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Abstract: Continuous-flow photoreactors hold great promise for the highly efficient photodegrada-
tion of pollutants due to their continuity and sustainability. However, how to enable a continuous-
flow photoreactor with the combined features of high photodegradation efficiency and durability as
well as broad-wavelength light absorption and large-scale processing remains a significant challenge.
Herein, we demonstrate a facile and effective strategy to construct a sieve-like carbon nanotube
(CNT)/TiO2 nanowire film (SCTF) with superior flexibility (180◦ bending), high tensile strength
(75–82 MPa), good surface wettability, essential light penetration and convenient visible light absorp-
tion. Significantly, the unique architecture, featuring abundant, well-ordered and uniform mesopores
with ca. 70 µm in diameter, as well as a homogenous distribution of TiO2 nanowires with an average
diameter of ca. 500 nm, could act as a “waterway” for efficient solution infiltration through the SCTF,
thereby, enabling the photocatalytic degradation of polluted water in a continuous-flow mode. The
optimized SCTF-2.5 displayed favorable photocatalytic behavior with 96% degradation of rhodamine
B (RhB) within 80 min and a rate constant of 0.0394 min−1. The continuous-flow photodegrada-
tion device made using SCTF-2.5 featured exceptional photocatalytic behavior for the continuous
degradation of RhB under simulated solar irradiation with a high degradation ratio (99.6%) and
long-term stability (99.2% retention after working continuously for 72 h). This work sheds light
on new strategies for designing and fabricating high-performance continuous-flow photoreactors
toward future uses.

Keywords: sieve-like CNT film; TiO2 nanowire; continuous-flow device; photodegradation; pollutant

1. Introduction

The emergence of continuous-flow devices opens an avenue to boost the prosperous
development of successive batch manufacturing and has triggered a tremendous upsurge
for the potential application in a variety of fields, such as chemical synthesis [1], mixture
separation [2], pollutant treatment [3] and fuel cells [4], owing to the advantageous features
of high efficiency, easy scalability, simple operation and low cost [5,6]. Of particular inter-
est, the developing continuous-flow photoreactors, which use light for energy input, are
increasingly appreciated as a reliable means to leap over the restrictions of traditional inter-
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mittent photocatalytic platforms and are regarded as a more promising strategy to carry
out the photocatalytic removal of pollutants due to their continuity and sustainability [7,8].

To date, these materials with prominent photocatalytic properties, such as Sq-azo@PMO [9],
ZnO-SnO2@C [10], anatase TiO2 [11], Bi2WO6/ZnFe2O4 [12], B/g-C3N4 [13], Ag3PO4/g-
C3N4 [14] and UiO-66(Ti)-Fe3O4-WO3 [15], have been intensively explored for constructing
continuous-flow photoreactors. Despite the exciting progress made in continuous-flow
photoreactors for the photodegradation of pollutants, several issues remain to be ad-
dressed to improve the photodegradation efficiency, broad-wavelength light absorption,
durability and large-scale processing to meet the rapidly growing demand in practical
applications. Consequently, exploring and achieving photocatalytic materials and their
rational structures that are well-matched to the continuous-flow mode for acquiring better
photodegradation performances is highly desirable yet greatly challenging thus far.

CNT film, a macroscopic assembly of nanoscale individual CNTs, can be fabricated by
various approaches, such as floating catalyst chemical vapor deposition (FCCVD) [16–18],
dry spinning [19], solution-based coating [20], printing [21] and vacuum filtration [22], with
different types of architectures, including non-woven cloth, vertical alignment, aligned
networks, transparent film, random planar film and compressible foams [23].

Owing to its prominent flexibility, high mechanical strength, electrical conductiv-
ity, ease of processing, good optical transparency, prominent durability and stability,
superior abrasion resistance, good adhesion properties with many substrates and low
density [24,25], CNT films have been extensively applied to various fields, including
transparent conductor [26], sensor [27], energy storage and conversion [28,29], filtration
membrane [30], transistor [31], integrated circuits [32], etc. Significantly, the multifunction-
alization of CNT film can be readily realized through combinations with various active and
passive components (e.g., metal nanoparticles and nanowires, metal oxides, conductive
polymers and graphene) [33].

Additionally, the flexible and robust CNT film fabricated by the FCCVD method
could be processed into porous architecture with ample well-ordered and uniform meso-
pores via a facile and effective laser drilling, which was used as a smart and flexible
supercapacitor [34]. Thus, after its functionalization with photoactive materials, the meso-
porous CNT film can be converted into a hybrid film that combines the best features of
both components, i.e., superior flexibility, mechanical strength, photocatalytic capacity,
stability and processibility, which might serve as suitable scaffolds for the continuous-flow
photodegradation of polluted water.

Proving this hypothesis, we designed and fabricated a flexible and robust sieve-like
carbon nanotube (CNT)/TiO2 nanowire film (SCTF) for the continuous-flow removal of
RhB used as a model pollutant with a laser-drilling CNT film coupled with TiO2 nanowire.
The resulting SCTF contained abundant, well-ordered and uniform mesopores, thereby,
enabling channels for efficient solution infiltration through the film. The good transmittance
of the as-prepared hybrid film not only facilitated light penetration into the film interior but
also favored effective visible light absorption. Benefiting from these unique features, the
assembled continuous-flow photodegradation device based on SCTF displayed superior
photocatalytic behavior for the continuous degradation of RhB under simulated solar
irradiation in terms of the degradation ratio and long-term stability.

2. Experimental
2.1. Materials

Ethyl alcohol, ferrocene, thiophene, sulfuric acid (H2SO4), hydrochloric acid (HCl) and
sodium hydroxide (NaOH) were obtained from Sinopharm Chemical Reagent Shanghai
Co., Ltd. (Shanghai, China). Titanium butoxide (Ti(OH9C4)4), n-hexane and RhB were
purchased from Aladdin Reagent Database Inc. (Shanghai, China). All chemicals were of
analytical grade and utilized without further purification.
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2.2. Fabrication of SCTF

CNT films with an area of meter level and a thickness of ca. 8 µm were manufactured
by the FCCVD method [18,35]. TiO2 nanowires were coupled facilely onto porous CNT
films via a hydrothermal strategy as reported in previous works [36,37]. Specifically, the
pristine CNT films were cut into identical circles (Ø 5.5 cm) and then engraved by laser
drilling. The porous CNT films (10 mg) were eluted with 1 M H2SO4 to remove the
iron catalysts, followed by washing with deionized (DI) water until reaching a neutral
solution. Subsequently, the treated porous CNT films were immersed into a 50 mL solution
of Ti(OH9C4)4 and n-hexane with a volume ratio of 1:9 for 5 min at room temperature,
followed by taking out and exposure in air for 10 min to enable the n-hexane volatilization
and hydrolysis of Ti(OH9C4)4 into seed crystals.

Afterward, the obtained composite films were mixed with 80 mL NaOH aqueous solu-
tion (10 M) and 0.5 mL Ti(OH9C4)4. The mixture was, then, transferred into a 100 mL Teflon-
line stainless steel reactor and maintained at 200 ◦C, and the amount of TiO2 nanowires
generated on porous CNT films could be regulated by changing the reaction time. After
cooling naturally to room temperature, the resultant films were washed with 0.1 M HCl
and DI water in sequence for several times, followed by annealing at 500 ◦C for 3 h, thus,
eventually achieving SCTFs. The mass fractions of CNTs in the SCTFs were 2%, 2.5%,
3.5% and 5%, respectively, and the final products were named SCTF-2, SCTF-2.5, SCTF-3.5
and SCTF-5.

2.3. Characterization

Scanning electron microscope (SEM) images were collected using a field emission
scanning electron microanalyzer (Apreo C HiVac, Thermo Fisher Scientific, Waltham, MA,
USA) at an acceleration voltage of 10 kV. X-ray diffraction (XRD, Bruker Inc., karlsruhe,
Germany) patterns were recorded on a Bruker AXS X-ray diffractometer (Bruker Inc.,
karlsruhe, Germany) using a Cu KA radiation generator (1.5406 Å, 40 kV and 40 mA).
Raman spectra were obtained by a Renishaw RM3000 Raman microscope (Renishaw Inc.,
London, UK) with a 633 nm laser source. UV-vis diffuse reflectance spectra (DRS) were
measured using a Hitachi U-4100 spectrophotometer (Hitachi Limited, Tokyo, Japan) with
BaSO4 as a reflectance reference. The contact angle was determined by a Drop Shape
Analyzer (DSA100, KRÜSS, Hamburg, GmbH). The tensile stress–strain tests were carried
out on an Instron 3365 equipped with a fine force detector at a tensile rate of 0.5 mm
per minute.

2.4. Photocatalytic Degradation Procedure

The photocatalytic activity of as-fabricated SCTFs was evaluated by the degradation
of RhB. A 300 W Xe lamp (Shaoxing Changtuo Imp. Exp. Co., Shaoxing, China) with a
wavelength range of 420–800 nm and light intensity of 100 mW cm−2 was used as the
simulated solar light source. The light intensity of sunlight was 45 mW cm−2. Briefly, 12 mg
of photocatalyst was immersed into 100 mL of RhB aqueous solution (10 mg L−1). The
obtained suspension was placed for 30 min in the dark to attain the adsorption–desorption
equilibrium and then exposed to visible light. At a given interval of 10 min, 3 mL of
RhB aqueous solution was taken out, and its concentration was measured with a UV-vis
spectrophotometer (Model lambda 35, PerkinElmer) at a maximum absorption wavelength
of 553 nm.

3. Results and Discussion
3.1. Fabrication and Characterization of SCTF

The procedure for the SCTF fabrication is schematically illustrated in Figure 1. The
flexible CNT film was treated by laser drilling to form well-organized holes with a pore size
on the micrometer level. Subsequently, TiO2 nanowires were coupled with the resultant
sieve-like CNT film via hydrothermal treatment in an aqueous solution of Ti(OH9C4)4
at 200 ◦C, eventually forming a porous SCTF. From the optical images of films, the film
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featured no significant destruction in the structure (e.g., fractures and cracks) and its color
changed from black to gray owing to the pore formation and TiO2 modification on the CNT
film during the process of laser drilling and hydrothermal treatment.
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Figure 1. The schematic procedure of fabricating sieve-like carbon nanotube (CNT)/TiO2 nanowire film (SCTF) and the
corresponding films obtained at each step.

Figure 2a presents the optical photograph of an SCTF placed on a piece of paper with
certain words. A high definition of these words below the film was observed, implying
excellent transparency of the SCTF, which was propitious to the light penetration into the
interior of film when exposed to solar irradiation. As envisioned in Figure 2b, even under
bending with an angle up to 180◦, SCTF displayed exceptional flexibility without any local
damage generated, thus, confirming that the inner structure of film was well maintained.
The light harvesting and absorption ability of the TiO2 nanowire and SCTF was examined
using UV-vis DRS.

In contrast to the neat TiO2 nanowire, SCTF featured significantly enhanced UV-
vis light absorption, especially within the visible light range (Figure 2c), signifying that
coupling a TiO2 nanowire to a sieve-like CNT film would be favorable for improving both
the visible light absorption and photocatalytic activity. Static water-droplet contact angle
measurements were used to characterize the surface wettability.

As illuminated in Figure 2d, the contact angle at the surface of the sieve-like CNT
film was 90◦, and this was drastically reduced to 0◦ at the surface of the SCTF, thereby,
proving that a significantly enhanced surface wettability of SCTF originated from the
introduction of TiO2 nanowire with abundant hydrophilic hydroxyl groups, which would
be beneficial to the polluted water diffusion throughout the entire film when served as a
photocatalyst. Additionally, the as-prepared SCTFs featured a satisfactory mechanical prop-
erty with tensile strength of 75–82 MPa and fracture elongation of 1.79–1.86% (Figure 2e),
which was critical and essential to their use in the continuous-flow photodegradation of
polluted water.

The microstructure of sieve-like CNT films and SCTFs was characterized through
SEM. The sieve-like CNT film displayed a relatively flat surface and consisted of abundant,
well-ordered and uniform mesopores with pore diameter of ca. 100 µm and pore interval
of ca. 70 µm (Figure 3a). In contrast, SCTF displayed an obvious difference (Figure 3b).
The massive needle-like substances were homogeneously attached to the surface of SCTF.
Additionally, note that the pore size was reduced from 100 to 70 µm, however, they
maintained a nearly circular shape.
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The magnified SEM image corresponding to the red frame-marked region in b was
featured by numerous interlaced fibers with an average diameter of ca. 500 nm (Figure 3c),
while the SEM image corresponding to the blue square region in b expressly presented a
pore with a rough edge encircled by a network structure (Figure 3d). The homogeneous
distribution of nanowires and high porosity on SCTF made it favorable for the continuous-
flow photodegradation of organic pollutants when served as photocatalyst due to effective
photoexcitation and convenient liquid penetration.

The composition of the SCTFs was examined using XRD and Raman spectra, and,
for a comparison, the XRD and Raman spectra of the CNTs and TiO2 were also analyzed.
As seen in Figure 3e, all characteristic peaks of the CNTs and TiO2 appeared in the XRD
pattern of the SCTFs, as expected. For instance, these sharp and intensive peaks at 2θ of
25.23◦, 37.91◦, 48.04◦, 53.81◦ and 55.14◦ corresponding to the reflections from the (101),
(004), (200), (105) and (211) crystalline planes of anatase TiO2, respectively, as well as a
relatively broad peak of the CNTs at 25.51◦. The Raman analysis of SCTFs presented D and
G bands corresponding to CNTs at 1338 and 1580 cm−1, as well as characteristic peaks of
anatase TiO2 at 147, 397, 515 and 638 cm−1 (Figure 3f). Both the XRD and Raman spectra
proved that anatase TiO2 nanowires were successfully combined with a porous CNT film
to form the composite SCTF.
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3.2. Photocatalytic Performance of SCTF
3.2.1. Optimization of SCTF

The photocatalytic activity of the as-fabricated samples was evaluated through the
degradation of RhB under visible light irradiation. Prior to irradiation, the RhB solutions
containing photocatalysts were kept in the dark under continuous stirring for 30 min to
reach the adsorption–desorption equilibrium. Figure 4a presents the C/C0 profile as a
function of the irradiation time, where C and C0 refer to RhB concentrations at a given
time and the initial time before irradiation, respectively. For pure TiO2, the RhB was
slowly degraded, with a degradation ratio of only 25% within 80 min, manifesting its poor
photocatalytic performance.

In contrast, all the SCTF heterojunction photocatalysts displayed a significantly en-
hanced photocatalytic activity toward the removal of RhB as expected. The degradation
ratio of RhB reached 75%, 86%, 96% and 92% for SCTF-5, SCTF-3.5, SCTF-2.5 and SCTF-2,
respectively (Figure 4c). SCTF-2.5 featured the most pronounced photocatalytic activity,
which was approximately four-times higher than that of the pure TiO2 sample. At high
TiO2 loading, a decline in the degradation ratio occurred owing to the shading effect and
the aggregation of TiO2 nanowires, which could hinder the light transmission to the surface
of catalysts and restrict the efficient light absorption.
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As seen in Figure 4b, the time-dependent photodegradation behavior of RhB obeyed a
pseudo-first-order kinetic model: ln(C0/C) = kt (where t is the irradiation time and k is the
rate constant) [38,39]. The calculated k value for SCTF-2.5 was 0.0394 min−1, which was
10.10-, 2.24-, 1.71- and 1.29-times higher than pure TiO2, SCTF-5, SCTF-3.5 and SCTF-2, re-
spectively, and was also substantially higher as compared to most of the previously reported
values for other carbon-based photocatalysts [40–42]. The above findings demonstrate
that the loading of TiO2 nanowires to a porous CNT film was beneficial for enhancing its
photocatalytic performance toward RhB degradation, and SCTF-2.5 exhibited much better
photocatalytic activity, which was used for the following photodegradation measurements.

Figure 4d shows the changes in the typical time-dependent absorption spectra of RhB
during the photodegradation process. The maximum absorption peak of RhB, centered at
553 nm, gradually decreased with the increasing irradiation time and almost disappeared
after simulated solar irradiation for 80 min, implying that most of RhB could be degraded
in the presence of SCTF-2.5. For comparison, the photodegradation of RhB was also
conducted under the identical conditions with no photocatalyst and only a CNT film.

As envisioned in Figure S1, after irradiation for different times, the absorbance of
RhB remained almost unchanged in the absence of a photocatalyst and displayed a slight
decline in the presence of the CNT film, which revealed poor photodegradation of RhB, thus,
further proving the prominent photocatalytic activity of SCTF-2.5 to degrade RhB. Figure S2
compares the photocatalytic behavior of RhB under natural and simulated solar irradiation.
RhB was effectively degraded under natural solar irradiation, despite the relatively lower
degradation ratio at the same irradiation time and rate constant as compared to that under
simulated solar irradiation due to the low light intensity of the sun, which suggests a
potential application of SCTF-2.5 to RhB degradation in real-world situations.
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Figure 4. Photocatalytic degradation curves (a), kinetic curves (b) and degradation ratios (c) of RhB
for different photocatalysts under simulated solar irradiation. (d) Absorption spectra of RhB with
SCTF-2.5 as photocatalyst in different reaction times under simulated solar irradiation.

3.2.2. Continuous-Flow Photodegradation

The photocatalytic oxidation of organic pollutants to carbon dioxide (CO2) in a con-
tinuous and scalable way is becoming vital concern for the efficient treatment of polluted
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water. To verify the feasibility of SCTF for continuous-flow photodegradation, a single-
inlet–outlet plate column-like photoreactor was elaborately designed and assembled to
carry out the continuous-flow photooxidation of RhB. Figure 5 shows a schematic illus-
tration of the ready-to-use continuous-flow device connected by three photoreactors in
a series.

The photoreactor was constructed by consecutively fixing SCTF-2.5 (Ø 5 cm) into
a sealed transparent glass vessel with an ca. 3 cm distance between the SCTF-2.5 pho-
toreactors. The aqueous RhB solution was sprayed into the photoreactor through the
inlet, which simultaneously allowed the input of air. The photodegradation was operated
in a continuous-flow mode with a continuous RhB inflow from the bottom of the front
photoreactor to the top of the latter photoreactor via syringe pumps.

To realize the photodegradation of RhB to CO2 in the continuous-flow device, an
optimized condition was used after multiple trial experiments. Specifically, the device
was fed with aqueous RhB solution (<2 mg L−1) at a flow rate of 2 mL min−1, and air was
introduced under one bar of pressure. The photooxidation reaction of RhB was performed
at room temperature with simulated solar irradiation, and the products were collected
from the outlet of the device for analysis at certain time intervals.

As seen in Figure 6, when the time interval of sampling varied from 6 to 72 h, very
low absorbance and a slight change in absorbance were observed (Figure 6a), and the
degradation ratio of RhB maintained a high level ranging from 99.2–99.6% (Figure 6b),
adequately demonstrating that the as-fabricated device was feasible for the continuous-
flow photodegradation of RhB under visible light irradiation with a high degradation
ratio and long-term stability. Based on the obtained results, a possible mechanism for the
photocatalytic degradation of RhB in the continuous-flow device was proposed.

Under simulated solar irradiation, TiO2 nanowires coupled into a porous CNT film in
the SCTF became photoexcited to produce electrons (e−) and holes (h+). The photogener-
ated electrons could be transferred to the CNT, which would be further captured by O2
to form •O2

−. The positively charged holes in the valence band were able to react with
H2O/OH− to generate •OH. •O2

− and •OH as powerful oxidants effectively degraded
RhB into CO2 and H2O.
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4. Conclusions

In summary, to further extend and boost the photocatalytic application of CNT films,
a flexible and robust SCTF with a tensile strength of 75–82 MPa for the continuous degra-
dation of polluted water was fabricated via a facile coupling of a TiO2 nanowire onto a
laser-drilling CNT film. The resulting hybrid film demonstrated the distinctive advantages
of good transmittance and convenient visible light absorption, thus, guaranteeing high
photosensitivity and effective photoexcitation. SCTF revealed unique structural features
with abundant, well-ordered and uniform mesopores (ca. 70 µm in diameter) as well as the
homogenous distribution of TiO2 nanowires (ca. 500 nm in diameter), thereby, enabling
channels for efficient solution infiltration through the film during a continuous degradation
of pollutants.

In contrast, SCTF-2.5 featured a high photocatalytic performance for RhB degradation
with a degradation ratio of 96% and rate constant of 0.0394 min−1. The continuous-flow
photodegradation device assembled with SCTF-2.5 achieved a high degradation ratio
(99.6%) of RhB and long-term stability (99.2% retention after working continuously for
72 h) under simulated solar irradiation.
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