate metal nanoparticles
or nanostructures in suitable sizes to detect SPR refractive indexes with high sensitivity at a specific
wavelength of light. Peng et al. measured refractive index changes at a sensitivity of 6.3 × 10−8 RIU by
using a Ag nanoparticle-based sensor [21].

Optical responses of array-structured nanomaterials or (random) photonic crystals can also be
largely altered by changing surrounding materials [20,46–58]. The light transmission–absorption
spectrum of metal 2D array nanostructures can effectively provide highly accurate refractive
index measurements of the liquid sample [47,50–55]. Arrays are built using Ag and dielectric
nanospheres or nanorods [50], Ag shell dielectric–core nanorods [47], metal–dielectric nanorods with
or without a rotational angle [51], protruding metal nanorods (MNRDs) in a core–shell nanorod [52],
MNRDs with connected veins [53], Ag-coated Si nanorods [54], and nanorods with crosshairs [55].
A metal–insulator–metal (MIM) sensor structure coupled with several Ag nanorod defects in a T-shape
cavity [59] presents a relatively high sensitivity for refractive index sensing. Thus, a layer of vertical
standing rods in the Kretschmann configuration can be useful as a sensing medium.

However, Ag has high chemical activity; oxidization of Ag nanoparticles can significantly reduce
the sensitivity of refractive index measurements. Moreover, the deposited noble metal layers tend to
peel off easily from the substrate due to low adhesion, and this is a disadvantage for long-term use.
High-sensitivity plasmonic refractive index detection in the long-term monitoring of liquid requires
metal-like materials with high chemical stability. The nanostructures of metal-like materials can further
increase the sensitivity of the detection system. In 2010, Naik et al. applied hard TiN with high chemical
stability and achieved a charge carrier density of approximately 1022 cm−3 [63,64]. In 2011, Chen et al.
fabricated TiN with a charge carrier density of 6.6 × 1022 cm−3. The TiN layer has a high carrier
concentration and low chemical activity, like metal [65]. In 2011, Kumar et al. presented an inclined
deposition method to grow inclined crystal rods [66]. In general, TiN layers have high chemical and
electrical stability that can be used for fabricating supercapacitors [67], lithium hosts in batteries [68],
and electrochemical hydrogen storage [69]. Deposited TiN layers [63–72] of nanostructures are good
plasmonic materials and can be used to fabricate novel sensors with long-term stability.

In practical setup, the plasmonic ATR sensing process is commonly categorized into four basic
types: (i) angular interrogation (i.e., change of the resonant angle), (ii) intensity interrogation (i.e.,
change of reflectance at a fixed incident angle), (iii) wavelength interrogation (i.e., change of resonant
wavelength at a fixed incident angle), and (iv) phase interrogation (i.e., the phase difference between
P- and S-polarized light in the reflection spectrum) [22,27]. Among these, the phase interrogation
technique provides the most sensitive measurements [28–36]. In our previous work, the wavelength of
incident light was found to affect detection sensitivity in SPR temperature monitoring [30]. Moreover,
SPR phase interrogation at the particular incident wavelength provided a high-resolution angular
measurement and other applications [31,73–77].

In the Kretschmann configuration, the generated SPR mode is affected by the wavevector of
incident light and material properties of the substrate, covering layer, and the SPR generating metallic
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layer. On fixing the material properties of the metallic layer and substrate, the material property, i.e.,
refractive index, of the covering layer can be resolved by the SPR or plasmonic optical response modes
concerning various wavevectors of incident light. Angular and wavelength interrogation both introduce
variations in the wavevector of incident light to resolve the refractive index of the covering material.
Chen et al. [65] demonstrated that TiN has a relatively low charge carrier density compared with Ag
and had a broader valley in the angular and wavelength interrogation measurements. This means that
the lowest point of the valley cannot be identified clearly under external optical or electrical interference
if the TiN layer is chosen to be the SPR generator in Kretschmann configuration measurements.
The modified method suggested by Nelson et al. [28] (see Equation (4)), using slopes of the data curve
to estimate the covering material’s refractive index, has presented good sensitivity [20,21,44] with Ag
or other noble metals used in the SPR generator. The modified method only needs the metallic material
to have enough charge carrier concentration to generate SPR and introduces variations in plasmonic
reflections and phase differences for P- and S-polarized incident light. Based on this modification,
the detection limit (RIU) of the modified phase interrogation technique is inversely proportional to the
typically used definition of sensitivity (nm/RIU) in evaluating a plasmonic sensor. The detection limit
refers to the lowest difference in measurements for the point-by-point conversion of the refractive index.
It was used in this study to make sure it did not cause confusion with typically used “sensitivity.”

In this study, a TiN layer was deposited in compact standing crystal rods, which provided
high-sensitivity refractive index measurements. An additional stacked layer of inclined-deposited
TiN (i-TiN) nanorods can increase the specific surface area to contact the target solution, which results
in a further enhanced sensitivity in experimental measurements. High chemical stability of the TiN
layer facilitated consistent measurements in the cycling of clean-and-reuse experiments, indicating the
long-term durability. Analytical solutions with multiple-layer reflectivity and phase differences based
on the Fresnel equation were also acquired by illuminating light on a 46 nm TiN layer to cover liquids
with various refractive indexes.

2. Experimental Setup

2.1. Sample Preparation

TiN and i-TiN thin layers were deposited on a Si substrate by using a radiofrequency (RF)
magnetron sputter. The processing temperature of the substrate was 400 ◦C, and the starting pressure
was 5 × 10−6 Torr. The RF source was maintained at 250 W under a flow of Ar (7 sccm) and N2 (5 sccm)
air (237 K, 760 Torr).

Sample Series 1 comprised normally grown TiN layers of various thicknesses, deposited on
a BK7 glass slide (25 × 25 × 1 mm3), whereas Sample Series 2 comprised TiN(43 nm)/i-TiN layers,
deposited on an identical glass slide. The thicknesses of i-TiN layers were changed using various
deposition times and by tilting the substrate 50◦ during the sputtering process. The TiN (Figure 1a)
and TiN/i-TiN (Figure 1b) thin layers deposited on the Si substrate were visualized through scanning
electron microscopy.

The i-TiN layer has a higher specific surface area to contact the target solution and enhance
the sensitivity of refractive index measurements. The smallest thickness of the homogeneous i-TiN
layer fabricated by the inclined deposition method was 1.4 mm. X-ray diffraction analysis (Figure 1c)
revealed that the deposited TiN layer (141 nm thick) demonstrated various signal peaks of typical
crystal surfaces.
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deposited TiN layer on the glass substrate could achieve the highest bulk and sheet carrier densities 
up to 1.91 × 1022 cm−3 and 8.77 × 1016 cm−2, respectively. Thus, the deposited TiN layer could resemble 
Si, whereby it could generate SPR under light illumination. The additional i-TiN layer slightly 
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subsequent SPR heterodyne phase interrogation measurements (Table 1). 
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Figure 1. Scanning electron microscopy images of the TiN layer deposited on a Si substrate at various
deposition angles: (a) 0◦ (50 nm) and (b) 0◦ (43 nm)/50◦ (83 nm). (c) X-ray diffraction measurement of
deposited TiN (141 nm) on the Si substrate.

Table 1 presents the charge carrier concentrations of samples measured by a Hall effect measurement
system (Accent HL5500PC) with various thicknesses of deposited TiN thin layers. Typically, the bulk
carrier density (BCD) is calculated from the sheet carrier density (SCD) data following the definition
BCD = SCD/∆h, where ∆h is the thickness of the sample thin film. The deposited TiN layer on the
glass substrate could achieve the highest bulk and sheet carrier densities up to 1.91 × 1022 cm−3 and
8.77 × 1016 cm−2, respectively. Thus, the deposited TiN layer could resemble Si, whereby it could
generate SPR under light illumination. The additional i-TiN layer slightly reduced the bulk and sheet
carrier densities but enhanced the precision of data acquisition in subsequent SPR heterodyne phase
interrogation measurements (Table 1).

Table 1. Charge carrier concentrations of samples with various deposited thicknesses of the TiN thin
layer. The error of the measurement is smaller than 1%.

Bulk Carrier Density (1/cm3) Sheet Carrier Density (1/cm2)

Glass/TiN (46 nm) 1.91 × 1022 8.77 × 1016

Glass/TiN (50 nm) 1.45 × 1021 7.22 × 1015

Glass/TiN (54.5 nm) 3.32 × 1021 1.81 × 1016

Glass/TiN (46 nm)/Inc. TiN (1.4 nm) 1.28 × 1022 5.87 × 1016

Glass/TiN (46 nm)/Inc. TiN (4.1 nm) 2.10 × 1021 9.64 × 1015

Glass/TiN (46 nm)/Inc. TiN (6.9 nm) 1.12 × 1021 5.13 × 1015

2.2. Experimental Setup

An SPR heterodyne phase interrogation system was constructed to detect the refractive index of a
glucose solution flowing through a small liquid test cell (Figure 2). In the experimental setup, a polarizer
defined the polarization of 1150 nm coherent light from a laser. The continuous polarized light was
modulated into a jagged variation on illuminated intensity by an electro-optic (EO) modulator (ADP,
NH4H2PO4, ConOptics) that was triggered by a function generator (DS345, Stanford Research System)
and high-voltage driver (Model: 302, ConOptics). The beam splitter (BS) further divided the light into
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two light beams, namely test and reference light beams, with perpendicular propagation paths. The test
beam illuminated the liquid test cell through a prism with the Kretschmann configuration [22,70].
Surface plasmons are only generated by illuminating P-polarized light in the deposited metal layer and
should be affected by the refractive index of the covering test solution. The test glucose solutions of
various concentrations can flow in the circular test flow cell (diameter, 20 mm; depth, 0.5 mm; volume,
0.157 mL), defined by an aluminum chamber and O-ring.
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Figure 2. Schematic of the experimental setup in the Kretschmann configuration for refractive index
measurements. P: polarizer, BS: beam splitter, AN: analyzer, D: detector, TL: test light, RL: reference light.

Both the reference beam and the output light from the testing unit also propagated through the
analyzer, converted to an electrical test signal, and was sent to a lock-in amplifier. The reflectivity and
locked-in phase difference were obtained by referencing the light-modulating electrical signal from the
function generator and then translating it to the refractive index of the test solution.

In the experimental setup, the light intensity of the test beam measured using the detector can be
expressed as

It = |Et|
2 =

1
2


∣∣∣rp

∣∣∣2 + |rs|
2

2
+

∣∣∣rp
∣∣∣|rs|cos

(
ωt + φp −φs

) (1)

where Ir and It are the reference and the test beam intensities, respectively, both of which have the
oscillated term cos(ωt). ω is the light intensity modulation frequency defined by a function generator
and EO modulator. The refraction coefficients of polarized P-wave (

∣∣∣rp
∣∣∣) and S-wave (|rs|) are the ratio

of the reflected wave’s electric field complex amplitude to that of the incident wave. Therefore, the light
intensity-related term

∣∣∣rp
∣∣∣|rs| and phase difference term (∆φ) of P- and S-polarized light (∆φ = φp −φs)

can be extracted through calculation with Ir and It by using the lock-in amplifier. Furthermore, only the
electromagnetic wave with an electric field that lies on the incident plane can induce SPR in the
Kretschmann configuration and |rs| ∼ 1. The square of the readout value from the lock-in amplifier is(∣∣∣rp

∣∣∣|rs|
)2

, which is equal to the ratio of light reflected by the metal layer in experiments [44].

3. Results and Discussion

Analytical solutions of multilayer reflectivity were used to acquire with various wavelengths
(Figure 3), reflectivities (Figure 4a,c), and phase differences (Figure 4b,d) for various light incident
angles based on the Fresnel equation for multiple optical reflections and transmissions; light was
illuminated from the glass substrate to a 46 nm TiN layer covered with glucose solutions of various
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refractive indexes [44]. Theoretical estimation of reflection coefficient (ri j) was acquired as inclined
incident light illuminating from the i-th to j-th multilayers:

ri j =

(
Zq

i + Zq
j

)
(
Zq

i + Zq
j

) (2)

where q denotes the P- or S-wave. ZP
i = εi/kzi and ZS

i = kzi. εi is the dielectric constant of incident

light for the i-th layer. kzi =
√

k2
x − εik2

0 = k0
√
εi − ε1sin2θ. k0 and kx are the wavevector and its

component in the x-direction, respectively. θ is the illuminating angle of incident light. The multiple
transmissions and reflections of the three layers (glass/TiN/glucose solution) can be simplified to
acquire the reflection coefficient:

r123 =

(
r12 + r23ei2kz2d2

)
(1 + r12r23ei2kz2d2)

(3)

The subscripts 1, 2, and 3 denote layers of glass, TiN, and glucose solution, respectively. d2 is the
thickness of the TiN layer. The reflection coefficients are both complex numbers for P- and S- polarized
light and can be expressed as rp =

∣∣∣rp
∣∣∣eiφp and rs = |rs|eiφs , respectively.

The reflectivity with various wavelengths of oblique incident light at 49.7◦ for various
concentrations of glucose solution [44] can be analytically resolved by the reflection coefficient
above. The differences in reflectivity for various concentrations of glucose solution were not large for
incident light wavelengths shorter than 850 nm. TiN is thus typically used to generate SPR with light
longer than 850 nm [65,66]. With low chemical activity and strong mechanical hardness, deposited TiN
layers [63–69] of nanostructures are good plasmonic materials with long-term stability.
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Figure 4. Numerical calculations of (a,c) reflectivity and (b,d) phase differences with various incident
angles of 1150 nm incident light for various concentrations of glucose solution. The thickness of the
deposited TiN layer is 46 nm.

The reflectivity (Figure 4a,c) and phase difference (Figure 4b,d) in calculations delivered similar
results to those in experimental measurements (Figures 5 and 6). The wavelength of light in the
analytical calculations was 1150 nm. The theoretical calculations showed that the reflectivity (Figure 4c)
and phase difference (Figure 4d) presented relatively large variations for incident light illuminating at
45◦–65◦. Due to the limitation of the experimental setup processed with a prism, the experimental
results were only acquired with incident angles at 48◦–52◦ without loss of generality. The refractive
index estimation was based on the slope of the data curve with incident light at around 49.7◦.

In the theoretical calculation (Figure 4) and experimental measurements (Figure 5), the relatively
higher value of reflectivity and phase difference close to 49◦ indicated the critical angle of TIR in
Kretschmann configuration, which resembled results presented in Figure 5 in the reference work [65].
As the incident light angle further increased, the TIR coupling and SPR generation quickly decreased
and experienced a sharp dip in reflectivity, which is typically seen in many plasmonic ATR sensing
applications. The relatively high reflectivity at the critical angle is usually not as apparent when using
a thin, metal film such as with a SPR generator. However, the TiN thin film has low charge carrier
concentrations and has a relatively apparent, high reflectivity at the critical angle and broader dip or
valley, indicating SPR response [65].

In experimental measurements, the various concentrations of glucose solution presented slightly
shifted patterns of reflectivity (Figure 5a) and phase differences (Figure 5b) concerning different light
illumination angles. The reflectivity (Figure 5c) and phase difference (Figure 5d) for 49.7◦ incident
light were acquired and presented a linear agreement with the known refractive indexes of the
glucose solution.

As shown in Table 1, the 46 nm deposited TiN layer exhibited the highest bulk and sheet carrier
densities. Experimental results in Figure 5c suggest that the sample with the 46 nm TiN layer presented
relatively high reflectivity. The results of phase difference measurements (Figure 5d) also showed
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that samples with 46 nm TiN layers demonstrated relatively high precision and stability. Therefore,
the sample with the 46 nm TiN layer was chosen as the base for an additional i-TiN layer.
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The additional i-TiN layers of various thicknesses further enhanced the reflectivity (Figure 6a,c)
and precision of the phase difference (Figure 6b,d) measurements of the refractive indexes of variously
concentrated glucose solutions. The additional 1.4 nm i-TiN layer improved the performance of the
base 46 nm normally deposited TiN layer. In order to acquire the detection limit or smallest refractive
index unit (RIU) (σn) resolvable in reflectivity and phase measurements, we followed the definitions of
Nelson et al. [28] and our previous work [20,21,44] to consider the following quantity:

σn =

(
∆n
∆φ

)
σφ (4)

where ∆n/∆φ is the local slope of the refractive index n versus phase φ curve, and σφ is the finest
resolution available, which is 0.01◦, from the lock-in amplifier used in our experiments. The slopes
∆n/∆φ of the phase measurements for a 46 nm TiN layer with and without an additional 1.4 nm i-TiN
layer were 6.1 × 10−5 and 1.2 × 10−4, respectively. Therefore, the acquired refractive index detection
limit for glucose solution in the phase mode increased to 6.1 × 10−7 RIU with the addition of a 1.4 nm
i-TiN layer. This was better than the 1.2 × 10−6 RIU obtained with the 46 nm TiN layer (Figure 6b).

The experimental results showed that the phase difference data (Figures 5d and 6b) had higher
consistency than that in the reflectivity (Figures 5c and 6a) concerning various refractive indexes.
The modification with Equation (4) presented higher stability of acquired data in phase difference
measurements. Addition of the i-TiN layer further decreased the detection limit. The Nelson’s
modification of phase difference measurements and additional i-TiN layer in combination presented
the lowest detection limit of 6.1 × 10−7 RIU in our measurements.
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Experimental results presented that use of the SPR heterodyne phase interrogation system with
low chemical activity and a reusable TiN layer was beneficial for refractive index detection in the liquid
phase. The protruded nanorods can have a larger specific surface area to contact the target solution
and further enhance the sensitivity of refractive index measurements in the SPR heterodyne phase
interrogation system [20]. However, addition of an inclined-deposited TiN layer in the nanorod array
reduced the carrier concentration. The increase of the i-TiN layer thickness gradually reduced the
detection limit in measurements.

The TiN-based sensor also presented potential reusability in three repeated trials. Results for 5%
glucose solution were highly similar among the three repeated experiments. The intervals after every
run involved cleaning with acetone, methanol, and deionized water sequentially. The experimental
data in reflectivity (Figure 7a) and phase (Figure 7b) measurements presented similar results in
three experiment runs. The deposited TiN layer provided stability and was reusable in multiple
processes of refractive index sensors. The typically used thin metal films (e.g., Ag or Au) for plasmonic
applications are easily oxidized or peeled from the substrate, which makes them unsuitable for reuse or
long-term storage. Thus, the high stability and reusability of the deposited TiN layer could increase the
long-lasting durability of plasmonic refractive index sensors or measurements in future applications.
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4. Conclusions

In this study, TiN with additional i-TiN thin layers was successfully deposited on a glass substrate
by using the inclined deposition method. The bulk charge carrier densities of the deposited TiN layer
with and without an additional i-TiN layer reached 1.28 × 1022 and 1.91 × 1022 cm−3, respectively.
A home-built SPR heterodyne phase interrogation system was used for measuring the refractive index
of glucose solutions. The experimental results presented good agreement with the Fresnel equation’s
analytical solutions of multiple-layer reflectivity and phase differences. The refractive index of a
liquid was resolved by using the SPR heterodyne phase interrogation method in the theoretical model.
The detection limits of the sample solution using the 46 nm TiN layer with and without an additional
1.4 nm i-TiN layer were 6.1 × 10−7 and 1.2 × 10−6 RIU, respectively. The detection limit of the plasmonic
ATR refractive index measurement using a TiN layer was lower than that using an Ag layer [44].
However, the reusability and low cost of the TiN layer provide high potential for use as practical
plasmonic sensors for biosensing with potential long-term durability in future applications.
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