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Abstract: Metallic lithium (Li) anode batteries have attracted considerable attention due to their
high energy density value. However, metallic Li is highly reactive and flammable, which makes Li
anode batteries difficult to develop. In this work, for the first time, we report the synthesis of metallic
Li-embedded carbon nanocomposites for easy and safe handling by a scalable ion beam-based method.
We found that vertically standing conical Li-C nanocomposite (Li-C NC), sometimes with a nanofiber
on top, can be grown on a graphite foil commonly used for the anodes of lithium-ion batteries. Metallic
Li embedded inside the carbon matrix was found to be highly stable under ambient conditions,
making transmission electron microscopy (TEM) characterization possible without any sophisticated
inert gas-based sample fabrication apparatus. The developed ion beam-based fabrication technique
was also extendable to the synthesis of stable Li-C NC films under ambient conditions. In fact,
no significant loss of crystallinity or change in morphology of the Li-C film was observed when
subjected to heating at 300 ◦C for 10 min. Thus, these ion-induced Li-C nanocomposites are concluded
to be interesting as electrode materials for future Li-air batteries.
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1. Introduction

With a global focus on clean and renewable energy, storage and transfer of electric energy at
the grid scale is a challenge. The lithium-ion battery (LIB) has been a topic of great research interest
in recent years [1]. LIBs are superior to conventional batteries due to their high energy density,
portability and safety [2–5]. Sony was the first company to commercialize the lithium-ion battery
in the 1990s. LIBs consist of Li oxide cathode and carbonaceous materials as the anode. Li salts are
used as electrolytes with a separator separating the electrode. Graphite is the most common anode
material used in almost all LIBs. Graphite is useful due to its intercalation property, storing a large
amount of Li atoms. Graphite is also stable due to less volumetric change (10%) during charge and
discharge cycles. However, due to its limited energy density value (372 mA·h·g−1) [6] and high weight,
alternative lightweight and high-energy-density anode material is a necessity.

Li has been realized as the ideal anode material for LIBs due to its lightweight nature and very
high energy density (3860 mA·h·g−1) [7–9]. Previously, various attempts have been made to utilize
metallic Li as the anode material. Due to its high reactivity to the electrolyte, there is continuous
loss of active Li from the anode in Li anode batteries. As observed in cases of Ni and other metals,
the formation of nanoscale structures, such as wire and dendrites, is common in electrochemical
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reactions. Li also suffers from the problem of dendrite formation during the electroplating process,
leading to manyfold increases in the effective area of the anode. Degradation of the solid electrolyte
interphase (SEI) during discharge followed by formation of a new SEI in the next charging leads to
the loss of Li from the anode, also called dead Li. An increase in dead Li, as well as a decrease in
the quantity of the electrolyte, effectively reduces the energy density and life cycle of the LIB with
poor coulombic efficiency. Dendrite formation also leads to short-circuiting of the electrode, leading to
thermal runaway and fire in the battery [10].

Safety is the main concern while using Li as the anode; hence, the battery market has settled with
LIBs with reduced energy density but with higher safety standards. Various works have demonstrated
the use of metallic Li as an anode material. These works generally focus on finding a stable host material
for Li storage [11–13], minimization of Li dendrite formation by electrolyte engineering [14], use of
solid electrolytes [15,16] and interface engineering [17,18]. Stabilization of highly reactive Li metal
by surface coating seems promising for stable SEI formation. Coating the Li anode with conductive
oxides and sulfides has shown promising results [19,20]. However, use of chemical reagents for surface
coating requires perfect control to minimize the non-uniformity of the surface. Use of three-dimensional
structures such as wires, fibers and tubes as current collectors has demonstrated a drastic reduction of
Li dendrite formation [21,22]. Yang et al. showed that uniform electroplating of Li could be obtained
on Cu nanowires, leading to a dendrite-less anode [21]. A carbon matrix has been traditionally used
to encapsulate metal/metal oxides, such as NiO, NiCo2O4, Fe2O3, Fe3O4, MnO2, CuO, ZnO, Ge and
Sn/SnO2, forming carbon–metal composites used as anode materials for LIBs. A carbon-based scaffold
prevents the large volumetric change during charge/discharge cycles, improving the performance of
the battery [23–32]. Here, we demonstrate the synthesis of highly stable conical and fibrous amorphous
carbon with encapsulated Li nano-domains (Li-C nanocomposite; Li-C NC) on graphite foil as a
candidate material for LIBs for easy and safe handling.

2. Materials and Methods

Li-C NC was fabricated on the edge of a graphite foil. Figure 1a shows the schematics of the
sample fabrication method. Commercially available graphite foils, PERMA-FOIL®, TOYO TANSO Co.
Ltd. (Nishiyodogawa-ku, Osaka, Japan), with dimensions of 10 mm × 20 mm × 0.1 mm, were used
as substrates. The graphite foil was placed vertically on a thick graphite sheet. Three to four shots
of Li were placed in front of the standing graphite foil. Ar+ ions with energy of 700 or 1000 eV
were continuously bombarded on the graphite foil and Li shots at 45 ◦C for at least 30 min to form
Li-embedded NC. During Ar+ ion bombardment, C and Li atoms were ejected and redeposited in the
form of conical structures, with Li nano-crystallites embedded in the C matrix to form conical Li-C NC
(Figure 1b,c). As seen in Figure 1c, carbon-based nanofibers (CNFs) sometimes grew on the respective
conical tips. A Kaufmann-type ion gun (Iontech. Inc. Ltd., model 3-1500-100FC, (Veeco Instruments
Inc., New York, NY, USA) was used for the Ar+ irradiation. Further information on the detailed
fabrication process can be found elsewhere [33–37]. Characterization of synthesized Li-C NC was
done using TEM JEM ARM 200F operated at 200 kV. A double-tilt TEM holder (JEOL; EM-Z02154T,
Chiyoda, Tokyo, Japan) was used without a liquid N2-based cooling system for transmission electron
microscopy (TEM) observations. It is to be noted that no inert gas or vacuum system was used for the
preparation and transfer of TEM samples. As synthesized, the sample was directly mounted onto a
TEM holder for the TEM characterization.
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Figure 1. (a) Schematics showing sample setup for Li-C nanocomposite (NC) preparation. (b) Scanning
electron microscope (SEM) image showing the top view of Li-C NC grown on the edge of graphite foil.
(c) Low Mag transmission electron microscopy (TEM) image showing Li-C NC fabricated by Ar+ ion
irradiation at 700 eV. Carbon-based nanofibers (CNFs) grew on top of several conical structures, as
exemplified by arrows.

3. Results

Figure 1b,c shows the scanning electron microscope (SEM) and transmission electron microscope
(TEM) images of the as-synthesized Li-C NC, respectively. The conical structures are almost
unidirectional and freestanding. Their length and density can be controlled by changing the Ar+

irradiation angle and the time of irradiation. As synthesized, Li-C NC was further characterized at
higher magnification to confirm the presence of Li atoms. Figure 2a shows the typical Li-C NC with a
short CNF on top. CNFs of longer and slenderer size are unstable under an electron beam, making
atomic-scale characterization difficult. Therefore, we selected the Li-C NC with a short CNF. Figure 2b,
shows the high magnification TEM image taken around the red squared area of Figure 2a, showing
the presence of Li atoms. The fast Fourier transform (FFT) corresponding to the electron diffraction
pattern taken around the white square clearly shows sharp diffraction points, indicating the presence
of crystalline Li. A high magnification TEM image was taken on the crystalline lattice of Figure 2b,
as shown in Figure 2c. Individual Li atoms were clearly visible, with a lattice distance of 0.24 nm
corresponding to the (110) plane of Li [38]. It is to be noted that this the first report on the atomic-level
observation of Li atoms under 200 keV TEM operating voltage without the use of a cooling holder
and special sample fabrication methods, as reported in previous works [39]. During TEM observation,
no damage to the Li lattice was observed, implying stability of Li nano-domains embedded in an
amorphous carbon matrix. Elemental analysis of the Li-C NC was carried out using electron energy
loss spectroscopy (EELS). EELS spectra of Figure 2d clearly show the Li peak at 57 eV, which is close to
the reported value [28,29]. It is clearly observed that Li-C NC can act as a host material to store Li,
even in ambient conditions.

After the optimization of the experimental conditions for the synthesis of Li-C NC, the effect
of Ar+ ion energy on the morphology and Li storage of Li-C NC was analyzed in the second set of
experiments. To study the effect of the higher Ar+ energy, Li-C NC was synthesized at 1 keV of beam
energy. Figure 3a shows the low magnification TEM image of the as-fabricated sample with Ar+

ions sputtered at 1 keV. Interestingly, no particular array of Li-C NC was observed, contrary to the
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samples synthesized using 700 eV. The presence of a conical structure is observed at only a few places
(inside the rectangular area), with most of the samples showing minor protrusions or the deposition of
amorphous carbon. However, a large amount of Li was confirmed, as shown in Figure 3b. During TEM
observation, the expansion of a Li ball-like structure was observed, as indicated by arrows in Figure 3b.
Figure 3c shows an example of rarely present conical NC, showing a large amount of Li attached to the
surface of the NC (of the rectangular area of Figure 3a). The inset shows the presence of Li on the tip of
the conical NC. Interestingly, no Li lattice was observed inside the C matrix, but a Li-related lattice was
visible on the surface of the conical NC, as shown in Figure 3d. As seen in the inset, the line profile
taken for the air-exposed atomic lattice shows a higher separation value of 0.257 nm, corresponding to
Li2O2 (JCPDS card No. 01-074-0115). From this observation, it can be concluded that under the higher
ion beam energy of 1 keV, an excess of Li, which is reactive in air, is sputtered and supplied onto the
Li-C NC, suggesting that the Li-C NC formed at higher ion energy densities would be less suitable
for battery applications. Previous works have also shown that for the fabrication of metal-embedded
CNF, the quantity of metal should be optimum. It can be clearly observed that 700 eV is the preferable
energy for the fabrication of Li-embedded NC.
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Next, we deposited Li-C NC film on a microgrid TEM mesh so that the deposited film could be
characterized without any transfer steps. Figure 4a shows the low magnification TEM image of Li-C
NC film on a Cu microgrid TEM mesh. Figure 4b shows the patches of light and dark contrasted
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micro-areas, indicating different Li and C distributions. C is higher in atomic weight compared to Li,
yielding darker contrast, whereas the Li-rich area appears as bright micro-areas. A high magnification
TEM image clearly shows the presence of the Li lattice (Figure 4c).Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 8 
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In order to study the role of the C matrix in protecting embedded Li crystallites, we heated a
Li-C NC film deposited on a microgrid TEM mesh over a hot plate at 300 ◦C for 10 min in ambient
conditions. Figure 4d shows a typical TEM image for the Li-C NC film after heating for 10 min. It is
observed that Li lattices are protected in ambient conditions without apparent oxidation or change in
morphology. The inset of Figure 4d shows a high magnification TEM image, revealing the pristine
Li lattice with a lattice distance of 0.24 nm, corresponding to the (110) plane, and the preservation of
Li was further confirmed by an EELS spectrum peaking at about 58 eV (Figure 4e). This shows that
amorphous C acts as a buffer, protecting Li from oxidation or exposure to moisture.

This simple ion beam-based Li-C NC fabrication can be adopted for the industrial-scale
development of pre-lithiated anode material for battery applications. Li-C NC should be accessible
for the electrochemical processes, as carbon in Li-C NC is mostly amorphous carbon, which is not
much different from carbonaceous materials that are commonly used in commercial batteries. In
order to confirm this, we are now planning to measure its charge/discharge property by assembling a
prototype of a battery, and to also carry out the in-situ TEM observation of this charge/discharge process
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using Li-C NC and Li-C composite films based on our in-situ TEM technique using CNFs [33,34,40].
The results will be reported in forthcoming papers.
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Figure 4. (a) Low mag TEM showing Li-C NC film deposited on TEM mesh. (b) Typical Li-C NC film
showing dark and bright spots indicating different distributions of Li and C. (c) High mag TEM image
showing Li lattice in C matrix before annealing. (d) Li-C NC film after annealing for 10 min at 300 ◦C.
The inset presents the squared area showing the intact Li lattice (e) EELS spectra taken on the annealed
sample showing the presence of pristine Li.

4. Conclusions

In summary, we developed a novel method for the fabrication of Li-embedded NC using an ion
beam setup. We found that Li inside NC is well preserved from oxidation during handling in ambient
conditions. Further, no significant electron beam-related damage was observed on the Li lattice during
TEM measurements. Since Li is pre-stored inside the NC, Li-C NC can be attractive as the anode
material for the LIB battery. Further, the method was extended to fabricate Li-C NC films on microgrid
TEM meshes, which can be easily extended to deposit Li-C NC films on any arbitrary substrates for the
fabrication of battery electrodes.
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