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Abstract: The low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are
used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped
CaFe2As2 (Pr-Ca122) with Tc ≈ 30 K. The spectroscopy shows strong spatial variations in the density
of states (DOS), and the superconducting map constructed from spectroscopy discloses a localized
superconducting phase, as small as a single unit cell. The comparison of the spectra taken at 4.2 K
and 22 K (below vs. close to the bulk superconducting transition temperature) from the exact same
area confirms the superconducting behavior. Nanoscale superconducting states have been found
near Pr dopants, which can be identified using dI/dV conductance maps at +300 mV. There is no
correlation of the local superconductivity to the surface reconstruction domain and surface defects,
which reflects its intrinsic bulk behavior. We, therefore, suggest that the local strain of Pr dopants is
competing with defects induced local magnetic moments; this competition is responsible for the local
superconducting states observed in this Fe-based filamentary superconductor.

Keywords: iron-based superconductor; filamentary superconductor; nanoscale superconducting
states; defects; scanning probe microscopy; defects; domain boundary

1. Introduction

Discovery of the high-Tc of Fe-based superconductors has attracted much attention
recently. Among the materials, 122-type iron-based superconductivity is of particular
interest due to its relatively simple structure and the easy growth of large single crys-
tals [1]. The parent compound of the 122 family exhibits antiferromagnetic order at low
temperature, and the superconductivity typically emerges through chemically doping.
However, the mechanism of doping-induced superconductivity in 122 superconductors
is still controversial. Additionally, the superconducting doped samples are electronically
inhomogeneous, even on a nanoscale. Therefore, a scanning probe microscope has been an
ideal tool to study the doping effects as well as the superconducting mechanism on these
Fe-based superconductors [2]. The majority of recent research in this area focuses on bulk
superconducting samples, and only limited studies have been conducted on filamentary
superconducting behavior. It has been argued that the filamentary superconductors arise
due to spontaneous electronic inhomogeneity at the nanoscale level of the sample, and
STM/S might be the most adequate tool to reveal the insight to filamentary behavior [3,4].
Such electronic inhomogeneities may be caused by nanoscale dopants and disorder, which
manifest in non-zero resistance and have a very small Meissner effect (field-cooled in
magnetic susceptibility), although their shielding is the same as bulk superconductors [5,6].
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As an example of the neglected filamentary superconductor, electron-doped, Pr-doped
CaFe2As2 (Pr-Ca122) crystal shows the highest transition temperature among the pnic-
tides with ThCr2Si2 crystal structure (Tc~45K). The difficulty in using STM to achieve
this goal is how to identify the dopant position and correlate it to superconducting states.
Recently, Gogryky et al. studied the optimal-doped Pr-Ca122 crystal (14% dopant) and
found the local electronic inhomogeneous; [3] Zeljkovic et al., demonstrated a method for
identifying the Pr-dopant location on a filamentary superconductor of Pr-doped CaFe2As2
(Pr-Ca122) [4]. However, there was no STM spectroscopy performed to correlate this
dopant location with superconducting states.

Here, we use scanning tunneling microscopy and spectroscopy (STM/STS) to study
local superconducting states on lower Pr-doped Ca122 crystal (9% dopant) to avoid segre-
gated dopant clusters and to corelate filamentary superconductivity to local structure and
dopants on a nanoscale.

2. Materials and Methods

Single crystals of Pr-doped CaFe2As2 (Pr-Ca122 were grown out of FeAs self-flux
technique, similar to ref. [1,7], with [001] direction perpendicular to the crystalline plate
shapes. The chemical composition of the crystals was measured with a Hitachi S3400
scanning electron microscope energy-dispersive X-ray spectroscopy (EDS). The structures
were identified as tetragonal ThCr2Si2 type (I4/mmm, Z = 2) at room temperature, and
lattice parameters upon doping were refined using X’Pert HighScore by collecting data
on an X’Pert PRO MPD X-ray powder diffractometer. Magnetic data were collected using
Quantum design’s magnetic property measurement system (MPMS).

Single crystals of Pr-Ca122 were cleaved at liquid nitrogen temperature in an ultra-
high vacuum system, then immediately transferred into an in-situ STM precooled to 4.2 K
without breaking vacuum. The STM/S experiments were carried out using a scanning tun-
neling microscope with base pressure better than 2 × 10−10 Torr, with a chemically etched
W tip. All W tips were conditioned on clean Au (1 1 1) and checked using the topography,
surface state, and work function before each measurement. The STM/S were controlled by
the SPECS Nanonis control system. Topographic images were acquired in constant current
mode with bias voltage applied to samples and tip grounded. All the spectroscopies were
obtained using the lock-in technique with a modulation of 1 mV at 973 Hz on bias voltage,
dI/dV. Current-imaging-tunneling-spectroscopy was collected over a grid of pixels at bias
ranges around Fermi level using the same lock-in amplifier parameters.

3. Results and Discussion

The crystal structure of the parent compound of Pr-doped CaFe2As2 (Pr-Ca122) is
shown in Figure 1a. It composed of a trilayer building block of FeAs sandwiched between
checkerboard layers of Ca, with lattice constants of a = b = 0.395 nm and c = 1.3 nm. A small
amount (9% measured concentration in this work) of Pr is used to dope the compound
by substituting at the Ca site. The temperature dependence of magnetic susceptibility
in the zero-field cool measurement of the Pr-Ca122 sample is shown in Figure 1b. The
downturn of the susceptibility signifying diamagnetic responses as a result of the Meissner
state reveals a superconducting transition at 30 K. However, the sample is only considered
a filamentary superconductor due to its small superconducting volume fraction (~3% at
5 K) [3,8–10]. In order to visualize the local superconductivity behavior in Pr-Ca122, we
performed a STM study on in situ cleaved samples. Figure 1c shows a typical large-scale
STM morphology image of the cleaved surface. The step height of ~0.65 nm (line profile in
the inset) is about a half of the unit cell size along the c axis. It reflects the mirror symmetry
of Ca122 crystal structure (Figure 1a).
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Figure 1. (a) Crystal structure of Ca122. (b) Temperature dependence of zero-field-cooled mag-
netic susceptibility of the sample of Pr-Ca122, showing diamagnetism below ~30 K, under a con-
stant magnetic field of 20 Oe. (c) Large scale STM topographic image after cleaving (sample bias VS 
= −20 mV, tunneling current It = 100 pA, temperature T = 4.2 K). The line profile across a half unit 
cell step is shown at the inset. 

An atomic resolution STM image (Figure 2a) demonstrates a stripy pattern with a 
periodicity of 0.80 ± 0.02 nm, which is the double unit cell in the ab plane. It suggests the 
surface is terminated by Ca atoms with a 2 × 1 reconstruction [4]. To identify the Pr do-
pants on the surface terminated by Ca atoms, we applied a similar method discussed in 
the previous report [4]. The Pr dopants appear as a bright area in a dI/dV conductance at 
a high positive sample bias of 300 mV (marked by dashed white rings in Figure 2b). The 
dI/dV maps at the negative sample biases (Figure 2c,d) do not show any distinctive con-
trast. 

 
Figure 2. (a,b) STM image and dI/dV conductance map on Pr-Ca122 (Vs = 300 mV, It = 200 pA, 
modulation voltage Vac = 1 mV, f = 973 Hz, T = 4.2 K). The bright spots on the dI/dV map in (b) 

Figure 1. (a) Crystal structure of Ca122. (b) Temperature dependence of zero-field-cooled magnetic
susceptibility of the sample of Pr-Ca122, showing diamagnetism below ~30 K, under a constant mag-
netic field of 20 Oe. (c) Large scale STM topographic image after cleaving (sample bias VS = −20 mV,
tunneling current It = 100 pA, temperature T = 4.2 K). The line profile across a half unit cell step is
shown at the inset.

An atomic resolution STM image (Figure 2a) demonstrates a stripy pattern with a
periodicity of 0.80 ± 0.02 nm, which is the double unit cell in the ab plane. It suggests
the surface is terminated by Ca atoms with a 2 × 1 reconstruction [4]. To identify the Pr
dopants on the surface terminated by Ca atoms, we applied a similar method discussed in
the previous report [4]. The Pr dopants appear as a bright area in a dI/dV conductance at
a high positive sample bias of 300 mV (marked by dashed white rings in Figure 2b). The
dI/dV maps at the negative sample biases (Figure 2c,d) do not show any distinctive contrast.
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Figure 2. (a,b) STM image and dI/dV conductance map on Pr-Ca122 (Vs = 300 mV, It = 200 pA,
modulation voltage Vac = 1 mV, f = 973 Hz, T = 4.2 K). The bright spots on the dI/dV map in (b)
indicate the Pr-dopant positions (dashed white circles). (c,d) Same area with Vs = −300 mV and
−10 mV, respectively.
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As the global susceptibility result of Pr-Ca122 shows filamentary superconducting
behavior, it is interesting to reveal how filamentary superconductivity corelates with
local structures. When surveying around the samples, we find that although STS dI/dV
curves show gap-like features in occasional spots, STS from majority areas do not show
superconducting gap. To visualize the local superconductivity, a superconducting gap map
serves better than an STS dI/dV map. As an example, Figure 3 shows a STM topographic
image and corresponding superconducting gap map, which is calculated from the current
imaging tunneling spectroscopy (CITS) image at 4.2 K [11,12]. The majority area of the
sample does not show superconductivity, which is consistent with a low superconducting
volume fraction from the bulk measurement (about 3%). The localized superconducting
areas are observed mostly near Pr dopants, which we can identify as Figure 2b (Figure 3b,
white rings). Surprisingly, the superconducting state is very localized, which can be in
the range of a few cell-size units of the compound (a = 0.395nm). The typical extracted
dI/dV spectra across a superconducting region (blue arrow in Figure 3a) are presented
in Figure 3c. The spatial distance between each curve is 0.12 nm. The five red curves
show superconducting states, which have a superconducting symmetric gap at Fermi
level with coherent peaks. Away from the superconducting region, the dI/dV spectra show
normal metallic states (black curves). In between the red and black curves, there are a
couple of curves that show pseudogap states (green curves); they are the mixing between
superconducting and normal states [12]. The local superconducting area at this position is
around 1 nm.
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There are some areas on the surface with higher Pr dopant concentrations, mostly 
around defective regions and domain boundaries. Figure 4a,b show the STM topographic 
image and dI/dV map, respectively, in such a region, with Pr dopants (yellow spots and 
lines) along bulk domain boundaries and nearby strained areas. Figure 4c displays the 
dI/dV line spectra at a temperature of 6 K along a black arrow in Figure 4a. The curves 
show a gap-like feature, which presents the superconducting and pseudogap phase. At 

Figure 3. (a,b) STM image and superconducting gap map respectively extracted from CITS mea-
surement at 4.2 K on the surface area, as shown Figure 2a (VS = −10 mV, It = 200 pA, Vac = 0.5 mV,
f = 973 Hz, T = 4.2 K). The white dashed rings mark the position of Pr dopants, as found on the dI/dV
map in Figure 2b. The distortion of the image compared with Figure 2 is due to the thermal drift
of 15 h CITS. (c) dI/dV line spectra taken across a superconducting phase area marked by the blue
arrow in (a). The spatial distance between each taken curve is 0.12 nm. Red and black mark the
superconducting density of states and normal metallic density of states, respectively. The transition
curves from the superconducting density of states to the normal metallic density of states have
pseudogap characteristics, which are marked with a green color. Vertical offsets are applied to the
spectra for clarity.

There are some areas on the surface with higher Pr dopant concentrations, mostly
around defective regions and domain boundaries. Figure 4a,b show the STM topographic
image and dI/dV map, respectively, in such a region, with Pr dopants (yellow spots and
lines) along bulk domain boundaries and nearby strained areas. Figure 4c displays the
dI/dV line spectra at a temperature of 6 K along a black arrow in Figure 4a. The curves
show a gap-like feature, which presents the superconducting and pseudogap phase. At an
increased temperature of 22 K, the dI/dV line spectra recorded in the sample region show
strongly suppressed superconducting gap states (Figure 4c). This is consistent with the
bulk measurement of the superconducting transition temperature of the sample at about
30 K (Figure 1b).
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Figure 4. (a,b) STM image and dI/dV conductance map on a Pr-Ca122 region (Vs = 300 mV, It = 200 pA,
Vac = 1 mV, f = 973 Hz, T = 6 K). (c,d) dI/dV line spectra along the dotted arrow on the same area at 6 K
and 22 K, respectively (Vs = −10 mV, It = 200 pA, Vac = 0.5 mV, f = 973 Hz). The same vertical offset is
applied to the spectra in both (c,d). The red arrow points to a reconstruction of the domain boundary.

It is important to note that the domain boundaries and defective regions where Pr
dopants segregate are intrinsic bulk-like structures, which are created during crystal growth.
Those sites are different from the 2 × 1 surface reconstruction 90-degree domain boundaries,
as pointed out by a red arrow in Figure 4a. As shown in Figure 4b, Pr dopant concentration
near reconstruction domain boundaries is similar to regular areas, as these boundaries
are the result of restructuring surface Ca/As/Pr atoms during exposure of the surface
at cleavage.

We also notice the local superconductivity observed in this work is not originated
from surface-related defects. Shown in Figure 5a are some examples of local defects. The
STS map of the area shows no Pr dopants around. The STS dI/dV spectra for defects 1, 2,
3 and the non-defected area are shown in Figure 5b. Although defects areas are different
from the pristine area, none of them show superconducting gap or pseudogap features.
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Figure 5. (a) STM atomic resolution image in a pristine area of Pr-Ca122 surface with (VS = −2 mV,
It = 200 pA, T = 4.2 K). (b) The dI/dV spectra taken at three different pristine defects are very different
from one taken at the bare area, and they all show no superconducting gap.

Here we discuss the role of Pr dopants in response to local superconductivity in
Pr-Ca122. This observation of local superconducting states near Pr dopants supports the
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hypothesis of the superconducting phase induced by local strains near Pr dopants [13–16].
The local strain can yield the optimum Fe-As bonding angle for emergence of the supercon-
ducting phase [17]. However, these Pr dopants, in parallel, create lattice defects with some
net magnetic moment [18]. The local magnetic moment can also destroy superconductiv-
ity [11]. Therefore, the Pr-Ca122 sample is not able to become a bulk superconductor by
simply increasing the Pr dopant concentration. These two competing processes result in
the filamentary superconductivity observed in Pr-Ca122.

4. Conclusions

Low-temperature STM/STS is used to observe nanoscale superconducting states in the
cleaved single crystal of low Pr-doped CaFe2As2. The spectroscopy shows strong spatial
variations of density of states, and a superconducting map constructed from spectroscopy
discloses a localized superconducting phase, as small as a single unit cell. The comparison
of the spectra taken at low temperature (4.2 K) and an elevated temperature 22 K, which is
below but near the bulk transition temperature area, confirms superconducting behavior.
Nanoscale superconducting states have been found near Pr dopants, which can be identified
using dI/dV conductance maps at +300 mV. Local superconductivity is not influenced by
surface reconstruction and surface defects created during cleavage. We, therefore, suggest
that the competition between the local strain at Pr dopants and the local magnetic moment
induced by defects is responsible for the local superconducting states observed in this
Fe-based filamentary superconductor.
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