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Abstract: A pyrene-based derivative, 2-((pyrene-1-ylmethylene)amino)ethanol (PE) nanoparticle,
was encapsulated via water-in-oil-in-water (W/O/W) double emulsion with the solvent evaporation
method by one-pot reaction and utilized as a fluorescence turn-on sensor for detecting Fe3+, Cr3+,
and Al3+ ions. Magnetic nanoparticles (MNPs) embedded in polycaprolactone (PCL) were used
as the magnetic-sensitive polyelectrolyte microcapsule-triggered elements in the construction of
the polymer matrix. The microcapsules were characterized by ultraviolet–visible (UV–Vis) and
photoluminescence (PL) titrations, quantum yield (Φf) calculations, 1H nuclear magnetic resonance
(NMR), scanning electron microscopy (SEM), and superconducting quantum interference device
magnetometry (SQUID) studies. This novel responsive release of the microcapsule fluorescence
of the turn-on sensor for detecting trivalent cations was due to the compound PE and the MNPs
being incorporated well within the whole system, and an effective thermal and kinetic energy
transfer between the core and shell structure efficiently occurred in the externally oscillating magnetic
field. The magnetic-sensitive fluorescence turn-on microcapsules show potential for effective metal
ion sensing in environmental monitoring and even biomedical applications. Under the optimal
controlled-release probe fluorescence conditions with high-frequency magnetic field treatment, the
limit of detection (LOD) reached 1.574–2.860 µM and recoveries ranged from 94.7–99.4% for those
metals in tap water.

Keywords: W/O/W double emulsion; controlled-release fluorescence probe; magnetic iron oxide
nanoparticles; magnetic-sensitive microcapsule; trivalent metal ion detection

1. Introduction

Aggregation-induced emission enhancement (AIEE) probes have received significant
attention in various chemical, biological and environmental applications [1–5]. These fluo-
rescent probes are mainly crystalline, and their crystal structures are easily damaged by ex-
ternal forces, readily autoxidized, and exhibit increased background fluorescence upon sus-
tained exposure to visible light [6,7]. Microcapsules, as effective drug-delivery system, have
been widely used to incorporate various contents, such as bioactive ingredients [8,9], nano-
materials [10,11], color compounds [12,13], charged ions [14], and nanoparticles [15–17].
By modifying the microencapsulation method and the polymeric/monomeric material
used [18], appropriate microencapsulated products for specific purposes can be achieved.
Microencapsulation technology is widely used in the pharmaceutical industry [19], cosmet-
ics [20], the agricultural industry [21], food technology [22], and the textiles industry [23].
The Schiff-based microcapsule reported by Zhipeng et al. [24], was used to mimic the cellu-
lar protrusion of filopodia. The encapsulated systems can also be applied to encapsulate
fluorescent probe molecules [25]. Postiglione et al. used this system to prevent unwanted
fluorescence emission from intact microcapsules when encapsulated fluorescent liquid was
released from the core of ruptured microcapsules [26]. However, there are few studies
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on encapsulated selective fluorescent sensors or metal ion sensing; and for more general
applicability, the methods of microencapsulation and other types of matrices still need to
be discussed, which is the objective of this paper.

Many mechanisms can be applied to trigger the release of encapsulated core materials
by chemical or physical methods, including pH [27], certain chemicals [28], light [29],
ultrasonication [30], stress [31], temperature [32], and magnetic fields [33]. Among these
methods, magnetic fields provide attractive characteristics, since they can effectively acti-
vate MNPs in a controllable manner through non-contact stimulation [34,35], and achieve
high sensitivity and rapid-response release [36] compared with other methods. Super-
paramagnetic nanoparticles can effectively avoid aggregation and are evenly distributed
because there is no magnetic hysteresis between them [37]; meanwhile, the thermomag-
netic effect provides heating compared with the non-magnetic materials [38]. In previous
studies, a high-frequency magnetic field (HFMF) was developed as a trigger to release
the functional core materials from magnetic-based microcapsules [39–42]. To date, only
a few attempts have been reported on the release mechanism when using heat to realize
drug release by employing HFMF, which affects the thermodynamics of the microcapsule
molecular chains.

Among various metal ions, Fe3+/Cr3+/Al3+ ions are known to be of crucial importance
because of their significant pollution and their undesirable biological and environmental
effects. Al3+ is a key factor involved in the impairment of neurotransmission leading to
brain toxicity [43,44], and its concentration has a substantial impact on breast cancer [35],
and metabolic disorders [45]. On the other hand, Fe3+ may cause damage to nucleic
acids and proteins in living cells by enhancing the output of reactive oxygen species
(ROS) [46]. Moreover, the industrial wastewater and gas are the main sources of chromium
pollution; interestingly, Fe3+ has been reported to act in rocks and soils as a natural oxidizing
agent for the redox transformation of Cr3+ into Cr6+ [47]. Cr3+ has been considered one
of the top 16th toxic pollutants because of its carcinogenic and teratogenic effects on
humans [48]. Compared with most of the sensing methods, fluorescent “off-on” sensors
have the advantages of quick response time, low cost, high selectivity, and sensitivity for
trivalent metal cations and are widely used in many applications.

Although there are some pyrene-based derivative probes for the detection of various metal
ions, as far as we know, the fluorescent probe PE (2-((pyrene-1-ylmethylene)amino)ethanol)
and other pyrene-based derivative probes are unstable cations sensors, and they should be
kept without a humid environment and visible light. Therefore, encapsulation is a possible
pathway to overcome such problems. Herein, we present a novel magnetic-inductive
microcapsule is designed through the use of HFMF to trigger the release of a pyrene Schiff
base fluorescence probe PE from the microcapsule. The newly synthesized magnetic-
sensitive microcapsules dispersed in CH3CN/H2O (9/1 v/v) underwent hysteresis heating
through direct exposure to an oscillating magnetic field, which resulted in the controlled
rupture of the shell material. In our previous work [49], this simple and effective fluorescent
probe for the detection of trivalent cations was synthesized and fully investigated. The
“off-on” fluorescent sensor selectivity towards M3+ (M = Fe/Cr/Al) ions was embedded
into the microcapsules to achieve a controllable release behavior in response to HFMF
(Figure 1) due to its photoinduced electron transfer (PET) and excimer formation in the
presence of M3+ ions.
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compatibility and because it can be decomposed into CO2 and H2O and then metabolized 
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Then, the solvent was removed through evaporation to result in the final product as a 
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Figure 1. Mechanism of action of magnetic-sensitive microcapsules for sensing trivalent cations.

2. Materials and Methods
2.1. Materials

2-Aminoethanol, polycaprolactone (PCL, Mw = 80,000), hydrogen chloride, methanol, and
ethanol were obtained from Sigma-Aldrich. Poly (vinyl alcohol) (PVA, Mw = 31,000–50,000),
pyrene-1-carboxaldehyde, iron chloride hexahydrate, and iron chloride tetrahydrate were
obtained from Alfa Aesar. Dichloromethane (DCM), acetonitrile and sodium hydroxide
were purchased from J.T Baker, ECHO, and Showa, respectively. PCL was used as the
microcapsule matrix material because of its good biodegradability and biocompatibility
and because it can be decomposed into CO2 and H2O and then metabolized or absorbed
by the organisms. The tap water was collected in our laboratory and was tested without
further pretreatment.

2.2. Preparation of Magnetic Nanoparticles (MNPs)—Fe3O4

Fe3O4, as the magnetic nanoparticles, mentioned of MNPs throughout this article,
were synthesized in deionized water. In short, a mixture of FeCl2·4H2O (0.8 g) and
FeCl3·6H2O (1.04 g) in a 1:2 molar ratio was dissolved in 10 mL deionized water. Then,
aqueous HCl (10.34 mL of 3.29% HCl) was added and stirred for 30 min. The solution was
added dropwise to 3.0 M NaOH (50 mL) under vigorous stirring, and the black precipitates
were isolated by a strong magnet and washed three times with deionized water. The MNPs
were separated by centrifugation and then dried in a vacuum oven for 10 h at 30 ◦C.

2.3. Preparation of Compound PE (2-((Pyrene-1-Ylmethylene)Amino)Ethanol)

The fluorescence probe PE was fabricated through one-pot reaction. 1-equiv. of
2-aminoethanol dissolved in 50 mL of methanol was mixed with 1-equiv. of pyrene-1-
carboxaldehyde under constant stirring under nitrogen and then refluxed for 12 h at 70 ◦C.
Then, the solvent was removed through evaporation to result in the final product as a dark
yellow solid.

2.4. Preparation of Magnetic-Sensitive PE Microcapsules

The most representative method of encapsulation is shown below, 200 mg of PE was
added to 15 mL of 1.0 wt% aqueous PVA solution, resulting in the first water phase [50].
This solution was added to a mixture containing 1.50 g of PCL and 100 mg MNPs in 30 mL
of DCM. Then, the mixture was stirred at 2500 rpm for 15 min, resulting in the first W/O
emulsion. The mixture was added quickly into 150 mL of 1.0 wt% PVA solution under
200 rpm stirring at 40 ◦C for 10 min to form the W/O/W emulsion system. The products
were separated by centrifugation at 2000 rpm for 5 min. Then, the products were washed
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with deionized water three times, and a strong magnet was used to remove the excess
MNPs. The final product was dried in a vacuum oven for 10 h at 30 ◦C and obtained as a
faint yellow powder.

2.5. Characterization of PE/MNPs Microcapsules

The morphology of Fe3O4 nanoparticles and PE/MNPs microcapsules were deter-
mined via scanning electron microscope (SEM, HITACHI, SU8010, Tokyo, Japan). The
fluorescent samples were viewed by an OLYMPUS BX51 (Tokyo, Japan) fluorescent mi-
croscope using WU filter (excitation wavelength at 330–385 nm, emission wavelength at
430 nm) with OLYMPUS Mercury Lamp House 100 W light source under 40× magnifi-
cation. Energy-dispersive X-ray spectroscopy (EDS, HORIBA, EMAX-ENERGY, Kyoto,
Japan) was used to analyze the Fe3O4 nanoparticles distribution under SEM. X-ray diffrac-
tion signals of nanoparticles and functionalized microcapsules were achieved by X-ray
diffraction (XRD, Bruker, D2 PHASER, Billerica, MA, USA). Dynamic light scattering (DLS,
BECKMAN COULTER, Delsa Nano C, Brea, CA, USA) was used for estimating the size
distribution and zeta potential of Fe3O4 nanoparticles. The size distribution was calculated
by ImageJ (National Institutes of Health (NIH), Bethesda, MD, USA). The superconducting
quantum interface device vibrating sample magnetometer (SQUID, MPMS-3, Quantum
Design, San Diego, CA, USA) was used to obtaining the magnetic properties of Fe3O4
nanoparticles and PE/MNPs microcapsules.

2.6. PE Molecule Loading and Release

In this investigation, PE molecule release behavior was externally stimulated by an
HFMF of 16.5 kW. The HFMF system included a cooling system, an HFMF generator, and
eight loops of copper coil, and the strength of the magnetic field (H) was 2.5 kA/m. PE was
loaded into the microcapsules by the double emulsion method with solvent evaporation
and diffused into the solution of interest to detect the trivalent cations. To measure the
concentration of the released PE molecule, 10 mL of CH3CN containing 2 mg PE/MNPs
microcapsules was placed in a centrifuge tube in the center of the coil to apply the HFMF,
where the temperature was measured by an ethanol thermometer.

3. Results and Discussion
3.1. Synthesis and Characterization of PE/MNPs Microcapsules

In this study, microencapsulation was adopted by the solvent evaporation method
using W/O/W double emulsion. The compound PE was dissolved in CH3CN, resulting
in the first water phase, and the PCL was dissolved in DCM, resulting in the oil phase.
DCM was evaporated during this procedure due to its high volatility and low boiling
point. The optical microscope image of the PE/MNPs microcapsules (Figure 2a) shows that
those microcapsules were distributed homogeneously and had a uniform shape with an
average size of 25 ± 5 µm. A strong blue-colored emulsion of the PE/MNPs microcapsules
was observed under a fluorescence microscope, which also proved that the PE/MNPs
microcapsules had properties similar to property as compound PE (Figure 2b). Interestingly,
the surface of the PE/MNPs microcapsules was rougher than the surface of the hollow
microcapsules (Figure 2c,d), which could be related to the presence of the MNPs with
a swollen structure and provide the rough surface. The microcapsules size distribution
which was calculated from Figure 2c by ImageJ, the mean diameter of the microcapsules
was 20.96 µm (Figure 2f). The core material was further evaluated by 1H nuclear magnetic
resonance (NMR) titrations for confirmation of the binding sites confirmation (Figure 3).
The 1H NMR spectra of both PE (Figure S1) and PE/MNPs microcapsules showed similar
binding site positions because of PE. For clearly understanding of the peak positions of
the PE compound, a–g were represented for the peaks in chemical structure, respectively.
The inset on the top of this figure shows the 1H peaks of PE from d–g. As can be seen in
this figure, the a and b peaks are not similar to the a, b peaks in the pure PE compound,
due to the influence of the C–H bond. Furthermore, the centrifugation speed is one of the
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main factors when forming fine microcapsules. Increasing the centrifuging speed from
2000 to 4000 rpm/min resulted in a change from smooth and uniform microcapsules to
porous microcapsules. The porous structure of the microcapsule shells occurred because
after the microcapsules were solidified, the higher centrifugation speed caused a dispersion
of the MNPs to the surface layer of the microcapsules, and some heavier nanoparticles
were pushed through the shell structure (Figure 2e). Using this method to obtain the
porous microcapsules is different from the traditional methods, and few studies have been
reported on this topic.
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Figure 2. (a) Optical microscope image of 2-((pyrene-1-ylmethylene)amino)ethanol/magnetic
nanoparticles (PE/MNPs) microcapsules; fluorescence image of (b) a cluster of PE/MNPs microcap-
sules; scanning electron microscopy (SEM) images of (c) hollow microcapsules and a single hollow
microcapsule (inset); (d) a cluster of PE/MNPs microcapsules and a single PE/MNPs microcap-
sule (inset); (e) porous microcapsules under high centrifuging speed. (f) particle size distribution
histogram of PE/MNPs microcapsules in (c).

In addition, the amount of PE in the microcapsules was also assessed using TGA
analysis at a heating rate of 10 ◦C/min (Figure 4a,b). The weight reduction of these samples
between 308 to 480 ◦C was caused by the degradation of the core and shell materials
(Figure 4a), and masses of 1 g, 2 g and 4 g PE sol (5× 10−3 M in CH3CN) as the water phase
were encapsulated in the cores of the microcapsules (the hollow microcapsules acted as the
control group). Figure 4b shows that some residual remained in the core at 550 ◦C because
of the different masses of PE initially encapsulated in the core of the microcapsules, and the
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residual mass corresponded to the quantity of the encapsulated PE. Capsules containing
different amounts of PE showed similar thermal degradation behavior from 412 to 475 ◦C,
and the 4 g (PE solution)-loaded microcapsules showed the largest residual mass contrast
compared with the 1 g (PE solution)-loaded microcapsule.
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Figure 4. TGA curve of (a) the microcapsules with different amounts of core material and (b) the
heating temperature from 412.5 to 550 ◦C of these microcapsules at 10 ◦C/min under an N2 flow.

3.2. Magnetic Properties of the Microcapsules

The magnetic properties of the PE/MNPs microcapsules were investigated by a
SQUID at 25 ◦C with the magnetic field sweeping from −10,000 to +10,000 G. To verify
the MNPs-loaded microcapsules, we used less amount of MNPs (30 mg) encapsulated in
PE/MNPs microcapsules, the magnetizations of the MNPs and the PE/MNPs microcap-
sules after application of the magnetic field, as shown in Figure 5a. The inset on the top left
corner showed similar tendencies; however, the PE/MNPs microcapsules showed a lower
saturation magnetization (Ms), 0.043 emu/g, than the MNPs, 32.8 emu/g. This decreased
magnetic strength of the microcapsules can be attributed to the amount of MNPs being
much larger than the amount of MNPs encapsulated in the PE/MNPs microcapsules. Al-
though the MNPs were well-dispersed in the oil phase during the second emulsion process,
some large aggregated nanoparticles still precipitated to the bottom of the vessel because of
their attractive interaction. In addition, the hysteresis curve shows the superparamagnetic
properties of the MNPs and the PE/MNP microcapsules.
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The SEM images confirmed that the MNPs exhibited the morphology of nanoparticles
with an average particle size of 85.7 nm was measured through DLS and that they were
well-dispersed instead of being aggregated (Figure 5b and Figure S2a). Its dispersion
properties had also been studied using DLS such as zeta potential (ζ), mobility in very low
concentration (1 µM in H2O; pH 7.0) (Figure S2b). The average ζ of MNPs (−33.52 mV),
provides an illustration of the MNPs possessing high electron-negative value to remain
stable in solvent (|ζ| > 30 mV) [51]. The X-ray diffraction pattern of MNPs was measured
in Figure S3, and the EDS and elemental quantitative data were confirmed the presence
of iron nanoparticles (Figure S4). In addition, the selected area diffraction pattern of the
PE/MNPs microcapsules showed five planes, which are [220], [311], [400], [511], and [440],
confirming the existence of iron oxide nanoparticles [52]. This also suggests that the iron
oxide nanoparticles were successfully encapsulated by microcapsules (Figure S5).

3.3. PE Release Behaviors with High-Frequency Magnetic Field (HFMF) Treatment

While the PE/MNPs microcapsules under HFMF exposure, a significant increase in
the temperature of inductive heating is illustrated in Figure 6a. The results show that 5 mg
and 10 mg microcapsules had a similar rising trend to 3 mg pure MNPs, the bulk solution
temperature increased to 58 ± 2 ◦C and 57 ◦C from the room temperature due to the
hyperthermia effect within 20 min. Meanwhile, the 35 mg microcapsules exhibited lower
temperature (45 ◦C) after the same time stimulus because more liquid needed more power
to apply. The cumulative PE molecule release of PE-loaded magnetic microcapsules at room
temperature and under HFMF exposure was investigated by ultraviolet–visible (UV–Vis)
spectroscopy (Figure 6b,c). The cumulative arrived to 2.056 a.u. after 20 min of HFMF
exposure; on the other hand, cumulative release of PE from PE/MNPs microcapsules at
room temperature without any treatment from outside was only 0.714 a.u. The amount
of PE was release from the microcapsules with HFMF treatment was almost three times
higher than the control group. The PE molecule release behavior was also observed for
the characteristic peaks of PE in UV–Vis spectrum such as 358 nm. In the absence of the
magnetic field (MF), the PE only released 31.39% at most, however, the PE molecule release
percentage increased sharply from 20.91% to 89.39% after 20 min stimulus (Figure 6d). It
seems that in the first 5 min of stimulus, the PE had the biggest release rate (from 20.91%
to 71.13%), then the release rate growth slows down, proved that the shell structure of
microcapsules dissociated to a great extent. According to Figure 6a, the PE could release
71.13% under the environmental temperature around 45 ◦C, however, it is believed that
the temperature around the MNPs is much higher than the surrounding temperature.
This result strongly illustrates that the content of the core material (PE) released from the
PE/MNPs microcapsules after HFMF stimulus as large as about three times compared to
that without the magnetic field applied.
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Figure 6. (a) Inductive heating ability of the different weights of the PE-loaded magnetic nanoparticles
microcapsules (PE/MNPs microcapsules) under high-frequency magnetic field (HFMF) exposure
(16.5 kW). (b) PE molecule release of PE/MNPs microcapsules (5 mg) in 1.5 mL CH3CN without
HFMF at room temperature monitored by ultraviolet–visible (UV–Vis) spectroscopy. (c) PE molecule
release profile of PE/MNPs microcapsules in 1.5 mL CH3CN under 20 min HFMF exposure (16.5 kW).
(d) PE molecule release behaviors of PE/MNPs microcapsules under HFMF and room temperature
for 20 min.

To further elucidate the release behavior of the PE/MNPs microcapsules under the
HFMF stimulus, a quantitative estimation of the amount of PE in CH3CN was obtained by
a UV-Vis standard calibration curve. To measure the concentration of PE molecule release,
1.5 mL of CH3CN with 4 mg dispersed PE/MNPs microcapsules was stimulated by an
oscillating magnetic field at 25 ◦C. In the UV–Vis spectra, in response to the magnetic
field, a redshift was observed in the peak of the non-encapsulated pure PE, and the
peaks of the PE/MNPs microcapsules at 342/358 nm also redshifted to 361/372 nm.
The two absorbance peaks at 342 nm and 358 nm in the different concentration ranges
(1–10 µM) and (10–100 µM) (Figure 7a–c) could be linearly fitted (R2 = 0.97240/0.97657
and 0.95125/0.98719) to obtain the calibration curve. These results indicate the possibility
of quantitative PE detection within the good linear range (Figure 7b–d). By increasing
the incubation time of PE (100 µM in CH3CN; pH 7.0) with Fe3+ ions (1 mM in CH3CN),
it was clearly observed that the PL peak at 504 nm, in the beginning, was gradually
decreased, and a new peak appeared at 439 nm, which increased in intensity after 20 min
of incubation (Figure 7e). This phenomenon might be related to the fluorescence decay of
PE-M3+ complexes; the fluorescent intensity reached its maximum value in the beginning
and decreased with increasing time.
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in CH3CN with Fe3+ were exposed in air within 60 min.

3.4. Sensor Titrations of M3+ (M = Fe/Cr/Al) under HFMF Stimulus

Because of the AIEE of the PE probe, the sensing ability of PE/MNPs microcapsules
was evaluated in CH3CN/H2O (9:1 v/v), and to avoid confusion between the AIEE and
sensor selectivity, all metal ions (K+, Ba2+, Cu2+, Co2+, Al3+, Cr3+, Fe3+) concentrations
were 50 µM in deionized water, as described below. Therefore, for the sensor titrations,
2 mg of PE/MNPs microcapsules in CH3CN (10 mL) was investigated with 50 µM of metal
ions in deionized water. In addition, the concentration of PE in 2 mg PE (10 mM)/MNPs
microcapsules is equivalent to the 50 µM pure PE compound was noticed, thus all re-
sults were established based on the weight of PE/MNPs microcapsules taken as 2 mg, as
explained above. Upon the application of a magnetic field for 20 min, the PE molecule
released from the microcapsules was demonstrated in Figure 8a,b, the released PE/MNPs
microcapsules displayed impressive selectivity to Al3+, Cr3+, and Fe3+ (M3+) metal ions,
to cope with these metal ions solutions and exhibited absorbance peaks (UV–Vis) and
turn-on emission peaks (PL) at 435 nm and 502 nm, respectively, which showed red-shifted
from their original position (PE/MNPs microcapsules; λabs = 355 nm and λem = 417 nm;
Φf = 0.0094). Furthermore, according to the volume of Al3+ solution increased, the turn-on
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emission was enhanced (from 10 to 100 µL), then blue shift has taken place at its emission
peak due to the influence of the solvent polarity, meanwhile, the intensity was gradually
decreased (Figure 8c). By increasing the concentration of Al3+ (0–20 µM with an equal span
of 2 µM in H2O) the sensitivity of PE/MNPs microcapsules (50 µM in CH3CN) towards
Al3+ ions was distinctly observed in the UV–Vis spectrum as shown in Figure 8d. This
fluorescence spectrum of released PE/MNPs microcapsules (λem = 417 nm) showed red
shift turn-on responses at 495 nm for PE/MNPs microcapsules with Al3+ and inset showed
the fluorescence intensity changes as a function of Al3+ concentration; similarly, Fe3+ and
Cr3+ are also showed strong function with released PE/MNPs microcapsules as the incre-
ment of their concentration. To prove the selectivity of PE/MNPs microcapsules towards
M3+ ions, the detection limit (LOD) [53] calculations were performed after application of
HFMF for 20 min using standard deviation and linear fittings. By observing the function
of M3+ ions concentration and the relative fluorescence intensity (I/I0), the detection lim-
its of PE/MNPs microcapsules with M3+ complexes were estimated as 2.8602 × 10−6 M
(PE/MNPs microcapsules-Al3+), 1.5744 × 10−6 M (PE/MNPs microcapsules-Cr3+) and
1.8988 × 10−6 M (PE/MNPs microcapsules-Fe3+), respectively (Figure 9).
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probes are unstable cation sensors. Hence, they should be kept without a humid environ-
ment and visible light. In that sense, the microcapsule system perfectly meets these con-
ditions for better preservation. Furthermore, under the fluorescent probe delivery system, 
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Figure 8. (a,b) Fluorescence responses (λex = 395 nm) and UV–Vis responses of the released PE/MNP
microcapsules (2 mg in 10 mL CH3CN) towards 50 µM of various metal ions in H2O. (c) PL spectra
of released PE/MNPs microcapsules (2 mg in 10 mL CH3CN) as a function of the increasing volume
of 50 µM Al3+ in water (λex= 395 nm) from 10 to 400 µL. (d) PL (λex = 395 nm) titrations of released
PE/MNP microcapsules (2 mg in 10 mL CH3CN) with Al3+ in water with an equal span of 2 µm;
PL inset: intensity changes at 500 nm towards Al3+ concentration.
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microcapsules—Al3+ (b) PE/MNPs microcapsules—Cr3+ and (c) PE/MNPs microcapsules—Fe3+

based on PL intensity changes at 500 nm.

3.5. Comparison of Other Probes

Although there are some pyrene-based derivative probes for the detection of various
metal ions, as far as we know, the fluorescent probe PE and other pyrene-based derivative
probes are unstable cation sensors. Hence, they should be kept without a humid envi-
ronment and visible light. In that sense, the microcapsule system perfectly meets these
conditions for better preservation. Furthermore, under the fluorescent probe delivery
system, we can easily release a large dose of fluorescent sensors under certain circum-
stances in a very short time, the most important is our pyrene-based magnetic-sensitive
microcapsules showed high selectivity and good LOD compared with other pyrene-based
derivative sensors in Table 1.
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Table 1. Comparison of previous reported pyrene-based derivative sensors for metal ions detection.

Probe Metal Ions Source of
Sample LOD (µM) Ref.

Aminopropyl−1-pyrenebutanamide
cucurbit [10] uril Fe3+ Deionized

water 550 [54]

Bis(2-picolyl)amine-modified pyrene
derivative with sodium dodecyl sulfate

Fe3+, Al3+, Mg2+,
Pb2+, Ca2+ and Ba2+

Mineral
Water

Samples
50 [55]

3,3′,3′ ′,3′ ′ ′-(pyrene-1,3,6,8-
tetrayltetrakis(sulfanediyl))tetrabenzoic

acid
Pb2+ - 0.2 [56]

1-(3,5-dihydropyren-1-yl)-2-((1-methyl-1,6-
dihydropyrimidin-2-yl)thio)ethan-1-one Fe3+ Deionized

water 3.06 [57]

(E)-1-(pyren-1-yl)-N-tritylmethanimine Hg2+ Deionized
water 0.4 [58]

1,5-dimethyl-2-phenyl-4-((pyren-1-
ylmethylene)amino)-1H-pyrazol-3(2H)-one Cu2+ - 2.5 [59]

1,2-bis(2-(4-(1,2,2-triphenylvinyl)phenyl)-
1,3-dithiolan-2-yl)benzene Hg2+ Distilled

water 10 [60]

1-(pyren-1-yl)-N,N-bis-(pyridine-2-
ylmethyl)methanamine Cu2+, Fe3+ Distilled

water 4.9 [61]

6-methoxy-N-(pyren-1-
ylmethylene)benzo[d]thiazol-2-amine Fe3+, Fe2+ Distilled

water 2.61 [62]

2-((pyren-1-ylmethylene)amino)ethanol Fe3+, Al3+ and Cr3+ Distilled
water 0.106–0.117 [49]

2-((pyren-1-ylmethylene)amino)ethanol
magnetic-sensitive microcapsules Fe3+, Al3+ and Cr3+ Tap water 1.574–2.860 This

work

To confirm the feasibility of our system in environmental monitoring and other appli-
cation fields, Fe3+/Cr3+/Al3+ activity was investigated in three real tap water samples con-
taining Fe3+, Cr3+ and Al3+ ions, respectively. Our sensor displayed excellent precision and
reproducibility, as explained by the coefficients of variation (Fe3+ ≤ 2.79%, Cr3+ ≤ 2.79%,
Al3+ ≤ 3.76%) and recoveries were in the range of 96.5–98.7% for Fe3+, 96.7–99.4% for Cr3+

and 94.7–98.9% for Al3+ (Table 2). These results also indicate that the system we proposed
in this study is very compatible with the practical measurement of Fe3+/Cr3+/Al3+ ions
activity in future environmental monitoring and even biomedical applications.

Table 2. Determination of Fe3+/Cr3+/Al3+ ions in sample.

Sample
Added

Fe3+/Cr3+/Al3+

Concentration (µM)

Detected Concentration a (µM) Recovery b (%)

Fe3+ Cr3+ Al3+ Fe3+ Cr3+ Al3+

1 5 4.874 ± 0.136 4.933 ± 0.232 4.894 ± 0.184 97.4 98.7 97.9
2 20 19.739 ± 0.337 19.349 ± 0.748 18.972 ± 0.612 98.7 96.7 94.7
3 50 48.241 ± 0.619 49.721 ± 1.281 49.434 ± 0.941 96.5 99.4 98.9

a Mean value and standard deviation of three measurements. b Detected value/spike conc.

4. Conclusions

Conventional pyrene-based derivative sensors for metal ions detection face the prob-
lems of a humid environment and visible light interference. This study proposes an
alternating approach that pyrene-based derivative (PE) nanoparticle was encapsulated
via a double emulsion system with a solvent evaporation method in a one-pot reaction.
Similar to the neat PE compound, the core material PE showed excellent AIEE nature and
displayed selective turn-on fluorescence for trivalent cations (Fe3+/Cr3+/Al3+) detection.
The MNPs effectively triggered the rupture of the shell structure through an external
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oscillating magnetic field, and the microcapsules were heated by the interaction of the
MNPs with the magnetic field. The centrifugation speed during the synthesis process
crucially affected the morphology of the microcapsules. These results were supported
by UV–Vis/PL, quantum yield (Φf) calculations, SEM, SQUID, and 1H NMR titrations.
Hence, a possible sensing mechanism of the photoinduced electron transfer (PET) and
excimer formation was successfully discussed. Due to the low melting point of PCL, the
PE/MNP microcapsules released the core material percentage up to 89.39% under 20 min
the influence of HFMF because the temperature around the microcapsules reached up
to 60 ◦C. The results showed that PE encapsulated in microcapsules was highly stable
and selective towards Fe3+/Cr3+/Al3+ in the presence of various metal ion solutions. The
PE-M3+ sensor complex did not have an obvious impact on the specific performance and
the LOD. The standard deviation and linear fittings for the LOD were calculated as 10−6 M
limit for Fe3+, Al3+, and Cr3+ ions. This sensing platform can potentially also be used for
trivalent cations’ detection in tap water.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11071801/s1. Figure S1.1H NMR of PE, Figure S2. Zeta potential measure of mag-
netic nanoparticles (MNPs), Figure S3. The X-ray diffraction pattern of MNPs. Figure S4. The
energy-dispersive X-ray (EDS) spectrum and elemental quantitative data of PE/MNPs microcapsules.
Figure S5. Characterization analysis of PE/MNPs microcapsules and hollow microcapsules.
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