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Abstract: Chromium (VI) is a ubiquitous groundwater contaminant and it is dangerous to both
ecological and human health. Iron nanoparticles (nFe) have a large specific surface area and they are
highly efficient in removing chromium (VI) from aqueous solution. However, since the traditional
reductive synthesis of nFe is relatively expensive and often causes secondary pollution, it is necessary
to develop a low-cost green synthetic method using plant extracts. Synthetic conditions are important
for obtaining highly active chromium-removing nanomaterials. In this paper, a green tea extract was
used to prepare nFe and the effects of synthetic conditions on subsequent remediation performance
were investigated. The optimal conditions included a green tea extract/Fe2+ ratio of 1:2 (91.6%),
a green tea extract temperature of 353 K (88.3%) and a synthetic temperature of 298 K (88.1%).
Advanced material characterization techniques, including XPS, SEM-EDS, TEM, and Brunauer–
Emmett–Teller (BET) confirmed that the average particle size was between 50–80 nm, with a specific
surface area of 42.25 m2·g−1. Furthermore nFe had a core-shell structure, where Fe (0) constituted the
core and a shell was composed of iron oxide. Finally, a mechanism for synthesizing nFe by green tea
extract was proposed, providing a theoretical basis for optimized synthetic conditions for preparing
nFe when using green tea extract.

Keywords: Cr(VI); iron nanoparticles; green tea extract; removal efficiency

1. Introduction

Many common industrial activities, such as electroplating, printing, dying and leather
processing generate large volumes of metal-rich waste streams, which without appropriate
treatment can lead to significant contamination of surface water, groundwater and soil.
Of the large number of metal contaminants deposited into the environment, chromium
(Cr) is one metal that has attracted much concern owing to its high toxicity even at very
low concentrations [1,2]. While chromium exists in two major oxidation states, Cr(III) and
Cr(VI), Cr(VI) is 500 times more toxic than Cr (III); it is mainly Cr(VI) exposure that is asso-
ciated with human health risks, as Cr(VI) toxicity may damage human organs including
the kidneys and liver, cause dermatitis and trigger gastrointestinal ulcers [1,2]. Therefore,
removing chromium from wastewater is urgent. Traditional methods including adsorption,
chemical precipitation, electrocoagulation, ion exchange, electrodialysis, and membrane
separation are usually used to remove chromium. Adsorption has a high removal efficiency,
simple operation and low cost, so it has emerged as the best way to remove chromium
from wastewater. Recently, since reducing the levels of toxic substances in aquatic ecosys-
tems and promoting water reuse after treatment has become more popular, calls to use
nanomaterials for environmental remediation have gained much momentum [3–5]. Until
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now, various materials have been successfully used for Cr(VI) removal from wastewater in-
cluding iron nanoparticles [6], graphene oxide [7], carbon nanotubes [8], and metal-organic
frameworks(MOFs) [9]. Ling used sodium borohydride synthesized iron nanoparticles
to remove Cr(VI) (66%) [6]. Mondal synthesized graphene oxide using Hummer and
Offeman’s techniques for removing Cr(VI) under the pH of 4, and documented a removal
efficiency of 92.8% [7]. Ahmed et al., using the chemical vapor deposition method synthe-
sized a high purity carbon nanotube to remove Cr(VI) with a sorption capacity of around
333.30mg·g−1 [8]. Zhang et al. prepared 2-cationic MOFs, FIR-53 and FIR-54 through the
nanoscale route and this reported a removal capacity of 100 mg·g−1 for Cr(VI) [9].

One type of nanomaterial commonly proposed for wastewater treatment is iron-based
nanoparticles (nFe), because they possess the advantages of higher intrinsic reactivity
on their surface sites due to their small particle size, large specific surface area and the
presence of zero-valent iron which is often suitable for the reductive dechlorination of
organic molecules [10]. Thus, nFe is frequently used for the urgent removal of various
organic and inorganic contaminants from surface or ground waters [11]. Existing traditional
methods for nFe synthesis include chemical reduction, hydrothermal synthesis and physical
vapor deposition, where chemical liquid-phase reduction is the most widely used method.
However, synthesis via chemical reduction has a number of major issues including, firstly,
toxicity to natural organisms, and the agglomeration of nanoscale materials leads to a
greatly reduced effective contact area and deteriorating remediation performance [12];
secondly, the potential for nanoparticles to pose potential environmental hazards due
to their higher solubility in water compared to micron-sized particles. Consequently,
in an effort to reduce large-scale production costs and reduce the biological toxicity of
traditionally produced nFe, alternative methods for the synthesis of environmentally
friendly, low-cost, and reliable nano-iron materials have been the subject of much research
attention in recent years [13].

During the green synthesis of nFe, simple iron salts are reduced to zero-valent iron
by biomolecules contained in natural plant extracts [13,14]. Compared with traditional
synthesis technologies, green synthesis avoids the use of innately toxic and hazardous
chemicals, reduces energy consumption, and thus has the advantages of being environ-
mentally friendly and more easily dispersed. Several natural plants, including green tea
and eucalyptus leaves, have been used for the synthesis of iron-based nanoparticles [13,14],
which have thereafter been shown to be ideal for the elimination of dyes, halogenated
hydrocarbons and heavy metals [15–17]. The advantages of using plant extracts for green
synthesized iron nanoparticles include simplicity, high efficiency, and sustainability. Re-
cently, oolong tea extracts were used to synthesize predominantly spherical nFe with
diameters ranging from 40 to 50 nm for the degradation of malachite green (MG) dye,
removing 75% of an initial MG dose of 50 mg·L−1 with pseudo first-order reaction kinet-
ics [15]. In addition, nFe synthesized using three different tea extracts served as a catalyst
for the Fenton-like oxidation of monochlorobenzene (MCB), degrading 69%, 53%, and 39%
of MCB when using green, oolong, and black tea extracts, respectively. This study indicated
that the type of extract had some effect on the resulting nFe degradation efficiency.

Green tea extract synthesized nFe demonstrated the best overall degradation, based on
the initial adsorption of MCB to the nFe surface, with the decomposition of H2O2 resulting
in hydroxyl radical generation which consequently resulted in MCB oxidation [12]. While
application of zero-valent iron in metal remediation has been less commonly proposed,
recently nFe synthesized using an eucalyptus leaf extract showed 100% Cr(VI) removal
efficiency at a leaf extract and iron (III) solution ratio of 2:1 (v/v) and pH 4 [13]. In this study,
the nFe produced had a diameter of 95 nm with FT-IR indicating a capping layer containing
polyphenols and aliphatic acids [11]. Meanwhile, XPS revealed that nFe contained both
iron oxides and a covering layer of eucalyptus leaf extract-derived biomolecules. However,
despite these successes, some knowledge gaps in nFe synthesized by green tea extract still
exist, including how specific synthetic conditions impact on the activity of nFe in general
and their efficiency for Cr (V) removal. To address these important discrepancies in our
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knowledge, this study specifically examined: (1) how the synthetic conditions affected the
formation of nFe and their Cr(VI) removal efficiency; (2) the specific biomolecules present
in green tea extract and involved in the formation of nFe.

Therefore, the main objectives of this work were to: (1) investigate the optimal condi-
tions for nFe synthesis; (2) characterize the nFe so formed; (3) analyze the main biomolecules
in the green tea extract which act as reducing or capping agents; (4) propose a formation
mechanism of nFe when using green tea extract.

2. Materials and Methods
2.1. Materials

Green tea was purchased from local tea factories in Hangzhou, Zhejiang Province.
FeSO4·7H2O was supplied by Sinopac Chemical Reagent Co. Ltd. (Danyang, Jiangsu,
China). Commercial nFe was provided by Beijing Deke Daojin Science and Technology Co.,
Ltd. (Beijing, China). The sample was synthesized by sodium borohydride, and its specific
surface area was 20 m2·g−1 and average size amounted to 50 nm. All chemical reagents
were analytically pure.

2.2. Synthesis of nFe

Prior to the iron nanoparticle (nFe) being synthesized, the purchased green tea was
washed liberally with distilled water and dried for 12 h at 333 K. Thereafter, an aliquot of
the dried green tea (40 g) and distilled water (1 L) was placed in a 1 L conical flask and
heated in a water bath for 60 min at four different temperatures (313, 333, 353, and 373 K),
prior to cooling to room temperature and filtering through 0.45 µm disposable filters to
obtain a 40 g·L−1 green tea extract (GT). An iron slat solution was prepared by dissolving
FeSO4·7H2O (27.8 g) in distilled water (1 L). Thereafter, aliquots of this solution were mixed
with GT (30 mL) at five different volume ratios (1:3, 1:2, 1:1, 2:1, and 3:1) in a 150 mL conical
flask, where the synthesized nFe was facilitated by heating it in a constant temperature
oscillating chamber (298, 308, 318 or 318 K, 150 rpm) for 60 min. Then, the nFe sample was
washed three times using anhydrous ethanol and deionized water, respectively.

2.3. Characterization

Surface micromorphology and structure of the green tea extract-derived nFe was ana-
lyzed using Merlin Compact scanning electron microscopy (SEM) (Zeiss, Baden-Wurttemberg,
Germany) and transmission electron microscopy (TEM) (Micrometer, JEOL, Beijing, China).
To determine functional groups on the nFe surface the analysis was done employing Fourier
transform infrared spectra (FT-IR) (Nicolet IS 50, Thermo Fisher, Waltham, Massachusetts,
USA) and the recording range was set at 400 to 4000 cm−1. Surface chemical compositions
of nFe were analyzed using X-ray photoelectron spectroscopy (XPS) (AXIS Supra, Kratos
Analytical, Trafford Park, Manchester, UK). Meanwhile the surface area and nanoparticle
size were analyzed using N2-Brunauer–Emmett–Teller isotherm (BET) (ASAP 2020 Plus
HD88, Shanghai, China).

The composition of the green tea extract before and after nFe synthesis was ana-
lyzed using a gas chromatography-mass spectrometer (GC-MS) on a 7890B Agilent GC
instrument equipped with a mass selective detector (MSD) (HP 5977C) quadrupole MS
(Palo Alto, Agilent Technologies, Palo Alto, California, USA). Helium (99.999%) at a flow
rate of 1.0 mL·min−1 served as the carrier gas while chromatographic separation was
conducted through a HP-5MS (30 µm × 250 µm × 0.25 µm) capillary column. Samples
were introduced into the GC-MS system in splitless mode and the injector and ion source
temperatures were set to 280 and 230 ◦C, respectively. The GC oven temperature was
initially maintained at 50 ◦C for 2 min, prior to being increased from 50 to 280 ◦C at a
heating rate of 6 ◦C·min−1. The GC-MS operating mode was set to use 70 eV of ionization
energy for electron bombardment, and the temperatures of the quadrupole and ionization
source were set to 150 and 250 ◦C, respectively. The mass spectra were obtained for the
m/z ratio in a full scan range with a 5.5 min solvent delay.



Nanomaterials 2021, 11, 650 4 of 13

2.4. Removal of Cr(VI) by nFe

The removal efficiency of nFe was investigated using a batch process. This study
used the nFe synthesized under optimal conditions. These conditions included a GT
concentration of 40 g·L−1, a GT:Fe2+ ratio of 1:2, a GT extract temperature of 353 K and
a synthesis room temperature of 298 K. During batch studies, a specific dose of nFe was
exposed to an 80 mg·L−1 solution of Cr(VI) (50 mL) for predefined times (2, 4, 6, 8, 10,
and 12 h) at 298 K and 150 rpm in an incubator. At each sampling time, an aliquot of
the supernatant reaction solution was removed and filtered < 0.45 µm to measure the
absorbance of Cr(VI) at 540 nm using an ultraviolet and visible spectrophotometer (UV-vis)
(UV3600PLUS, Shimadzu).

3. Results and Discussion
3.1. Effect of Synthesizing Conditions on Removal Efficiency

In order to obtain superior functional nFe, various synthesis conditions involving
GT bath temperature, synthesis temperature and Fe2+ to green tea extract ratio of nFe
were controlled to make possible the removal of hexavalent chromium (Figure 1). The
absorbance of Cr(VI) was measured using an UV-vis in this paper, which mainly focused
on the removal of Cr(VI).
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Figure 1. Temporal variation in Cr(VI) removal efficiency for green synthesized nFe (black line) and commercially purchased
nFe (C-nFe) (red line) (a) with different synthesis conditions, including green tea extract water bath temperature (313, 333,
353, and 373 K) (b); the ratio of GT:Fe2+ (3:1, 2:1, 1:1, 1:2, and 1:3) (c); synthesis temperature (298, 308, 318, and 328 K) (d).
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The removal efficiency of Cr(VI) using green synthesized nFe produced here (97.66%)
was much higher than that of commercially sourced nFe (50.68%) at 180 min (Figure 1a).
This improvement in Cr(VI) removal efficiency when utilizing green synthesized material
might be attributed to the presence of biomolecules on the nFe surface, which contain a
myriad of carboxyl, hydroxyl and other functional groups. They can combine Cr(VI) to
form a covalent bond, resulting in much better removal efficiency. On the other hand,
biomolecules on the nFe surface can reduce the agglomeration of nFe to enhance efficiency
in Cr(VI) removal. Irrespective of the final nFe sources, the time to reach equilibrium for
both was about 30 min, suggesting that the iron particles synthesized by green tea had
the same overall function as that of the commercially available sample. Nonetheless they
proved to be more efficient in removal capacity.

While the Cr(VI) removal efficiency tended to increase when the green tea extract
temperature also rose (Figure 1b) and reached its highest (88.25%) at 353 K, the removal
efficiency was not significantly higher for the three temperatures above 313 K (333, 353, and
373 K). This suggested that some biomolecules in green tea important for Cr(VI) removal
were not efficiently extracted when the water batch temperature was <333 K, potentially
resulting in less functionalized nFe [18,19].

The ratio of GT:Fe2+ used in the synthesis of nFe affected the Cr(VI) removal efficiency
(Figure 1c). For ratios of GT:Fe2+ as low as 1:2, the removal efficiency remained unchanged.
However, as the GT:Fe2+ ratio increased from 1:2 to 1:3, there was a subsequently slight
increase in the removal efficiency from 91.6% and 91.9%, respectively. These results
generally showed that Cr(VI) removal efficiency increased with Fe2+, indicating that the
amount of Fe in the nFe played an important role in Cr(VI) removal [20,21]. Besides, the
overall difference in removal efficiency was minor, because the biological molecular weight
of green tea extract may not be enough to synthesize iron nanoparticles from excess iron
divalent ions [22].

The removal efficiency of Cr(VI) did not significantly alter when synthesis temperature
varied between 298 and 328 K (Figure 1d). Consequently, temperature did not affect nFe
activity. Considering the large-scale economics of production, the best scenario for nFe
synthesis would be simple room temperature.

During synthesis, the best Cr(VI) removal was obtained at a GT:Fe2+ ratio of 1:2, at a
temperature to leach GT of 353 K and a temperature to synthesize nFe at room temperature.
The removal efficiency of green synthesized nFe for hexavalent chromium was much
higher than that of commercially purchased nFe, which suggests that green tea molecules
may wrap around the nFe, while the functional groups of green tea molecules could form
chemical bonds with hexavalent chromium for removal. Whether Cr(VI) could be reduced
to Cr(III) by nFe and remain in solution was not clear. Atomic emission spectroscopy can
detect the valence and concentration of both Cr(VI) and Cr(III), which has been documented
in one study [23]. The structure and morphology of nFe prepared under these optimal
conditions were subsequently examined to understand the process.

3.2. Nanoparticle Characterization

Consistent with previous studies [24,25], SEM revealed that the produced nFe were uni-
formly dispersed, spherical in shape and with an average diameter of 50–80 nm (Figure 2).
A few agglomerated particles were more than 100 nm in size with a chain-like structure,
mainly due to the strong magnetism and van der Waals attraction between nFe [26,27]. It
was thus concluded that the use of GT during nFe synthesis is beneficial, since GT acted as
a dispersant during synthesis and reduced agglomeration. In order to further understand
the internal structure and morphology of nFe, TEM characterization was performed below
(Figure 3).
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Under magnification, the TEM images indicated that the nFe exhibited a core-shell
structure (Figure 3). The core-shell structure has been reported previously [28], where
zero-valent iron nanoparticles constitute a core surrounded by a layer of oxidized iron. It
has been reported that the nFe was well dispersed with little agglomeration, which was
attributed to the organic compounds derived from the bioactive substances in the green tea
extract. This acted as a protective dispersion and stabilizer, reducing both oxidization and
agglomeration [17]. Furthermore, the dynamic light scattering (DLS) helped to confirm
“non clustering” according to one report [14]. While the observance of a core-shell structure
is fairly common, using green tea extract to coat the formed nFe with biomolecules might
contribute to some differences from the chemically synthesized nFe [29,30]. To further
understand the valence state of the central iron nanoparticles and the nature of the GT
coating, XPS characterization was carried out.

The full range XPS scan image of the fabricated nanoparticles indicated they contained
three main elements, Fe, C, and O (Figure 4A), confirming that biomolecules derived
from the green tea extract were located on the iron nanoparticles’ surfaces [17]. This was
consistent with the TEM analysis. Agreeing with previous studies [31,32], peak fitting of
the iron region (Figure 4B) indicated that the valence of the iron was distributed between
Fe (II) and Fe (0). This further confirmed that zero-valent iron nanoparticles were likely to
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be present in the core, proving that the green tea extract had reduced Fe2+ to Fe (0) and
thus acted as a reducing agent. It was, however, surrounded by a layer of ferrous oxide
nanoparticles forming a core-shell structure. In order to determine the adsorption behavior
and specific surface area of nFe, BET characterization was carried out as follows.
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The N2 Brunauer–Emmett–Teller isotherm (BET) of nFe (Figure 5) exhibited a type IV
nitrogen adsorption-desorption isotherm character, indicative of multi-layer adsorption.
The adsorption-desorption hysteresis loop was classified as H3, suggesting that the nFe
might contain slit-like pores [33]. The specific surface area of nFe was 42.25 m2·g−1,
which was larger than that of commercially purchased nFe (20 m2·g−1), meaning that the
overall nFe synthesized by GT had a large specific surface area. This was attributed to the
organic compounds derived from the bioactive substances in the GT acting as a protective
dispersion and stabilizer. It could therefore be concluded that SEM, TEM and the large
specific area probably contributed to the good efficiency in removing Cr(VI) [17].
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3.3. Analysis of the Green Tea Extract

In order to further determine the contribution of green tea to the core-shell structure
of the iron nanoparticles, FT-IR and GC-MS characterizations were reported in this section.
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Comparison of the FT-IR spectra of GT and nFe (Figure 6) showed that the peak at
1611.7 cm−1 initially present in the green tea extract disappeared after the nFe was synthe-
sized. This peak was attributed to C=C stretching vibrations [34], and its disappearance
indicated that biomolecules containing C=C bonds were involved in the synthesis of nFe.
Peaks at 1362 and 1039 cm−1 in the GT extract, attributable to C-N and C-O-C, respectively,
remained largely unchanged following synthesis. It suggests that biomolecules in green
tea played a role in the reductive synthesis of nFe, as well as capping agents. Additionally,
in the fabricated nFe a new peak appeared at 869.2 cm−1, one that was not present in the
green tea extract which was ascribed to Fe-O stretching in FeOOH [35]. This scenario
is consistent with that of XPS and confirmed that the nanometer iron oxide in the shell
was FeOOH. Overall, the FT-IR results were consistent with those from XPS and further
supported the presence of iron oxides, and that, while biomolecules containing C=C played
a role in the iron reduction, other biomolecules containing C-N and C-O-C acted more as
capping agents. Subsequently, GC-MS analysis of the extracts before and after synthesis
were carried out to specifically identify which biomolecules were likely to be involved.
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Comparison of the GT extract before and after the nFe synthesis (Figure 7) confirmed
that of the eight peaks present in the original GT extract, seven significant peaks completely
disappeared (1, 2, 3, 4, 5, 7, and 8) and one peak significantly decreased (6) following
nFe synthesis. This indicated that all of these biomolecules were significantly involved
in nFe synthesis. Moreover, since no new peaks appeared after synthesizing nFe, this
suggested that the biomolecules originally present were not transformed during synthesis.
The specific biomolecules present were identified from the examination of their mass
fragmentation pattern and comparison to the MS library match (Table 1). The main
constituents of the GT were therefore phenol (11.47 min), 1,1′-Biphenyl, 2-ethyl (16.37 min),
1,2,3-Benzenetriol (17.71 min), 1,3,5-Benzenetriol (24.70 min), 6-Hydroxy-4,4,7a-trimethyl-
5,6,7a-tetrahydrobenzofuran (25.33 min), caffeine (27.14 min), oleanitrile (36.09 min), and
bis (2-ethylhexyl) phthalate (36.80 min). These results were consistent with those of FT-IR
and several previous studies which demonstrated that such GT biomolecules acted both as
reducing and capping agents [17].
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Figure 7. GC-MS chromatograms of GT (upper line) and nFe (lower line).

Table 1. Mass spectrometry classification of the main biomolecules in GT.

Entry RT (min) The Major Compound
Involved Synthesis Structure

1 11.47 Phenol
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Table 1. Cont.

Entry RT (min) The Major Compound
Involved Synthesis Structure

4 24.70 1,3,5-Benzenetriol
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5 25.33 6-Hydroxy-4,4,7a-trimethyl-
5,6,7a-tetrahydrobenzofuran
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3.4. Mechanism

When considering all the results holistically, this makes it possible to propose a mech-
anism for synthesizing green tea extract-derived nFe (Figure 8). Initially, biomolecules
present in green tea, such as 1,3,5-Benzenetriol, 1,2,3-Benzenetriol, caffeine and
bis(2-ethylhexyl) phthalate, were extracted into an aqueous solution, which, upon mixing
with an iron salt, spontaneously led to the formation of core-shell structured nFe. It com-
prised an Fe (0) core and FeOOH shell, where all of the major biomolecules in the green tea
extract acted as the reducing and capping agents, functioning to reduce Fe2+ to Fe (0) and
cap around the iron nanoparticles.
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3.5. Stability of nFe Removal Efficiency

The long-term stability of the produced nanoparticles in terms of the sustained re-
moval efficiency when exposed to air is an important consideration for long-term practical
water treatment. In many cases nFe activity can be significantly reduced due to passivation
via iron-oxide surface formation when exposed to air. Here, the Cr(VI) removal efficiency
when continually exposed to air remained stable and high (around 85%) for up to 12 h
(Figure 9). This indicated that the material retained high stability, which was attributed
to the surface coating of bioorganic molecules derived from the green tea extract. They
completely encapsulated the iron nanoparticles and prevented oxidation and consequential
inactivation. This outcome highlighted that green synthesized nFe has significant practical
potential for water treatment strategies.
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4. Conclusions

A green tea extract was successfully used for the highly efficient (91.6%) green synthe-
sis of nFe to remove Cr(VI) from aqueous solutions. Control of synthesis conditions made it
possible to optimize the functional removal efficiency of the nanomaterial produced. SEM
and TEM confirmed that the material was a spherical particle with a core-shell structure.
XPS showed that the zero-valent iron nanoparticles acted as the core, while iron oxide
nanoparticles formed the shell; FT-IR confirmed that the iron oxide shell was FeOOH.
GC-MS suggested that most of the biomolecules present in the green tea extract, such
as 1,2,3-Benzenetriol, 1,3,5-Benzenetriol, caffeine and bis(2-ethylhexyl) phthalate, were
actively involved in the nFe synthesis as reducing or capping agents, which provided a
theoretical basis for the green synthesis of nanomaterials. These biomolecules reduced Fe2+

to Fe (0) and capped the nFe surface to prevent oxidation and inactivation. This capping led
to a high atmospheric stability so that the material could be practically applied more easily
than existing materials for water treatment. However, the exact mechanism for removing
Cr(VI) by green synthesized nFe is still unclear. Whether green tea also plays a role in this
process needs to be analyzed and validated in our next study.
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