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Abstract: The Timoshenko beam model is applied to the analysis of the flexoelectric effect for a
cantilever beam under large deformations. The geometric nonlinearity with von Kármán strains is
considered. The nonlinear system of ordinary differential equations (ODE) for beam deflection and
rotation are derived. Moreover, this nonlinear system is linearized for each load increment, where it
is solved iteratively. For the vanishing flexoelectric coefficient, the governing equations lead to the
classical Timoshenko beam model. Furthermore, the influence of the flexoelectricity coefficient and
the microstructural length-scale parameter on the beam deflection and the induced electric intensity
is investigated.

Keywords: von kármán large deformations; flexoelectricity; cantilever beam; timoshenko model;
nonlinear system

1. Introduction

The size effect on micro/nano structural elements is observed due to the comparable
sizes of these elements and the material microstructural length-scale. Classical continuum
models include only the first-order gradients of primary fields and do not reflect the mate-
rial microstructure. Therefore, these models are inapplicable of describing and explaining
the phenomena (e.g., flexoelectricity), where the second-order gradients play a role. On the
other hand, higher-grade continuum theories contain higher gradients of primary fields.
In addition, the additional coefficients in constitutive relationships are determined by
the material microstructure, which is usually accomplished through the microstructural
length-scale parameter. Buckling of centrosymmetric anisotropic beams was analyzed
in Reference [1] with the strain-gradient theory. Then, the geometric nonlinearity with
von Kármán strains [2] are taken into account. Wang et al. [3] analyzed the nonlinear free
vibration of electrically actuated nanobeams, where the surface energy, temperature change,
geometrical nonlinear deformation, and intermolecular Casimir force are considered.

Thin beams are commonly used in nanoelectromechanical devices and for energy
harvesting [4]. Traditionally, the piezoelectricity is utilized to convert mechanical energy to
electrical energy or vice versa [5]. In piezoelectric materials, a uniform mechanical strain can
induce an electric polarization. This conversion is observed only in non-centrosymmetric
crystal structures. Numerous crystalline materials are not piezoelectric since their structure
is centrosymmetric. However, a non-uniform strain or the presence of strain-gradients may
potentially break the inversion symmetry and induce polarization, even in centrosymmetric
crystals [6–8]. In the literature, this phenomenon is called the flexoelectric effect [9,10].
Flexoelectric energy harvesters are intensively studied in [11–13]. A rectangular beam is
the most common model used for this purpose. The Euler–Bernoulli and Timoshenko beam
theories are applied to analyze the beams. In the Euler–Bernoulli theory, there are vanish-
ing shear strain deformations. The Timoshenko beam model based on the strain-gradient
elasticity theory and the couple stress elasticity theory [14,15] has been developed only
recently [16]. The microstructure-dependent Timoshenko beam model contains a material
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length-scale parameter and can capture the size effect. A flexoelectric Euler–Bernoulli
model for energy harvesting is proposed in [17]. The first attempt to consider the geometric
nonlinearity deformation in flexoelectricity has been developed by Wang and Wang [18]
with a beam described by the Euler–Bernoulli theory. The authors used simplification,
where the gradient of normal strain along the beam vanishes. This leads to the simplifica-
tion of the nonlinear system of differential equations. An exact solution is proposed for the
nonlinear forced vibration analysis of nanobeams made of functionally graded materials
(FGMs) subjected to a thermal environment, including the effect of surface stress in [19].
Thai et al. [20] proposed an isogeometric approach for general problems of flexoelectric-
ity in soft dielectric materials at finite deformations, accounting for Maxwell stresses. A
nonlinear vibration of flexoelectric nanobeams with surface and thermal effects is inves-
tigated by the surface elasticity theory [21]. A similar nonlinear bending problem with
Kármán nonlinear deformations for the coupled piezomagnetic–flexomagnetic nanosized
Euler–Bernoulli beam is analyzed in [22]. Recently, they extended an early paper to the geo-
metrically nonlinear vibration of the piezo-flexomagnetic nanotube [23]. Free vibrations of
a visco-piezo-flexoelectric nanobeam are given in [24]. Sahmani and Aghdam [25] applied
the nonlocal strain-gradient beam model with the third-order distribution of shear defor-
mation to explore the nonlinear vibration of axially-loaded multilayer functionally graded
nanobeams in both the pre-buckling and post-buckling domains. A similar nanoplate
problem for the electro-mechanical shear buckling analysis by the modified couple stress
theory with various boundary conditions is given in [26].

In the present paper, von Kármán large deformations in the direct flexoelectricity are
considered for a cantilever beam without simplification. The Timoshenko model with
geometrical nonlinearity is applied to derive the nonlinear system of ordinary differential
equations (ODEs) for the beam deflection and rotation. The mechanical load in the nonlin-
ear system is considered incrementally. In each increment, the system of ODEs should be
linearized, where nonlinear terms are considered iteratively.

2. A Linear Theory of Direct Flexoelectricity

The electric enthalpy density for piezoelectric solids with the direct flexoelectricity
can be written as [8,27]:

H =
1
2

cijklεijεkl −
1
2

aijEiEj − ekjiεijEk +
1
2

gjklmniηjklηmni − fijklEiηjkl , (1)

where the symbols a and c are used for the second-order permittivity and the fourth-order
elastic constant tensors, respectively. The piezoelectric coefficient is denoted by symbol
e, and symbol f is the direct flexoelectric coefficient. The tensor g is used for higher-order
elastic coefficients representing the strain-gradient elasticity.

The strain tensor εij and the electric field vector Ej are defined as [28]:

εij =
1
2
(
ui,j + uj,i

)
, Ej = −φ,j , (2)

where ui and φ are the displacements and electric potential, respectively.
The strain-gradient tensor ηijk is given by:

ηijk = εij,k =
1
2

(
ui,jk + uj,ik

)
, (3)

Under the infinitesimal deformations, the constitutive equations can be obtained from
the electric enthalpy density expression (1) [27,29]:

σij =
∂H
∂εij

= cijklεkl − ekijEk,

τjkl =
∂H

∂ηjkl
= − fijklEi + gjklmniηnmi,

Di = − ∂H
∂Ei

= aijEj + eijkε jk + fijklηjkl

(4)
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where σij, Dk, and τjkl are the stress tensor, electric displacements, and higher-order stress
tensor, respectively.

The size scale of higher-order elastic parameters gjklmni is expressed by a proportional-
ity of the conventional elastic stiffness coefficients cklmn and the microstructural length-scale
parameter l [1,30]:

gjklmni = l2cjkmnδli, (5)

with δli as the Kronecker delta.
Deng et al. [31] considered two independent components f1 and f2 for the direct

flexoelectric coefficient fijkl , fijkl = f1δjkδil + f2

(
δijδkl + δikδjl

)
. Then, the electric enthalpy

density has the following form:

H =
1
2

cijklεijεkl −
1
2

aijEiEj − ekjiεijEk +
l2

2
cjkmnηjklηmnl − f1Eiηkki − f2Ei

(
ηikk + ηjij

)
, (6)

If the poling direction is along the x3-axis in the piezoelectric material, the electric
enthalpy has the following form:

H =
1
2

cijklεijεkl −
1
2

aijEiEj − e31ε11E3 − e33ε33E3 − e15(ε13 + ε31)E1 +
l2

2
cjkmnηjklηmnl − f1Eiηkki − f2Ei

(
ηikk + ηjij

)
, (7)

The constitutive Equation (4) for orthotropic materials,

cijkl = δi1δj1(c11δk1δl1 + c13δk3δl3) + δi3δj3(c13δk1δl1 + c33δk3δl3) + c44
(
δi1δj3 + δi3δj1

)
(δk1δl3 + δk3δl1),

aij = a1δi1δj1 + a3δi3δj3

can be rewritten into a matrix form as in [32]: σ11
σ33
σ13

 =

 c11 c13 0
c13 c33 0
0 0 c44

 ε11
ε33

2ε13

−
 0 e31

0 e33
e15 0

[ E1
E3

]
= C

 ε11
ε33

2ε13

−Λ

[
E1
E3

]
, (8)

[
D1
D3

]
=

[
0

e31

0
e33

e15
0

] ε11
ε33

2ε13

+

[
a1 0
0 a3

][
E1
E3

]
+

[
f1 + 2 f2 f1 0 0 0 f2

0 0 f2 f1 f1 + 2 f2 0

]


η111
η331

2η131
η113
η333

2η133



= ΛT

 ε11
ε33

2ε13

+ Π

[
E1
E3

]
+ F



η111
η331

2η131
η113
η333

2η133



(9)


τ111
τ331
τ131
τ113
τ333
τ133

 = −


f1 + 2 f2 0

f1 0
0 f2
0 f1
0 f1 + 2 f2
f2 0

[ E1
E3

]
+ l2


c11 c13 0 0 0 0
c13 c33 0 0 0 0
0 0 c44 0 0 0
0 0 0 c11 c13 0
0 0 0 c13 c33 0
0 0 0 0 0 c44




η111
η331

2η131
η113
η333

2η133

 =−FT
[

E1
E3

]
+ l2G


η111
η331

2η131
η113
η333

2η133

, (10)

The governing equations for the piezoelectric solid with direct flexoelectric effects are
given in [33]:

σij,j(x)− τijk,jk(x) = 0,
Di,i(x) = 0

(11)

Moreover, one can find the form of essential and natural boundary conditions (b.c.):

1. Essential b.c.:
ui(x) = ui(x) on Γu, Γu ⊂ Γ,

si(x) = si on Γs, Γs ⊂ Γ,
φ(x) = φ(x) on Γφ, Γφ ⊂ Γ

(12)
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2. Natural b.c.:
ti(x) = ti(x) on Γt, Γt ∪ Γu = Γ, Γt ∩ Γu = ∅,

Ri(x) = Ri(x)on ΓR, ΓR ∪ Γs = Γ, ΓR ∩ Γs = ∅,
S(x) = S(x) on ΓS, ΓS ∪ Γφ = Γ, ΓS ∩ Γφ = ∅

(13)

where
si :=

∂ui
∂n

, Ri := nknjτijk, (14)

the traction vector and the electric charge are defined as follows:

ti := nj

(
σij − τijk,k

)
− ∂ρi

∂π
+ ∑

c
‖ρi(xc)‖δ(x− xc), (15)

S := nkDk, (16)

with ρi := nkπjτijk, δ(x) is the Dirac delta function, and πi is the Cartesian component
of the unit tangent vector on Γ.

The jump at a corner (xc) on the oriented boundary contour Γ is defined as:

‖ρi(xc)‖ := ρi(xc − 0)− ρi(xc + 0) (17)

Regarding the electric boundary conditions, the prescription of the electric potential (as
given by (12)) also includes the short-circuit case, when the electric potential is constant on
the whole boundary (vanishing). On the other hand, in the case of open-circuit conditions,
the electric potential is unknown and a certain value of the free electric charge on the
boundary is prescribed. If the case of the short-circuit condition is applied to the beam
problem considered in the next section, the electric field E3 is equal to zero. Therefore, the
open-circuit conditions are applied.

3. Timoshenko Beam with Flexoelectric Effect and Nonlinear Strains

Next, we analyze a cantilever beam by taking into account the direct flexoelectric
effect and large von Kármán strains (geometric nonlinear deformation). The x1-axis is the
neutral axis of the undeformed beam, and the x3-axis is along the thickness direction. A
uniform transverse load q is applied on the upper surface of the cantilever beam (Figure 1).
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Figure 1. Cantilever beam under the transverse force load.

In the traditional Timoshenko beam theory with finite shear stresses, the displacement
of the beam can be expressed as:

u1(x1, x3) = −x3φ(x1), u2(x1, x3) = 0, u3(x1, x3) = w(x1), (18)

where w(x1) is the transverse displacement of the neutral axis and φ(x1) is the rotation
of the cross-section. With the assumption of very small slopes in the beam after defor-
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mation but a possible finite transverse deflection, the von Kármán nonlinear strain of the
beam [1,2] is:

ε11 = −x3φ,1 +
1
2
(w,1)

2, ε13 = ε31 =
1
2
(−φ + w,1), ε33 = 0 (19)

The only non-zero strain-gradients are given as:

η111 = −x3φ,11 + w,1w,11, η113 = −φ,1, η131 = η311 =
1
2
(−φ,1 + w,11) (20)

Wang and Wang [18] simplified their solution neglecting η111 = ε11,1, as compared to
η113. All of the three components of strain gradients in (20) are considered in this work.

For the beam, we assume that only the E3 electric intensity component is non-
vanishing. In the case of open-circuit condition, the electric displacement on the surface is
vanishing. Therefore, D3 = 0 on x3 = ±H/2, and from the Maxwell equation for the elec-
tric displacement D3,3 = 0, we obtain D3 = 0 inside the beam. Then, from the constitutive
Equation (9), we directly obtain the expression for the electric intensity component E3.

E3 = − e31

a3
ε11 −

f1

a3
η113 −

2 f2

a3
η131. (21)

In the case of the short-circuit condition, the electric intensity component E3 is equal
to zero. Then, the stress components are dependent only on the strains. In this case, finite
values of higher-order stress tensors are found in (4), only due to the non-vanishing higher-
order elastic parameters gjklmni. In addition, the governing Equation (11) for mechanical
quantities (beam deflection) is dependent on the electrical fields induced by flexoelectricity.
If gjklmni are vanishing, the governing equation for the beam deflection is similar to the
classical elasticity without electro-mechanical coupling [34].

Next, the open-circuit conditions are considered. Substituting the electric intensity
component E3 (21) into the stress (8) and higher-order stress tensors (10), we obtain:

σ11 =
(

c11 +
e31e31

a3

)
ε11 +

e31 f1
a3

η113 +
2e31 f2

a3
η131

σ33 =
(

c13 +
e33e31

a3

)
ε11 +

e33 f1
a3

η113 +
2e33 f2

a3
η131

σ13 = 2c44ε13

(22)

τ111 = l2c11η111,

τ331 = l2c13η111

τ131 = 2l2c44η131 + f2

(
e31
a3

ε11 +
f1
a3

η113 +
2 f2
a3

η131

)
τ113 = l2c11η113 + f1

(
e31
a3

ε11 +
f1
a3

η113 +
2 f2
a3

η131

)
τ333 = l2c13η113 + ( f1 + 2 f2)

(
e31
a3

ε11 +
f1
a3

η113 +
2 f2
a3

η131

)
τ133 = 0

(23)

The variational principle for this special case with a vanishing electric displacement
has the following form:

δ
∫
V

(F −W)dV =

L∫
0

∫
A

(σ11δε11 + 2σ13δε13 + τ111δη111 + τ113δη113 + 2τ131δη131)dAdx1 −
L∫

0

q(x)δwdx1 = 0
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thus with the use of strain (19) and strain-gradient (20) expressions, we obtain:

L∫
0

∫
A
{−x3τ111δφ,11 − (x3σ11 + τ113 + τ131)δφ,1 − σ13δφ + (w,1τ111 + τ131)δw,11

+(σ11w,1 + σ13 + w,11τ111)δw,1}dAdx1 −
L∫

0
q(x)δwdx1 = 0

(24)

where W is the work of the external transverse load q(x) and L is the beam length.
Defining the bending moment, shear and normal forces, as well as their higher-order

counterparts,

M =
∫
A

σ11x3dA, Q =
∫
A

σ13dA, N =
∫
A

σ11dA,

MH =
∫
A

τ111x3dA, QH =
∫
A

τ131dA, NH =
∫
A

τ111dA, PH =
∫
A

τ113dA,
(25)

we obtain:

L∫
0

[
MHδφ,11 +

(
M + PH + QH)δφ,1 + Qδφ−

(
QH + NHw,1

)
δw,11

−
(
Q + Nw,1 + NHw,11

)
δw,1 + q(x)δw

]
dx1 = 0 (26)

Applying the integration in parts to the above equation, we obtain:

MHδφ,1
∣∣L
0 +
(

M + PH + QH −MH
,1

)
δφ
∣∣∣L
0
−
(
QH + NHw,1

)
δw,1

∣∣L
0

−
[

Q + Nw,1 + NHw,11 −
(
QH + NHw,1

)
,1

]
δw
∣∣∣L
0
−

L∫
0

[(
M + PH + QH −MH

,1

)
,1
−Q

]
δφdx1

+
L∫

0

{[
Q + Nw,1 + NHw,11 −

(
QH + NHw,1

)
,1

]
,1
+ q
}

δwdx1 = 0

(27)

Since variations δφ and δw can be arbitrary in the interval [0, L], we obtain two
governing equations: (

M + PH + QH −MH
,1

)
,1
−Q = 0,

Q,1 + N,1w,1 + Nw,11 −
(

QH
,11 + NH

,11w,1 + NH
,1 w,11

)
= −q

(28)

Furthermore, the possible boundary conditions are obtained from Equation (27).

(i) Total shear force or the beam deflection vanishes at the end of the beam:

Q + Nw,1 + NHw,11 −
(

QH + NHw,1

)
,1
= 0 or w = 0 at x1 ∈ {0, L}

(ii) Total bending moment or rotation of the cross-section vanishes at the end of the beam:

M + PH + QH −MH
,1 = 0 or φ = 0 at x1 ∈ {0, L}

(iii) Higher-order shear force or the deflection slope vanishes at the end of the beam:

QH + NHw,1 = 0 or w,1 = 0 at x1 ∈ {0, L}

(iv) Higher-order bending moment or gradient of rotation vanishes at the end of the beam:

MH = 0 or φ,1 = 0 at x1 ∈ {0, L}. (29)
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Substituting Equations (19), (20), (22) and (23) into (25), we obtain:

M =
∫
A

σ11x3dA = −
(

c11 +
e31e31

a3

)
Iφ,1 = −Sφ,1,

Q =
∫
A

σ13dA = c44 A(w,1 − φ),

N =
∫
A

σ11dA = SA
2I (w,1)

2 − Gφ,1 + Πw,11,

MH =
∫
A

τ111x3dA = −l2c11 Iφ,11 = −Yφ,11,

QH =
∫
A

τ131dA = −Ψφ,1 + Ωw,11 +
Π
2 (w,1)

2

NH =
∫
A

τ111dA = l2c11 Aw,1w,11 = AY
I w,1w,11,

PH =
∫
A

τ113dA = −Zφ,1 + Uw,11 +
T
2 (w,1)

2

(30)

Next, notations are used for the second moment of the cross-section area:
I =

∫
A
(x3)

2dA and S =
(

c11 +
e31e31

a3

)
Ip,

Y = l2c11 I, Z =
(

l2c11 +
f1 f1
a3

)
A + U, U = f1 f2

a3
A, T = Ae31

a3
f1,

Ψ = Ω + U, Ω =
(

l2c44 +
f2 f2
a3

)
A, Π = Ae31

a3
f2, G = T + Π

Substituting (30) into (28), a nonlinear system of ordinary differential equations
is obtained:

Yφ,1111 −Λφ,11 + Ψw,111 + c44 A(φ− w,1) + (Π + T)w,1w,11 = 0, (31)

Ψφ,111 + c44 A(w,11 − φ,1)−Ωw,1111 − G(φ,11w,1 + φ,1w,11)

+
(

3 SA
2I w,11 − AY

I w,1111

)
(w,1)

2 − AY
I

(
(w,11)

3 + 4w,1w,11w,111

)
= −q

(32)

where Λ = Z + S + Ψ.
For the beam subjected to the uniform transverse load and clamped at the end x1 = 0,

while for the free end at x1 = L, the following boundary conditions are prescribed:

w|x1=0 = 0, w,1|x1=0 = 0, φ|x1=0 = 0, φ,1|x1=0 = 0,[
Q + Nw,1 + NHw,11 −

(
QH + NHw,1

)
,1

]∣∣∣
x1=L

= 0,
(
QH + NHw,1

)∣∣
x1=L = 0,(

M + PH + QH −MH
,1

)∣∣∣
x1=L

= 0, MH
∣∣
x1=L = 0.

(33)

In order to solve the above nonlinear boundary value problem, we employ the
weak formulation:

−
L∫

0

[(
M + PH + QH −MH

,1

)
,1
−Q

]
δφdx1

+
L∫

0

{[
Q + Nw,1 + NHw,11 −

(
QH + NHw,1

)
,1

]
,1
+ q
}

δwdx1 = 0
(34)

with the finite element approximation for the field vector as {u} =
[

w φ
]T . After

discretization, Equation (34) leads to the system of nonlinear algebraic equations, which
can be written for the vector of nodal values {U} =

[
{W} {Φ}

]T as:

[K({U})]{U} = {F} (35)
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Using the direct iteration technique (Picard iteration method), the solution at the k-th
iteration is determined from the linearized equation:[

K
(
{U}(k−1)

)]
{U}(k) = {F}, (36)

where the coefficient matrix is evaluated using the known solution from the (k − 1)-st itera-
tion. The initial guess vector {U}(0) is taken as the solution of equation

[
K̃
]
{U}(0) = {F},

where
[
K̃
]

is the coefficient matrix obtained from K({U}) by neglecting the nonlinear
terms. The iterative procedure stopped when the difference between the two consecutive
iterations, measured by the Euclidean norm, is less than the tolerance ε:

(
{U}(k) − {U}(k−1)

)(
{U}(k) − {U}(k−1)

)T

{U}(k)
(
{U}(k)

)T


1/2

≤ ε (37)

4. Numerical Results

The piezoelectric material PZT-5H is considered in numerical examples with the
following constants [35]:

c11 = 12.6× 1010 Pa, c13 = 5.3× 1010 Pa, c33 = 11.7× 1010 Pa,
c44 = 3.53× 1010 Pa, e31 = −6.5 Cm−2, e33 = 23.3 Cm−2,
e15 = 17.0 Cm−2, a1 = 15.1× 10−9 C2/N/m2,
a3 = 13.0× 10−9 C2/N/m2, f1 = f2 = 1× 10−7 C/m

(38)

and three various values are considered for the flexoelectric coefficients f1 = f2 ∈
{5, 1, 0.5} × 10−7 C/m.

The length of the beam is L = 500 nm, the width is B = H, and the thickness is H = 20 nm.
The microstructural length-scale parameter is chosen as l = 1× 10−8 m.

The weak form of the linearized differential Equation (34) has been implemented into
the commercial software Comsol. The cubic Hermitian shape function has been used as
interpolation functions and equidistantly distributed 1D finite elements.

The computational procedure for the 1D Euler–Bernoulli model is first verified for a
linear model with the vanishing von Kármán strains. The convergence of the numerical
results for deflection with respect to the increasing number of discretization elements is
achieved for N > 50 finite elements, as shown in Table 1. In the following sections, we will
use the finite elements with a length of 10 nm, when the convergence is guaranteed.

Table 1. Convergence of numerical results for the midpoint deflection with respect to the number of
discretization elements.

Number of Elements w (x1 = 2.5 × 10−7)

10 elements 6.353723 × 10−9

20 elements 6.750830 × 10−9

50 elements 6.750842 × 10−9

100 elements 6.750842 × 10−9

Moreover, the variation of the beam deflection along x1 for various flexoelectric
coefficients is obtained with the 2D analysis by the mixed FEM program [36], where
2000 rectangular elements are used. An opposite verification of the new computer code for
the 2D problems by the Euler–Bernoulli theory was applied in [36] for a body force load,
where the analytical solution is available.

The solid line in Figure 2 corresponds to the 1D Euler–Bernoulli model and the symbols
are valid for the 2D FEM analysis. Here, one can observe the excellent agreement between
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the present numerical and analytical results. The induced electric field represented by the
electric intensity E3 on the neutral beam axis is presented in Figure 3. In addition, one
can observe that the induced electric intensity increases with the increasing flexoelectric
coefficients. It is in agreement with the results recently presented by the authors in [36]. The
largest values of the electric intensity are at the clamped end, where the bending moment
and the strain-gradients reach their maximum values. The vanishing electric potential is
prescribed at the free end of the cantilever beam.
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Next, the effect of nonlinearity can be investigated. The iteration procedure is applied
to consider the finite values of the von Kármán strains. For the iteration procedure, we have
chosen the tolerance ε = 0.005, which has been achieved after five iterations. The variation
of the beam maximal deflection w with the load q for various flexoelectric coefficients and
at the microstructural length-scale parameter l = 1× 10−8 m is shown in Figure 4. The
dashed line represents the deflection corresponding to the linear model. Here, one can
observe that the decrease of nonlinear deflections in comparison with the linear ones is
enhanced with the increasing load. It is in agreement with the observations in the classical
theory of elasticity [37–39]. Similar to the linear elastic case, the increasing flexoelectricity
reduces the beam deflection in the nonlinear case, as well. The variation of the electric
intensity E3 on the neutral beam axis is presented in Figure 5, when the load intensity
is q = 0.02 N/m. In Figure 4, one can see that at this load intensity, the nonlinearity is
significantly large. From a comparison with Figure 5 (nonlinear case) and Figure 3 (linear
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case), one can see a significantly lower quantity of the induced electric intensity in the
nonlinear case.

Next, the influence of the microstructural length-scale parameter l on the beam deflec-
tion is investigated. If the value of this parameter grows by 50% with respect to the previous
case in Figure 4, the beam deflection is further reduced as shown in Figures 4 and 6. Evi-
dently, the effect of nonlinearity is weaker if the intrinsic material parameter is larger.
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The variation of maximal deflection w with the intrinsic parameter l for two different
loading levels and at the flexoelectric coefficient f1 = 5× 10−8C/m is shown in Figure 7.
Both of the curves for the two different load intensities are nearly parallel.

The influence of the flexoelectric coefficient on the maximal beam deflection is clearly
visible in Figures 8 and 9 for two different values of the microstructural length-scale
parameter. Here, one can observe that the deflection response is lower for the beam
with the larger value of the microstructural length-scale parameter. The beam deflection
decreases with the increasing value of the flexoelectric coefficient.
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5. Conclusions

In nano-sized structures, higher-order derivatives of strains require consideration due
to the large gradients of deformations. The mechanical and electrical response of the can-
tilever beam on mechanical loading is investigated within the higher-grade electroelasticity,
including the direct flexoelectricity and von Kármán nonlinear strain deformations. In
addition, the bending of the beam is studied within the Timoshenko beam theory. The
principle of virtual work is applied to derive a nonlinear system of ordinary differential
equations (ODEs) for the coupled fields of the electric potential, beam deflection, and
rotation. The FEM scheme is employed for discretization and approximation of spatial
field variations with the resulting system of nonlinear algebraic equations, as solved by the
iteration procedure.

From the numerical results obtained for the clamped beam, one can observe a reduc-
tion of the mechanical as well as electrical response of the beam within the nonlinear model,
as compared with the linear one. Furthermore, the response decreases with the increasing
level of the mechanical load. The flexoelectric effect consumes a portion of the energy of the
external forces and effectively hinders the bending of the beam under a pure mechanical
load. The intensity of the induced electric field rapidly grows with the increasing value of
the flexoelectric coefficient.
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