Synthesis of In Situ Photoinduced Halloysite-Polypyrrole@Silver Nanocomposite for the Potential Application in Humidity Sensors

Khouloud Jlassi 1,*, Shoaib Mallick ², Hafsa Mutahir ³, Zubair Ahmad ^{1,*} and Farid Touati ²

- ¹ Center for Advanced Materials (CAM), Qatar University, 2713 Doha, Qatar
- ² Department of Electrical Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; sm1404760@student.qu.edu.qa (S.M.); touatif@qu.edu.qa (F.T.)
- ³ Department of Chemical Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; hm1708761@student.qu.edu.qa
- * Correspondence: khouloud.jlassi@qu.edu.qa (K.J.); zubairtarar@qu.edu.qa (Z.A.)

Figure S1: The hysteresis response of the HNT-DMA-PPY-AG(0.25 wt%, 0.5 wt% and 1 wt%) nanocomposite based resistive humidity sensors.

Figure S2: Hysteresis response of the HNT-DMA-PPY-Ag (0.5 wt%) nanocomposite based humidity sensors. Inset shows the response and recovery time(40-95%RH) of the HNT-DMA-PPY-Ag (0.5 wt%) based impedance sensor.

