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Abstract: The peculiar correlationship between the optical localization-state and the electrical deep-
level defect-state was observed in the In0.52Al0.48As/In0.53Ga0.47As quantum well structure that
comprises two quantum-confined electron-states and two hole-subbands. The sample clearly ex-
hibited the Fermi edge singularity (FES) peak in its photoluminescence spectrum at 10–300 K; and
the FES peak was analyzed in terms of the phenomenological line shape model with key physical
parameters such as the Fermi energy, the hole localization energy, and the band-to-band transition
amplitude. Through the comprehensive studies on both the theoretical calculation and the experi-
mental evaluation of the energy band profile, we found out that the localized state, which is separated
above by ~0.07 eV from the first excited hole-subband, corresponds to the deep-level state, residing
at the position of ~0.75 eV far below the conduction band (i.e., near the valence band edge).

Keywords: InAlAs/InGaAs heterostructure; fermi-edge singularity; photoluminescence; deep level
transient spectroscopy

1. Introduction

InAlAs/InGaAs heterostructures have been widely studied in various aspects because
of their vast potentials in both ultrahigh-speed electronic devices and highly-efficient
optoelectronic devices that can operate in the infrared regimes. For instance, the high
electron-mobility transistors [1–4] and the spin field-effect transistors [5] are feasible elec-
tronic devices that could be demonstrated on InAlAs/InGaAs heterostructures. In ad-
dition, the infrared photodetectors [6–9], X-ray detectors [10], terahertz (THz) quantum-
cascade lasers [11,12], mid-infrared quantum-cascade lasers [13,14], and electro-optical
modulators [15] are also typical examples that can open up a broad avenue toward the
tangible optoelectronic applications of the InAlAs/InGaAs quantum well (QW) structures.
When growing the epitaxial heterostructure, in general, both the alloy disorder and the
layer-thickness fluctuation are inevitable because of the lattice mismatch in between the
ultrathin heterojunction layers. This would eventually create interfacial defects, forming
both the electrical deep-level states and the optical localization states inside the hetero-
junction. According to previous literature, those energy states may cause the Fermi-edge
singularity (FES) phenomena [16–21], leading to the abnormal luminescence [21–23] and
the anomalous carrier transport behaviors [24]. Furthermore, such an FES is known to sig-
nificantly affect the device performances (e.g., decreased carrier mobility [25,26], increased
kink-effect in resonant tunneling [27], cotunneling during the single-electron transport [28],
increased electron-phonon coupling [29], increased electron-electron scattering in the
photodiode [30], etc.). Based upon the above, one can conjecture that the FES-related states
should be simultaneously represented with both the electronic band structures and the
energy band diagram, respectively. To clarify this, thus, a comprehensive study on the
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relationship between the FES-related optical localization state and the electrical deep-level
state is required to elucidate the essence of the correlation. However, the FES behaviors in
the InAlAs/InGaAs QW systems still remain as a vivid debate.

Aiming at investigating how the FES behaviors correlate with the optical and the
electronic energy band structures in the InGaAs/InAlAs QW, we thoroughly examined
its FES-related localized-energy states by systematic analyses of temperature-dependent
photoluminescence (PL) spectroscopy and Fourier-transform deep-level transient spec-
troscopy (FT-DLTS). Key procedures of this research can be described as follows: (1) cal-
culation of the electronic band structure by using the self-consistent Schrödinger-Poisson
equation [31,32], (2) observation of two abnormal PL features (i.e., appearance of the
temperature-independent FES peak; and observation of all the red-shifted inter-subband
transitions, comparing with the calculated band profile), (3) deconvolution of the low-
temperature PL spectrum by using the phenomenological line-shape model [33], (4) extrac-
tion of the FES-related localization state; and verification of its corresponding red-shift in
PL spectra, and (5) corroboration of the optical localization state by observing the electrical
deep-level state through FT-DLTS. Herein, we describe and discuss the aforementioned
theoretical and experimental results in detail.

2. Sample and Experimental Scheme

Figure 1a schematically illustrates the In0.53Ga0.47As/In0.52Al0.48As QW structure that
has been grown onto the (100) InP substrate by molecular beam epitaxy (MBE). Firstly, the
InP surface was pre-cleaned by thermal heating at 520 ◦C in the MBE chamber. Then, the
500-nm-thick In0.52Al0.48As buffer layer was grown onto the (100) InP surface at 475 ◦C.
Subsequently, the undoped In0.53Ga0.47As layer (12 nm) and the undoped In0.52Al0.48As
spacer (4 nm) were grown onto the buffer layer at the same temperature.
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Figure 1. (a) Schematic of the In0.53Ga0.47As/In0.52Al0.48As quantum well (QW) structure. (b) Energy band profile of the
In0.53Ga0.47As/In0.52Al0.48As QW structure calculated by Schrödinger-Poisson equations. The symbols of “|Ψ1|2 and
|Ψ2|2” and “|ΨH1|2 and |ΨH2|2” in (b) denote the squared envelope functions for electrons and holes, respectively, at
the quantum confined energy states.
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Next, the Si delta-doped sheet (4.5 × 1012 cm−2) and the undoped In0.52Al0.48As
barrier layer (20 nm) were sequentially grown on the spacer layer. Finally, the 5-nm-thick
cap layer of n-doped In0.53Ga0.47As was deposited on top of the sample in order to assist
the Ohmic contact formation during the device fabrication steps [34].

To examine the optical properties of the sample, the temperature-dependent PL mea-
surements were carried out at 10–300 K by using a home-built PL system [35,36], where the
picosecond diode laser (λlaser = 634 nm) and the time-correlated single-photon counter were
equipped as an excitation source and a light emission detector, respectively. The excitation
power density was fixed at 50 W/cm2 for all measurements. In order to extract the subband
structure in the InGaAs/InAlAs QW, the PL spectra were analyzed by line-shape fitting in
terms of the localization energy theorem [33]. In addition, the FT-DLTS measurements were
also carried out to compare the energy values between the optical localization state with the
electrical deep-level state. For the DLTS measurements, the Schottky contact was formed
onto the top surface of the sample. Namely, after recess-etching of the n-In0.53Ga0.47As
cap layer, the circular Ti/Au Schottky electrode (φdia ~ 300 µm) was formed onto the
In0.52Al0.48As barrier layer. The Ohmic contact was formed onto the unrecessed n-InGaAs
cap layer in the form of the ring electrode at the vicinity of the circular Schottky contact.
After fabricating the Schottky diode structure, the DLTS measurements were performed
with a 100 mV ac test signal at 1 MHz using a Bio-Rad DL8000 DLTS system (PhysTech,
Moosburg, Germany).

3. Results and Discussion
3.1. Calculation of Energy Band Profile

Prior to the experimental characterization, we calculated the energy band diagram
of the In0.53Ga0.47As/In0.52Al0.48As QW system to understand the quantum mechanical
electric-energy structure of the fabricated sample. Figure 1b displays the energy band
profile of the MBE-grown In0.53Ga0.47As/In0.52Al0.48As QW structure, which was calcu-
lated by using a Nextnano3 simulator (Nextnano GmbH, München, Germany) that had
been programmed in terms of the transfer matrix function based on the self-consistent
Schrödinger-Poisson equations [31,32]. From the calculated energy band profile, one may
expect that several types of optical transitions are theoretically available because two
excited electron-subbands (i.e., E1 and E2) and two excited hole-states (i.e., H1 and H2)
coexist in the In0.53Ga0.47As/In0.52Al0.48As QW. In addition, the radiative optical transition
between the Fermi level (EF) and H1 is also possible because of strong carrier population
by δ-doping. The key transition parameters are listed in Table 1, where ∆EiHj (= Ei − Hj)
denotes the energy gap between the quantum mechanical subbands.

Table 1. Comparison of the physical parameters between the calculated (i.e., Schrödinger-Poisson equation) and the fitted
values (i.e., localization energy-included line shape fitting).

Physical Parameters Parameter Extraction Methods

Schrödinger-Poisson PL Line-Shape Fitting

∆EFH1 (= EF − H1) 0.98 eV -
∆EFH2 (= EF − H2) 0.95 eV -
∆E2H2 (= E2 − H2) 0.98 eV ~0.91 eV (Fitted)
∆E2H1 (= E2 − H1) 0.95 eV ~0.88 eV (Fitted)
∆E1H1 (= E1 − H1) 0.82 eV ~0.76 eV (Fitted)
∆E1H2 (= E1 − H2) 0.85 eV ~0.79 eV (Fitted)
∆E1E2 (= E1 − E2) 0.12 eV 0.12 eV (Estimated from Fitted Values)

∆H1H2 (= H1 − H2) 0.03 eV 0.03 eV (Estimated from Fitted Values)
∆ElocH1 (= Eloc − H1) N/A 0.07 eV (Estimated from Fitted Values)

∆EFEloc (= EF − Eloc = EFES) N/A 0.90 eV (Best-Fitted)
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3.2. Temperature Dependent PL Characteristics

After elucidating the energy band profile and the theoretically available optical tran-
sitions, we characterized the experimental emission properties of the MBE-grown In-
GaAs/InAlAs QW. Figure 2a shows the temperature-dependent PL spectra at 10–300 K of
the sample. At 10 K, the InGaAs/InAlAs QW clearly exhibits four predominant PL peaks at
P1, P2, P3, and P4, which correspond to E1H2, E2H1, FES, and E2H1 transitions, respectively,
as discussed later. Here, it should be noticed that two abnormal PL features occur in the
present InGaAs/InAlAs QW system. One is the temperature-independent behavior of the
P3 peak; and the other is the approximately 70 meV red-shift of all the peaks, compared
to the theoretically-available optical-transition energy values. We attribute the former to
the FES phenomena because such an unusual temperature-independent PL feature could
be explained by the many-body effect of the FES, arising from the Coulomb interaction
between the photogenerated electron-hole pairs and the electrons in the Fermi sea [16,34].
The latter of the anomalously red-shifted inter-subband transition energies could also be
ascribed to the FES nature because the FES causes a red-shift of the inter-subband emission
due to the strongly-localized energy-state at the valence band edge of the InGaAs/InAlAs
QW, as discussed below in Section 3.3.
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3.3. Extraction of Inter-Subband Transition Energy Values via PL Line Shape Fitting

To clarify the above hypothesis, we carried out the line shape analysis of the low-
temperature PL spectrum by using a localization energy state-included phenomenological
fitting model [33]. According to this model, the total PL intensity can be represented as

I(}ω) = ∑ AijD(}ω) fei(}ω) fhj(}ω) (1)

where Aij is the transition coefficient including the inter-subband matrix elements; D is the
broadened density-of-states step function; fei and fhj are the Fermi distribution functions
for electron and heavy-hole subbands, respectively. As shown in the deconvoluted PL
spectra obtained from the above model (Figure 2b), the original PL spectrum could be
well-resolved by four peaks. We could assign these four peaks as inter-subband transitions
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(EiHj); i.e., E1H1, E1H2 (= P1), E2H1 (= P2), and E2H2 (= P4), because of the following
reasons. First of all, we here note that E1H1 was not labelled in Figure 2a because its
exact peak had not emerged in the spectral range. Due to its explicit nature from the
quantum mechanical calculation, however, the E1H1 peak should be included in the line
shape fitting model. As summarized in the rightmost column in Table 1, consequently, the
transition energies of E1H1, E1H2, E2H1, and E2H2 are red-shifted by ~70 meV from the
theoretical values. Through integrating those four original EiHj transitions (i.e., dashed
curves), additionally, the localization state-associated sharp FES (= P3) peak has clearly
appeared in the best-fitted curve (i.e., red line). Furthermore, the three main peaks of
E2H1, E2H2, and FES (i.e., stronger peaks) have an identical red-shift value of 70 meV.
Accordingly, one can deduce that the inter-subband transition energies might be decreased
parallelly by a single origin such as a localization energy state (Eloc).

3.4. Extraction of Optical Localization State

Based upon the above concept, we can therefore draw the schematic band structure
at the k-space (Figure 2b, inset). Considering the existence of Eloc, we here assumed that
the H1 state is the base level; and two heavy H1 and H2 bands contain the hole occupation
probability. Then, the extracted parameters could be taken into account via the many-
body effects, so-called FES phenomena [16,34]. The above assumption can be verified
by three following results: (1) the magnitude of ∆E1E2 (i.e., E1 − E2 = 120 meV) equals
to each other in between theoretical and experimental cases; (2) the total carrier density
(n ≈ 3.49 × 1012 cm−2) coincides with that obtained in our previous mobility spectrum
analysis (n ≈ 3.43 × 1012 cm−2 [34]). Here, the total carrier density was estimated using
the observed ”EF − Ej” value by the following formula:

n2D
j =

m∗
j

}2π
kBTln

[
1 + exp

(EF − Ej

kBT

)]
(2)

where m∗
j is the effective mass; kB is the Boltzmann constant; j is 1 or 2 for the two subbands;

T is the temperature; } is the reduced Planck constant; EF is the Fermi energy, and Ej is the jth
subband energy; (3) when comparing all the parameters, ∆EFEloc (= EF − Eloc = EFES = 0.90 eV)
is experimentally available, which signifies the localized state to locate at the valence band
edge of the QW; then (4) ∆ElocH1 (= Eloc − H1) should be 70 meV, leading to the red-shift
of the PL peaks by 70 meV because most of the excited carriers would transit into the
localized state. As a result, the FES phenomena can take place between the localized state
and the Fermi level.

3.5. Corroboration of Energetic Position for Localized State by DLTS

The energetic position of the localized state can be further corroborated by observing
its corresponding electrical deep-level state. For more clarity on the localized state posi-
tion, we carried out FT-DLTS measurements [37]. Figure 3a shows the isothermal period
(Tw)-dependent FT-DLTS signals measured under the reverse bias voltage (Vr = −0.1 V)
applied to the Schottky electrode, the filling pulse voltage (Vp = 1 V), the filling pulse time
(tp = 50 ms). The sample exhibits four DLTS signals of D1, D2, D3, and D4. Among them,
one should focus on the peculiar phenomenon that, when varying Tw from 50 to 200 ms,
the position of the D2 signal is fixed at ~150 K while its intensity becomes larger. Such an
unusual Tw-independent DLTS peak position is indicative of the localized state rather than
band-like state [38]. In Figure 3b, the Arrhenius plots of the DLTS signals are shown. In
the case of D2, the slope is steeper than the others. As summarized in Table 2, accordingly,
the D2 possesses more substantial defect parameters. Particularly, in the present work, we
focus on the energetic position of the D2 level (i.e., EC − ET ≈ 0.75 eV). Considering that
In0.53Ga0.47As has a bandgap energy of ~0.75 eV [39–42], one can expect the localized D2
state to locate its position near the valence band edge. From all the above results, we can
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conclude that the energetic position of the located D2 state is consistent with that of the
optical localization state.
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Table 2. Defect parameters in the InGaAs channel determined from FT-DLTS measurements.

Defect Level D1 D2 D3 D4

EC − ET (eV) 0.201 0.752 0.315 0.318
σ (cm2) 6.28 × 10−15 9.96 × 101 1.36 × 10−16 1.10 × 10−17

NT (cm−3) 2.40 × 1015 7.88 × 1015 5.16 × 1015 3.44 × 1015

4. Conclusions

We investigated the effects of the localized defect state on both the optical and the
electrical properties of the In0.53Ga0.47As/In0.52Al0.48As QW structure. By using the phe-
nomenological PL line shape fitting model, the optical localization energy, Eloc, was deter-
mined to be 70 meV. Additionally, through both the optical and the electrical character-
izations, the energetic position of the localized state was explicitly confirmed to exist at
the valence band edge of the QW. Such a mutual correlation between optical and electrical
localization states may lead to the strong confinement of photogenerated carriers. Because
of the strong localization, the sample eventually exhibited two abnormal luminescence
characteristics (i.e., an appearance of the strong FES persisting up to 300 K and a 70 meV
red-shift of all the inter-subband transition energies in parallel).
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39. Başer, P.; Elagoz, S. The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched
InP/In0.53Ga0.47As/InP square quantum well. Superlattices Microstruct. 2017, 102, 173–179. [CrossRef]

40. Takeda, Y.; Sasaki, A.; Imamura, Y.; Takagi, T. Electron mobility and energy gap of In0.53Ga0.47As on InP substrate. J. Appl. Phys.
1976, 47, 5405–5408. [CrossRef]

41. Pearsall, T.P.; Hirtz, J.P. The carrier mobilities in Ga0.47In0.53As grown by organo-mettalic CVD and liquid-phase epitaxy. J. Cryst.
Growth 1981, 54, 127–131. [CrossRef]

42. Pearsall, T.P.; Bisaro, R.; Ansel, R.; Merenda, P. The growth of GaxIn1−xAs on (100) InP by liquid-phase epitaxy. Appl. Phys. Lett.
1978, 32, 497–499. [CrossRef]

http://doi.org/10.1103/PhysRevLett.72.2061
http://www.ncbi.nlm.nih.gov/pubmed/10055778
http://doi.org/10.1103/PhysRevB.96.075435
http://doi.org/10.1088/0953-8984/18/5/021
http://doi.org/10.1103/PhysRevApplied.10.044043
http://doi.org/10.1063/1.1649458
http://doi.org/10.1007/s10825-006-0077-7
http://doi.org/10.1063/1.355322
http://doi.org/10.1143/JJAP.49.014102
http://doi.org/10.1021/jp207879b
http://doi.org/10.1016/j.jlumin.2017.05.072
http://doi.org/10.1016/0038-1101(88)90071-8
http://doi.org/10.1016/j.solmat.2007.02.011
http://doi.org/10.1016/j.spmi.2016.12.020
http://doi.org/10.1063/1.322570
http://doi.org/10.1016/0022-0248(81)90258-X
http://doi.org/10.1063/1.90100

	Introduction 
	Sample and Experimental Scheme 
	Results and Discussion 
	Calculation of Energy Band Profile 
	Temperature Dependent PL Characteristics 
	Extraction of Inter-Subband Transition Energy Values via PL Line Shape Fitting 
	Extraction of Optical Localization State 
	Corroboration of Energetic Position for Localized State by DLTS 

	Conclusions 
	References

