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Abstract: An analytical method is presented in this work for the linear vibrations and buckling
of nano-plates in a hygro-thermal environment. Nonlinear von Kármán terms are included in the
plate kinematics in order to consider the instability phenomena. Strain gradient nonlocal theory is
considered for its simplicity and applicability with respect to other nonlocal formulations which
require more parameters in their analysis. Present nano-plates have a coupled magneto-electro-elastic
constitutive equation in a hygro-thermal environment. Nano-scale effects on the vibrations and
buckling behavior of magneto-electro-elastic plates is presented and hygro-thermal load outcomes
are considered as well. In addition, critical temperatures for vibrations and buckling problems are
analyzed and given for several nano-plate configurations.

Keywords: smart nano-plates; semi-analytical solution; critical temperatures; buckling; vibrations

1. Introduction

In recent years research has focused heavily on MEMS (Micro-Electro-Mechanical-
System) and NEMS (Nano-Electro-Mechanical-System). This interest is mainly due to the
wide variety of applications in which these devices could be used [1–4]. These structures,
such as nanoplates, nanorods, and nanobeams [5], can be used in medicine [6], electron-
ics [7], aerospace [8] and in civil construction [9], where linear and nonlinear theories are
generally needed [10]. The behavior of this type of structures cannot be well described
through the classical theories of continuous mechanics, as they are based on the principle of
location of stresses. Due to the size of these devices, the effects induced by nanoscales must
be taken into account [11,12]. Then to improve the ability of new devices and systems made
with these smart materials, it is necessary to accurately investigate the mechanical behavior
of these advanced structures [13,14]. Non-local theories have been widely used for the study
of nanostructures since Eringen developed his theory of non-local elasticity [15]. These
theories consider the nano-scale effects thanks to the introduction of one or more length
scale parameters in addition to the well known linear elastic Lamé parameters [16–19].
The classification of nonlocal theories is generally presented as: strain gradient [20–23],
stress gradient [24], modified strain gradient [25–27], couple stress [28], modified couple
stress [29,30], integral type [31,32] and micropolar [33–35]. Article [36] offers a overview
on unified continuous/reduced-order modeling and non-linear dynamic theories for ther-
momechanical plates. Kim in [37] developed a matrix method for evaluating effective
elastic constants of generally anisotropic multilayer composites with various coupled phys-
ical effects including piezoelectricity, piezomagnetism and thermoelasticity. In [38–40] a
nonlocal nonlinear first-order shear theory is used for investigating the buckling and free
vibration of magneto-electro-thermo elastic (METE) nanoplates under magneto-electro-
thermo-mechanical loadings. Mota in [41] investigated the influence of shear factor used
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in the context of the first-order shear deformation theory on functionally graded porous
materials. In [42] free and forced vibration of a functionally graded piezoelectric plate
with the properties of the material varying along the thickness are investigated. Combined
asymptotic-tolerance modelling of dynamic and stability problems for functionally graded
shells was given in [43,44]. In [45] are studied the pyroelectric and pyromagnetic effects
on multiphase MEE cylindrical shells subjected to a uniform axisymmetric temperature
using semi-analytical finite element procedures. Eremeyev et al. in [46,47] investigate the
effect of flexoelectricity and flexomagnetic on nanobeams. Using FEM formulation [48,49]
analyzed free vibration of orthotropic cross-ply nanoplates and nanowires. Ebrahimi in [50]
studied buckling behaviour of magneto-electro-elastic functionally graded nanobeams
using higer-order beam theory and Eringen’s non-local elasticity. Also in [51] the behaviour
of MEE nanobeams is investigated using Eulero-Bernoulli beam theory and including sur-
face effects. In [52] the focus is on free vibration of laminated circular piezoelectric plates
and discs using the weak form of the equations of motion. In [53] using the third order
shear deformation plate theory, the bending, buckling, free and forced vibration behavior
of a nonlocal composite microplate is analyzed. Functionally graded microplates using
Kirchhoff plate’s theory and straing gradient theory with only one length scale parameter
are studied in [54]. In [55] theory of elasticity including surface stresses is used to study
behaviour of shells with nano-scaled thickness. In [56] Kirchhoff plate’s theory and the
modified flexoelectric theory are used to study the nonlinear free vibration of Functionally
Graded (FG) flexoelectric nanoplate by taking into account size-dependent effects. In [57] a
finite element model based on a higher-order plate’s theory is developed to study static
and free vibration problem of magneto-electro-elastic plates. In [58] the dynamic problem
of thin elastic plates resting on elastic foundation is studied using tolerance averaging
method. Vibrations on periodical structures as well as bad gaps problems in dynamics
are still an open topic thoroughly discussed by several researchers [59–62]. In [63] the
flexural vibration band gaps in periodic beams is investigated using differential quadrature
method, moreover the influence of shear deformation on the gaps is analyzed. Similarly,
natural frequencies of structures made of period cells was presented for beams in [64,65]
and for plates in [66,67]. In [68] the aim is the problem of vibration of band gaps in periodic
Mindlin plates and it is solved using spectral element method. Also in [69] is studied
the problem of vibration of band gaps in periodic plates, but is solved using differential
quadrature element method. Vibration band gap of stiffened thin plate is studied also
in [70] and is solved using center finite difference method. In [71,72] the problem of flexural
wave propagation of a periodic beam is investigated.

The aim of this paper is the study of buckling and free vibrations of functionally
graded nano-plates in hygro-thermal environment. For buckling analysis it will investigate
the influence of external applied electric and magnetic potentials on critical load that
leads to the instability of the plate, while in the case of dynamic analysis will be studied
the behavior of natural vibration frequencies and how they are influenced by external
potentials and temperature. Through the graphs will also identify the critical temperature,
which corresponds to the temperature at which the vibration frequencies become zero.
This paper is structured as described below. After the introduction section, the theoretical
background for functionally graded (FG) thin plates in hygro-thermal environment is
developed introducing also the non-linear terms of von Kármán that allow to perform
the linear analysis of buckling. Using second order strain gradient theory non local effect
are take into account. The following is a small paragraph showing how the electrical
and magnetic potentials are approximated. Using Hamilton’s principle, for the case of
METE (magneto-electro-thermo-elastic) materials, the equations of motion are obtained.
The analytical solution is obtained using Navier developments in double trigonometric
series. Then the results obtained through calculation code implemented in MATLAB for
buckling and free vibration are provided. Finally, a conclusion section is reported at the
end of this paper.
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2. Theoretical Background

As show in Figure 1, consider a METE thin nanoplate with length a, width b and
thickness h, in a Cartesian reference system (x, y, z).

fg.png

Figure 1. General laminate layout.

The METE nanoplate is in a hygro-thermal environment and is subjected to an electric
potential V0 and to a magnetic potential Ω0 between the upper and lower surfaces. In this
study, classic laminate plate theory is considered. We can define the displacement field of
a generic point of the solid by means of the triad of displacement components U, V, W,
which are functions of the coordinates (x, y, z) [10].

U(x, y, z, t) = u(x, y, t)− z
∂w
∂x

V(x, y, z, t) = v(x, y, t)− z
∂w
∂y

W(x, y, z, t) = w(x, y, t)

(1)

where u,v and w are the displacements along the x, y and z axis of the point on the middle
surface and ∂w/∂x and ∂w/∂y are the corresponding rotation. The constitutive equations
for a METE material are:

σ = Cε− eE− qH−Cα∆T −Cβ∆H

DE = e>ε + ξE + ζH− p∆T − h∆H

BM = q>ε + ζE + χH− λ∆T − η∆H

(2)

in which σ is the classical stress vector, DE = [Dx, Dy, Dz]> and BM = [Bx, By, Bz]> are
respectively the vector of stresses, electrical displacement and magnetic flux. ε, E and H are
the vector of strain, electric field and magnetic field. C, ξ and χ represent the rigidity matrix,
the electrical permittivity matrix and the magnetic permittivity matrix. Finally, e, q, ζ, p, λ,
h and η are respectively the piezo-electric, piezo-magnetic, magneto-electro-elastic (MEE),
pyro-electric, pyro-magnetic, hygro-electric and hygro-magnetic coefficients. For the stress
plane state (σ3 = 0) the matrices can be reduced by carrying out

ε3 = −C13

C33
ε1 −

C23

C33
ε2 +

e33

C33
E3 +

q33

C33
H3 +

C13

C33
α1∆T +

C23

C33
α2∆T +

C13

C33
β1∆H +

C23

C33
β2∆H (3)

Therefore the constitutive equations can be rewritten as follows

σ1 =

(
C11 −

C2
13

C33

)
ε1 +

(
C12 − C13

C23

C33

)
ε2 −

(
e31 − C13

e33

C33

)
E3 −

(
q31 − C13

q33

C33

)
H3+

−
(

C11 −
C2

13
C33

)
α1∆T −

(
C12 − C13

C23

C33

)
α2∆T −

(
C11 −

C2
13

C33

)
β1∆H −

(
C12 − C13

C23

C33

)
β2∆H

= Q11ε1 + Q12ε2 − ẽ31E3 − q̃31H3 −Q11α1∆T −Q12α2∆T −Q11β1∆H −Q12β2∆H

(4)
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similarly for σ2 it will be

σ2 = Q12ε1 + Q22ε2 − ẽ32E3 − q̃32H3 −Q12α1∆T −Q22α2∆T −Q12β1∆H −Q22β2∆H (5)

finally, Dz can written

Dz =

(
e31 − e33

C13

C33

)
ε1 +

(
e32 − e33

C23

C33

)
ε2 +

(
ξ33 +

e2
33

C33

)
E3 +

(
ζ33 + e33

q33

C33

)
H3+

−
(

p3 −
C13

C33
α1 −

C23

C33
α2

)
∆T −

(
h3 −

C13

C33
β1 −

C23

C33
β2

)
∆H

= ẽ31ε1 + ẽ32ε2 + ξ̃33E3 + ζ̃33H3 − p̃3∆T − h̃3∆H

(6)

and similarly for BM,3 it will be

Bz = q̃31ε1 + q̃32ε2 + ζ̃33E3 + χ̃33H3 − λ̃3∆T − η̃3∆H (7)

So it is possible to write

ẽ =

0 0 ẽ31
0 0 ẽ32
0 0 0

, q̃ =

0 0 q̃31
0 0 q̃32
0 0 0

, ξ̃ =

ξ1 0 0
0 ξ2 0
0 0 ξ̃3

, χ̃ =

χ1 0 0
0 χ2 0
0 0 χ̃3

,

ζ̃ =

ζ1 0 0
0 ζ2 0
0 0 ζ̃3

, p =


p1
p2
p̃3

, λ =


λ1
λ2
λ̃3

, h =


h1
h2
h̃3

, η =


η1
η2
η̃3


(8)

By introducing second order strain gradient theory in the constitutive equations and
by considering the mechanical properties variable with respect to the thickness direction
we have (the dependency on the time t is omitted for the sake of simplicity)

σ(x, y, z) =
(

1− `2∇2
)[

Q̄(z)ε− ẽ(z)E− q̃(z)H
]
− Q̄(z)α(z)∆T − Q̄(z)β(z)∆H

DE(x, y, z) =
(

1− `2∇2
)[

ẽ>(z)ε + ξ̃(z)E + ζ̃(z)H
]
− p(z)∆T − h(z)∆H

BM(x, y, z) =
(

1− `2∇2
)[

q̃>(z)ε + ζ̃(z)E + χ̃(z)H
]
− λ(z)∆T − η(z)∆H

(9)

where ` is the nonlocal parameter and the operator ∇2 = ∂2/∂x2 + ∂2/∂y2 is the second
order gradient operator. For the hygro-thermal loads a linear variation is considered along
the thickness as

∆T = T0 + zT1/h, ∆H = H0 + zH1/h (10)

3. Electric and Magnetic Potentials

To satisfy Maxwell’s equations [73] the electrical and magnetic potential are approxi-
mated along the thickness with a linear and cosinusoidal combination. The first amends
for the open-circuit condition and the latter for the closed-circuit one

Φ(x, y, z, t) = − cos
πz
h

φ(x, y, t) +
2z
h

V0

Υ(x, y, z, t) = − cos
πz
h

γ(x, y, t) +
2z
h

Ω0

(11)
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in which V0 represents the difference in electrical potential between the two faces of the
plate and Ω0 represents the difference in magnetic potential. The relationships between
electric field and electric potential can be written in accordance with the above

Ex = −∂Φ
∂x

= cos
πz
h

∂φ

∂x

Ey = −∂Φ
∂y

= cos
πz
h

∂φ

∂y

Ez = −
∂Φ
∂z

= −π

h
sin

πz
h

φ− 2
h

V0

(12)

that in matrix notation can be rewritten in this form

E = fEDEφ + E0 (13)

with

fE =

cos πz
h 0 0

0 cos πz
h 0

0 0 −π
h sin πz

h

, DE =


∂

∂x
∂

∂y
1

, E0 =


0
0
− 2

h V0

 (14)

Similarly for the magnetic field we can write as

Hx = −∂Υ
∂x

= cos
πz
h

∂γ

∂x

Hy = −∂Υ
∂y

= cos
πz
h

∂γ

∂y

Hz = −
∂Υ
∂z

= −π

h
sin

πz
h

γ− 2
h

Ω0

(15)

which in matrix notation becomes

H = fHDHγ + H0 (16)

with

fH =

cos πz
h 0 0

0 cos πz
h 0

0 0 −π
h sin πz

h

, DH =


∂

∂x
∂

∂y
1

, H0 =


0
0

− 2
h Ω0

 (17)

4. Equations of Motion

The equations of motion are derived through Hamilton’s principle∫ t2

t1

(δHent + δV − δK)dt = 0 (18)

Writing the variation of enthalpy δHent

δHent =
∫
A

∫ h
2

− h
2

{
σxxδεxx + σyyδεyy + σxyδγxy

− DxδEx − DyδEy − DzδEz − BxδHx − ByδHy − BzδHz

}
dzdA

(19)
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by introducing the classical stress resultants Nxx, Nyy, Nxy and Mxx, Myy, Mxy and the
piezo and magneto resultants as

Dx
Dy
Dz

 =
∫ h

2

− h
2

fEDE dz,


Bx
By
Bz

 =
∫ h

2

− h
2

fBBM dz (20)

The definition of the integrated elastic properties are given in the appendix in
Equations (A1)–(A3). Thus, it is obtained

δHent =
∫
A

{
Nxx

(
∂δu
∂x

+
∂w
∂x

∂δw
∂x

)
+ Nyy

(
∂δv
∂y

+
∂w
∂y

∂δw
∂y

)
+ Nxy

(
∂δu
∂y

+
∂δv
∂x

+
∂δw
∂y

∂w
∂x

+
∂δw
∂x

∂w
∂y

)
+

+ Mxx

(
−∂2δw

∂x2

)
+ Myy

(
−∂2δw

∂y2

)
+ Mxy

(
−2

∂2δw
∂x∂y

)
+

−
(
Dx

∂δφ

∂x
+Dy

∂δφ

∂y
+Dxδφ + Bx

∂δγ

∂x
+ By

∂δγ

∂y
+ Bzδγ

)}
dA

(21)

Integrating by parts Equation (21) is obtained

δHent =
∫
A

{(
∂Nxx

∂x
+

∂Nxy

∂y

)
δu +

(
∂Nxy

∂x
+

∂Nyy

∂y

)
δv +

[
∂

∂x

(
Nxx

∂w
∂x

+ Nxy
∂w
∂y

)
+

∂

∂y

(
Nxy

∂w
∂x

+ Nyy
∂w
∂y

)
+

∂2Mxx

∂x2 +
∂2Myy

∂y2 + 2
∂2Mxy

∂x∂y

]
δw

−
(

∂Dx

∂x
+

∂Dy

∂y
+Dz

)
δφ−

(
∂Bx

∂x
+

∂By

∂y
+ Bz

)
δγ

}
dA +

−
∫

Γ

{(
Nxx nx + Nxy ny

)
δu +

(
Nxy nx + Nyy ny

)
δv +

[(
Nxxnx + Nxyny

)∂w
∂x

+
(

Nxynx + Nyyny
)∂w

∂y
+

(
∂Mxx

∂x
+

∂Mxy

∂y

)
nx +

(
∂Myy

∂y
+

∂Mxy

∂x

)
ny

]
δw

−
(

Mxxnx + Mxyny
)∂δw

∂x
−
(

Mxynx + Myyny
)∂δw

∂y

−
(
Dx nx +Dy ny

)
δφ−

(
Bx nx + By ny

)
δγ

}
dΓ

(22)

The external work due to the external boundary loads (where mechanical, electrical and
magnetic loads are neglected) can be written as

δV =
∫

Γ

{(
N̂xxnx + N̂xyny

)
δu +

(
N̂xynx + N̂yyny

)
δv+

−
(

M̂xxnx + M̂xyny
)∂δw

∂x
−
(

M̂xynx + M̂yyny
)∂δw

∂y
+
(
Q̂xnx + Q̂yny

)
δw
}

dΓ
(23)

Variation of the Kinetic energy can be written as

δK =
∫
A

{(
−I0ü + I1

∂ẅ
∂x

)
δu +

(
−I0v̈ + I1

∂ẅ
∂y

)
δv

+

(
−I0ẅ− I1

∂ü
∂x
− I1

∂v̈
∂y

+ I2
∂ẅ
∂x

+ I2
∂ẅ
∂y

)
δw
}

dA+

+
∫

Γ

{
I1ünx + I1v̈ny − I2

∂ẅ
∂x

nx − I2
∂ẅ
∂y

ny

}
δw dΓ

(24)
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Introducing N (w) and P(w) as defined below

N (w) = ∂
∂x

(
Nxx

∂w
∂x

)
δw + ∂

∂y

(
Nyy

∂w
∂y

)
δw + ∂

∂y

(
Nxy

∂w
∂x

)
δw + ∂

∂x

(
Nxy

∂w
∂y

)
δw

P(w) =
(

Nxx
∂w
∂x + Nxy

∂w
∂y

)
nx +

(
Nxy

∂w
∂x + Nyy

∂w
∂y

)
ny

(25)

the motion equations can be written as follow

∂Nxx

∂x
+

∂Nxy

∂y
= I0ü− I1

∂ẅ
∂x

∂Nyy

∂y
+

∂Nxy

∂x
= I0v̈− I1

∂ẅ
∂y

∂2Mxx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 +N (w) = I0ẅ + I1

(
∂ü
∂x

+
∂v̈
∂y

)
− I2

(
∂2ẅ
∂x2 +

∂2ẅ
∂y2

)
∂Dx

∂x
+

∂Dy

∂y
+Dz = 0

∂Bx

∂x
+

∂By

∂y
+ Bz = 0

(26)

and relative boundary conditions become

δu = 0 or
(

Nxx − N̂xx
)
nx +

(
Nxy − N̂xy

)
ny = 0

δv = 0 or
(

Nyy − N̂yy
)
ny +

(
Nxy − N̂xy

)
nx = 0

δw = 0 or
(

∂Mxx

∂x
+

∂Mxy

∂y
− I1ü + I2

∂ẅ
∂x

)
nx+

+

(
∂Myy

∂y
+

∂Mxy

∂x
− I1v̈ + I2

∂ẅ
∂y

)
ny + P(w)−

(
Q̂x + Q̂y

)
= 0

∂δw
∂x

= 0 or
(

Mxx − M̂xx
)
nx +

(
Mxy − M̂xy

)
ny = 0

∂δw
∂y

= 0 or
(

Myy − M̂yy
)
ny +

(
Mxy − M̂xy

)
nx = 0

δφ = 0 or Dx nx +Dy ny = 0

δγ = 0 or Bx nx + By ny = 0

(27)

5. Navier Solution

Analytical solution is obtained using Navier’s expansion. This type of solution allow
to solve simply supported plate case. Navier expansion for the displacements take the form

u
v
w

 =
M

∑
m=1

N

∑
n=1

cos αx sin βy 0 0
0 sin αx cos βy 0
0 0 sin αx sin βy


Umn
Vmn
Wmn

 (28)

whereas, the electric and magnetic potentials are both approximated with a double sinu-
soidal trigonometric expansion.

φ =
M

∑
m=1

N

∑
n=1

sin αx sin βy Φmn, γ =
M

∑
m=1

N

∑
n=1

sin αx sin βy Γmn (29)
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5.1. Buckling Analysis

Replacing the displacement field in the motion equations and performing the derivates
the algebraic system is obtained

ĉ11 ĉ12 ĉ14 ĉ15 ĉ13
ĉ12 ĉ22 ĉ24 ĉ25 ĉ23
ĉ14 ĉ24 ĉ44 ĉ45 ĉ34
ĉ15 ĉ25 ĉ45 ĉ55 ĉ35
ĉ13 ĉ23 ĉ34 ĉ35 ĉ33 + s̃33




Umn
Vmn
Φmn
Γmn
Wmn

 =


0
0
0
0
0

 (30)

The coefficients ĉij and s̃33 are defined in the appendix at Equation (A4). By introducing
the quantities N0 = −N̂xx, κ = N̂yy/N̂xx and amn as

amn = ĉ33 + α2
(

N̂T
xx + N̂E

xx + N̂H
xx

)
+ β2

(
N̂T

yy + N̂E
yy + N̂H

yy

)

−
{

ĉ13 ĉ23 ĉ34 ĉ35
}

ĉ11 ĉ12 ĉ14 ĉ15
ĉ12 ĉ22 ĉ24 ĉ25
ĉ14 ĉ24 ĉ44 ĉ45
ĉ15 ĉ25 ĉ45 ĉ55


−1

ĉ13
ĉ23
ĉ34
ĉ35


(31)

we can write the solution of the eigenvalue problem as

N0 =
amn

α2 + κβ2 (32)

The load that buckles the plate depends on m and n and in particular the critical load is the
lowest of the buckling loads. The terms N̂E

xx , N̂E
yy , N̂H

xx , N̂H
yy are defined below

N̂E
xx = N̂E

yy =
∫ h/2

−h/2
ē31(z)

2V0

h
dz , N̂H

xx = N̂H
yy =

∫ h/2

−h/2
q̄31(z)

2Ω0

h
dz (33)

Note that the electric and magnetic in-plane loads have the same intensity since in the
following applications the material is isotropic in-plane and anisotropic out-of-plane.

5.2. Thermal Free Vibration

In this paragraph it will be treated the problem of free vibrations of the FG plate simply
supported. For this problem it is necessary to rewrite the solving system in a homogeneous
form, and the rotational inertia I1 are neglected. The system becomes then


ĉ11 ĉ12 ĉ13 ĉ14 ĉ15
ĉ12 ĉ22 ĉ23 ĉ24 ĉ25
ĉ13 ĉ23 ĉ33 ĉ34 ĉ35
ĉ14 ĉ24 ĉ34 ĉ44 ĉ45
ĉ15 ĉ25 ĉ35 ĉ45 ĉ55

−ω2


m̂11 0 0 0 0

0 m̂22 0 0 0
0 0 m̂33 0 0
0 0 0 0 0
0 0 0 0 0





Umn
Vmn
Wmn
Φmn
Γmn

 =


0
0
0
0
0

 (34)

with m̂11 = m̂22 = I0 e m̂33 = I0 + I2(α
2 + β2). This system can then be rewritten in a more

compact matrix form as follows([
Kuu Kuφ

Kφu Kφφ

]
−ω2

[
Muu 0

0 0

]){
U
φ

}
=

{
0
0

}
(35)

Rewriting the matrix system by applying static condensation we get

(K̄ −ω2Muu) U = 0 (36)
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where K̄ is
K̄ = (Kuu − Kuφ(Kφφ)

−1Kφu) (37)

and U represents the ways of vibrating and ω natural frequencies.

6. Numerical Results

In this paper for the numerical solution has been considered a FG nanoplate composed
of CoFe2O4 and BaTiO3, the properties of the materials are shown in Table 1. Since it
has not been possible to find in literature the hygrometric coefficients of the materials,
the applications presented foresee only the case of thermal environment.

Table 1. Piezo-electro-magnetic-thermal properties of BaTiO3 and CoFe2O4.

BaTiO3 CoFe2O4

C11 [GPa] 166 286
C22 166 286
C33 162 269.5
C13 78 170.5
C23 78 170.5
C12 77 173
C44 43 45.3
C55 43 45.3
C66 44.5 56.5

e31 [C/m2] −4.4 0
e32 −4.4 0
e33 18.6 0

q31 [N/A·m] 0 580.3
q32 0 580.3
q33 0 699.7

ξ11 [10−9C2/N·m2] 11.2 0.08
ξ22 11.2 0.08
ξ33 12.6 0.093

ζ11 = ζ22 = ζ33 [s/m] 0 0

χ11 [10−6N·s2/C] 5 −590
χ22 5 −590
χ33 10 157

p11 = p22 [10−7 C/m2K] 0 0
p33 −11.4 0

λ11 = λ22 [10−5 Wb/m2K] 0 0
λ33 0 −36.2

α1 = α2 [10−6K−1] 15.8 10

ρ [kg/m3] 5300 5800

The variation of the material properties along the thickness is regulated by the follow-
ing relationship

P(z) = (Pt − Pb)

(
z
h
+

1
2

)pn

+ Pb (38)

where Pt and Pb represent the properties of the material placed on the top and bottom of
the plate, respectively.

Note that if pn = 0 the plate will be composed entirely of the material of the top side
while if pn → ∞ the plate will be composed entirely of the material of the bottom side.
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6.1. Buckling

In the following applications the values of the critical load will be presented in
dimensionless form through the following relationship

N̄cr =
Ncra2

C11,mh3 (39)

where C11,m is the average stiffness value of the two materials. As a first result the com-
parison with Li [74], Park and Han [75] is reported. The plate considered is isotropic with
a/h = 1000 and the properties of the material used are as reported in the cited works
(which are obtained as average values of two isotropic constituents, not as a functionally
graded composite).

Figure 2 shows the critical buckling load by varying the electric and magnetic poten-
tials. The present results agree well with the ones presented in the mentioned papers [74,75].
It is emphasized that the slight difference in the results is due to the fact that in the cited
studies the potential is approximated using three contributions: one parabolic, one linear
and one constant unlike the present study in which the potentials are approximated with a
cosine function and a linear part. In addition, in the cited studies, the in-plane components
Ex, Ey, Hx and Hy of electric and magnetic fields are null.

comparision.png (a) comparision.png

(b)

Figure 2. Critical load N̄cr of a square Functionally Graded (FG) nanoplate for different values of electric potential V0 (a)
and magnetic potential Ω0 (b).

In the applications below a/h = 1000 and np = 1 are always considered. Table 2
shows the dimensionless critical load of a square plate FG for different values of externally
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applied potentials and non-local parameter. It can be seen that as the non-local parameter
increases, the value of the critical load increases. It can also be seen that by increasing the
magnetic potential the critical load increases while the electric potential has the opposite
effect. This last phenomenon is also clearly visible in Figure 3, where the value of the
critical load is reported as the external potentials applied vary and for different values
of the non-local parameter. Finally it is remarked that for same values of the electric
and magnetic potentials the critical load takes a negative value, thus, buckling occurs for
traction loads instead of compression. Figure 4 shows the dimensional critical load when
the aspect ratio varies and for different values of the non-local parameter. As expected
the critical load increases as the plane becomes of rectangular shape and as the nonlocal
parameter increases.

Table 2. Dimensionless critical load N̄cr of a square FG plate composed of BaTiO3/CoFe2O4 for
different electric and magnetic potentials and nonlocal parameter (`/a)2. (κ = 1, (m, n) = (1, 1)).

V0 [V]
(`/a)2 Ω0 [A] −5 −2.5 0 2.5 5

0.00 1 2.1733 2.0124 1.8516 1.6907 1.5299
0 1.4456 1.2848 1.1239 0.9631 0.8022
−1 0.7180 0.5572 0.3963 0.2355 0.0746

0.05 1 3.2825 3.1217 2.9608 2.8000 2.6391
0 2.5549 2.3940 2.2332 2.0723 1.9115
−1 1.8273 1.6664 1.5056 1.3447 1.1838

0.10 1 4.3918 4.2309 4.0701 3.9092 3.7484
0 3.6642 3.5033 3.3424 3.1816 3.0207
−1 2.9365 2.7757 2.6148 2.4540 2.2931

(a) (b)

Figure 3. Critical load N̄cr of a square FG nanoplate for different values of electric potential V0 (a) and magnetic potential Ω0 (b), for
different values of non local parameter (`/a)2.
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Figure 4. Critical load N̄cr of square FG nanoplate for different values of ratio a/b and different
values of non local parameter (`/a)2.

6.2. Thermal Free Vibration

As first application for the free vibration of piezo-electro-magnetic-thermal plates a
comparison with [76] is reported (Table 3). The plate is composed of BaTiO3/CoFe2O4 and
is of rectangular shape with a = 2 and b = 1, ratio h/a = 0.1 and properties vary linearly
along the thickness (np = 1). The results are written in dimensionless form through the
following formula

ω̄ = ω

(
a2

h

)√
ρ

C11
(40)

where ρ and C11 respectively represent the density and the (1, 1) position element of the
material stiffness matrix on the underside of the plate. It should be noted that in the study
just mentioned the Mindlin’s moderately thick plates theory (FSDT) is used, and so the
results deviate slightly and this difference increases as the vibration mode increases as the
effects of shear become more relevant.

Table 3. Dimensionless natural frequencies ω̄ of a simply supported rectangular FG plate composed
of BaTiO3/CoFe2O4.

Ref. [76] Present

1 9.525 10.0244
2 28.762 32.5716
3 50.966 66.2842
4 131.186 104.0065
5 139.106 129.6477

Table 4 shows a comparison with article [57] for a thick magneto-electro-elastic square
plate. The thickness of the plate is constant and the laminae all have the same thickness.
The properties of the material are those reported in Table 1, except the density which is
assumed constant for the two materials and equal to 1600 kg/m3. The values calculated
in this study differ slightly from those in the literature because in [57] a third order plate
theory is used while in this study it is used thin plate theory.
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Table 4. Natural frequencies (rad/s) of a simply supported square plate (a = 1 m; h = 0.3 m).
B = BaTiO3; F = CoFe2O4.

Mode Ref. [57] (`/a)2 = 0

B F B/F/B F/B/F

1 12,863.98 15,185.24 13,024.78 15,043.32
2 25,106.78 28,177.03 25,401.26 27,880.80

Present (`/a)2 = 0

1 15,044.28 17,253.16 15,281.37 17,159.99
2 34,945.88 39,415.58 28,264.36 39,871.43

Present (`/a)2 = 0.05

1 21,065.74 24,351.13 20,932.93 24,069.44
2 63,337.77 73,727.92 62,619.25 72,511.91

Present (`/a)2 = 0.10

1 25,723.93 29,805.02 25,499.40 29,410.18
2 82,655.46 96,547.86 81,654.82 94,727.82

Table 5 analyzes the influence of the non-local parameter on the natural frequencies
of a square plate with a = b = 1 m and ratio a/h = 100 and np = 1. The results show an
increase in natural frequencies, due to the stiffening of the plate, as the non-local parameter
increases.

Figure 5 shows the influence of temperature and externally applied potentials on the
natural frequency of a nanoplate composed by BaTiO3/CoFe2O4. The plate considered is
a simply supported square plate and the thickness ratio is a/h = 100. In particular, the
critical temperature of each structure can be identified when the frequency becomes zero.

Table 5. Natural frequencies ω̄ of a simply supported square FG nanoplate composed by
BaTiO3/CoFe2O4.

(`/a)2

0 0.05 0.10

1 4.0913 5.7671 7.0554
2 10.2270 19.0434 24.9141
3 20.4499 49.8179 67.4200
4 34.7550 106.4926 146.5385
5 53.1353 197.6005 274.3517
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(a) (b)

(c) (d)

Figure 5. Natural frequencies ω̄ of a simply supported square FG nanoplate composed by BaTiO3/CoFe2O4 to vary of temperature
T0 and for different values of magnetic and electric potentials and non-local parameter: (a) local configuration (` = 0); (b) nonlocal
configuration with V0 6= 0; (c) nonlocal configuration with Ω0 6= 0; (d) nonlocal configuration with V0 = Ω0 = 0.

7. Conclusions

In this paper the dynamic and buckling problems of METE nanoplates have been
analyzed. In particular, the interest focused on the coupling of magnet-electro-thermo-
elastic effects and the influence that the external potentials applied to the plate have on
the critical load and natural vibration frequencies. Through Hamilton’s principle motion
equations for FG METE thin plates are derived and analytical solution using Navier method
is obtained. The materials that have been used in the simulations are BaTiO3 and CoFe2O4
and the properties of the materials used are reported in the article. The results show
that increasing the non-local parameter increases the critical load and natural vibration
frequencies. For external potentials instead it was seen that the critical load increases with
the increase of the negative electrical potential and the positive magnetic potential. Finally,
from the graphs of the natural frequency of vibration it can be seen that the frequencies
tend to increase by subjecting the plate to a positive magnetic potential and to decrease by
subjecting it to a positive electrical potential. For what concerns the temperature instead
we see how an increase of the latter leads to a reduction of the natural frequencies.
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Appendix A

Integrating last two integrals of Equation (22) along the thickness the following
quantities can be defined

A f
E =

∫ h
2

− h
2

ẽfE dz, AE =
∫ h

2

− h
2

ẽ dz, B f
E =

∫ h
2

− h
2

ẽfE z dz , BE =
∫ h

2

− h
2

ẽ z dz

A f
H =

∫ h
2

− h
2

q̃fH dz, AH =
∫ h

2

− h
2

q̃ dz, B f
H =

∫ h
2

− h
2

q̃fH z dz, BH =
∫ h

2

− h
2

q̃ z dz

(A1)

A f
ξ =

∫ h
2

− h
2

f>E ξ̃dz, B f
ξ =

∫ h
2

− h
2

f>E ξ̃fEdz, A f
ζ =

∫ h
2

− h
2

f>E ζ̃dz, B f
ζ =

∫ h
2

− h
2

f>E ζ̃fHdz

Ap =
∫ h

2

− h
2

f>E pdz, Bp =
∫ h

2

− h
2

f>E pz dz, Ah =
∫ h

2

− h
2

f>E hdz, Bh =
∫ h

2

− h
2

f>E hz dz

(A2)

A f
ζ =

∫ h
2

− h
2

f>H ζ̃dz, B f
ζ =

∫ h
2

− h
2

f>H ζ̃fEdz, A f
χ =

∫ h
2

− h
2

f>Hχ̃dz, B f
χ =

∫ h
2

− h
2

f>Hχ̃fHdz

Aλ =
∫ h

2

− h
2

f>Hλdz, Bλ =
∫ h

2

− h
2

f>Hλz dz, Aη =
∫ h

2

− h
2

f>Hηdz, Bη =
∫ h

2

− h
2

f>Hηz dz

(A3)

Considering what reported in Equations (A1)–(A3) it can be write ĉij coefficients as follows



Nanomaterials 2021, 11, 87 16 of 19

ĉ11 = α2 A11 + β2 A66 + `2
[
α4 A11 + α2β2(A11 + A66) + β4 A66

]
ĉ12 = αβ(A12 + A66) + `2

[
α3β(A12 + A66) + αβ3(A12 + A66)

]
ĉ13 = −α3B11 − αβ2(B12 + 2B66)

− `2
[
α5B11 + α3β2(B12 + B11 + 2B66) + αβ4(B12 + 2B66)

]
ĉ22 = β2 A22 + α2 A66 + `2

[
α2β2(A22 + A66) + α4 A66 + β4 A22

]
ĉ23 = −α2β(B12 + 2B66)− β3B22

− `2
[
α4β(B12 + 2B66) + α2β3(B22 + B12 + 2B66) + β5B22

]
ĉ33 = α4D11 + 2α2β2(D12 + 2D66) + β4D22 + `2[α6D11 + α4β2(D11 + 2D12 + 4D66)

+ α2β4(D22 + 2D12 + 4D66) + β6D22
]

ĉ14 = −αA f
E,13 + `2

[
−α3 A f

E,13 − αβ2 A f
E,13

]
ĉ15 = −αA f

H,13 + `2
[
−α3 A f

H,13 − αβ2 A f
H,13

]
ĉ24 = −βA f

E,23 + `2
[
−β3 A f

E,23 − α2βA f
E,23

]
ĉ25 = −βA f

H,23 + `2
[
−β3 A f

H,23 − α2βA f
H,23

]
ĉ34 = α2B f

E,13 + β2B f
E,23 + `2

[
α4B f

E,13 + α2β2
(

B f
E,13 + B f

E,23

)
+ β4B f

E,23

]
ĉ35 = α2B f

H,13 + β2B f
H,23 + `2

[
α4B f

H,13 + α2β2
(

B f
H,13 + B f

H,23

)
+ β4B f

H,23

]
ĉ44 = −B f

ξ,33 − α2B f
ξ,11 − β2B f

ξ,22

− `2
[
α4B f

ξ,11 + α2β2
(

B f
ξ,11 + B f

ξ,22

)
+ β4B f

ξ,22 + α2B f
ξ,33 + β2B f

ξ,33

]
ĉ45 = −B f E

ζ,33 − α2B f E
ζ,11 − β2B f E

ζ,22

− `2
[
α4B f E

ζ,11 + α2β2
(

B f E
ζ,11 + B f E

ζ22

)
+ β4B f E

ζ,22 + α2B f E
ζ,33 + β2B f E

ζ,33

]
ĉ54 = −B f H

ζ,33 − α2B f H
ζ,11 − β2B f H

ζ,22

− `2
[
α4B f H

ζ,11 + α2β2
(

B f H
ζ,11 + B f H

ζ,22

)
+ β4B f H

ζ,22 + α2B f H
ζ,33 + β2B f H

ζ,33

]
ĉ55 = −B f

χ,33 − α2B f
χ,11 − β2B f

χ22

− `2
[
α4B f

χ,11 + α2β2
(

B f
χ,11 + B f

χ,22

)
+ β4B f

χ,22 + α2B f
χ,33 + β2B f

χ,33

]
s̃33 = α

(
N̂xx + N̂T

xx + N̂E
xx + N̂H

xx

)
+ β

(
N̂yy + N̂T

yy + N̂E
yy + N̂H

yy

)

(A4)

In case the electrical and magnetic potentials have the same through-the-thickness
expansion, as in the present study, B f E

ζ = B f H
ζ = B f

ζ , hence, ĉ45 = ĉ54.
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