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Abstract: After the discovery of graphene, a lot of research has been conducted on two-dimensional
(2D) materials. In order to increase the performance of 2D materials and expand their applications,
two different layered materials are usually combined by van der Waals (vdW) interactions to form
a heterostructure. In this work, based on first-principles calculation, some charming properties
of the heterostructure constructed by Hf2CO2, AlN and GaN are addressed. The results show
that Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures can keep their original band structure
shape and have strong thermal stability at 300 K. In addition, the Hf2CO2/MN heterostructure has
I-type band alignment structure, which can be used as a promising light-emitting device material.
The charge transfer between the Hf2CO2 and AlN (or GaN) monolayers is 0.1513 (or 0.0414) |e|.
The potential of Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures decreases by 6.445 eV and
3.752 eV, respectively, across the interface. Furthermore, both Hf2CO2/AlN and Hf2CO2/GaN
heterostructures have remarkable optical absorption capacity, which further shows the application
prospect of the Hf2CO2/MN heterostructure. The study of this work provides theoretical guidance
for the design of heterostructures for use as photocatalytic and photovoltaic devices.

Keywords: two-dimensional materials; Hf2CO2; heterostructure; first-principles calculation

1. Introduction

Since 2004, Novoselov and Geim prepared graphene from graphite by the mechani-
cal exfoliation method [1], and its remarkable physical and chemical properties were ex-
plored [2–11], which also attracted extensive interest and attention on other two-dimensional
(2D) materials, and they all show fantastic properties [12–17]. For example, black phospho-
rene is a honeycomb-like folded layered material that can achieve transistor performance
with a thickness of less than 7.5 nm, and the highest carrier mobility can be obtained by
1000 cm2/V·s when the thickness is 10 nm at room temperature [18–21]. Puckered arsenene
possesses the ability to adjust its bandgap by applying the external strain on its surface.
Interestingly, arsenene can even be transformed into a straight gap semiconductor by
applying 1% strain [22–27]. Transition metal dichalcogenides (TMDs) materials are layered
materials with excellent thermal [28,29], electronic [30] and optical properties [31]. For in-
stance, MoS2 has high broadband gain (up to 13.3), detection rate (up to 1010 cm Hz1/2/W)
and high thermal stability when using it as an optoelectronic device [32]. In addition,
there are Janus TMDs materials that destroy the symmetry of the original structure and
make its carrier mobility increase from 28 to 606 cm2/V·s [33]. The Janus MoSSe material
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is able to separate light-generated electrons and holes while also exhibiting perfect light
absorption capabilities, which lays the foundation for promoting water redox reactions,
and it is a remarkable water decomposition light catalyst [34]. The novel properties of these
2D materials can provide unprecedented help for the development of nano-devices and
solar cells [35,36].

In order to expand the application of 2D materials and build more special perfor-
mances, superposing different layered materials to construct a heterostructure is usually
realized [37–43]. Especially, two-layer materials construct a heterostructure by van der
Waals (vdW) forces, which can induce novel interfacial [44], optical [45] and electronic
properties [46]. The SiC/TMDs vdW can be used as a water decomposition catalyst to com-
pletely separate hydrogen and oxygen under the condition of light [47]. The PbSe/CdSe
heterostructure has near infrared emission characteristics, which is closely related to its
type-I alignment band [48]. The average carrier value of the type-I PbI2/WS2 layered
heterostructure is 0.039 cm2·s−1, and it is found that the interlayer diffusion behavior
between electrons and holes is similar [49]. These investigations have demonstrated that
type-I heterostructures possess promising applications in photocatalytic, photovoltaic and
optical devices [50,51]. Recently, layered MAX phases have been exfoliated into monolayer
and multilayers, named MXenes, which has attracted wide attention [52]. The charming
electrochemical [53], conductive [54] and stable capacity [55] characteristics provide po-
tential applications in electrocatalysts, photocatalysts and energy storage devices [56–58].
Although most of the MXenes are metallic, some MXenes are semiconductors with a de-
sirable bandgap [59,60]. In particular, the Cr2TiC2 monolayer behaves as a novel bipolar
antiferromagnetic semiconductor showing opposite spin directions, which can be used as
antiferromagnetic spin field effect transistor [61]. Hf2CO2 possesses excellent electronic
and thermoelectric properties and carrier mobility (about 1531.48 cm2/V·s for electrons),
suggesting an efficient photocatalyst for water splitting and nano-electronic devices [62–66],
and this novel electronic characteristic can even be tuned by external strain [67]. Hf2CO2
is also sensitive to NH3, which can sharply enhance electronic conductivity [68]. More
recently, MN (M = Al, Ga) has been reported to have remarkable optical, electronic and
mechanical properties, and it can be considered as a candidate for future optical and
photovoltaic devices [69–75]. Interestingly, the prepared 2D AlN shows great promise in
deep-ultraviolet optoelectronic applications, ultraviolet LEDs and laser diodes [76,77]. In
addition, 2D GaN is also fabricated by epitaxial graphene using a migration-enhanced
encapsulated growth method [75], and is studied as a decent semiconductor for heterostruc-
tures [78], photocatalysts [79] and photocathodes [80]. Moreover, some Hf2CO2 and
MN-based heterostructures have been reported, such as Hf2CO2/WS2 [62], Hf2CO2/blue
phosphorene [65], MoS2/MN [81], GeC/GaN [82], etc., while studies of the Hf2CO2/MN
heterostructure are still limited. Therefore, considering such fantastic electronic prop-
erties of Hf2CO2, and the synthesized MN (M = Al, Ga), it is worth constructing the
heterostructure by Hf2CO2 and MN to explore the novel performances and the potential
applications.

In this study, the first-principles method was utilized to investigate the formed het-
erostructure based on Hf2CO2 and MN (M = Al, Ga). The binding energy and the ab initio
molecular dynamics (AIMD) calculations were conducted to check the stability of the het-
erostructure. Furthermore, the type-I band alignment of the Hf2CO2/MN heterostructure
was addressed, which demonstrates the potential applications of the light-emitting devices.
In addition, the charge difference between the MXene and the MX layers was studied
and the potential drop was also calculated to develop the interfacial properties of the het-
erostructure. Moreover, the light absorption capacity of the Hf2CO2/MN heterostructure
was obtained by calculating the intrinsic optical absorption spectrum.

2. Computing Method

The method of calculations in this work was based on density functional theory (DFT),
implemented by first-principles simulation under the circumstances of the Vienna ab initio
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simulation package (VASP) [83]. Based on generalized gradient approximation (GGA),
the Perdew–Burke–Ernzerhof (PBE) functional was employed for the explanation of the
exchange correlation functional [84–86]. For the more precise bandgap results, we used the
hybrid Heyd–Scuseria–Ernzerhof (HSE06; screening parameter 0.2 Å−1, mixing parameter
0.25) simulations [87] and the DFT-D3 method of Grimme, and the dipole corrections
were also used to correct the weak dispersion forces. A tested 500 eV cutoff energy was
considered. After the convergence test for the k-point (seen in Table S1 of Supplementary
Materials), the Monkhorst–Pack k-point of 7 × 7 × 1 was adopted to relax the structure,
while the static and optical calculations were conducted by the 11 × 11 × 1 k-point. For the
prevention of the interaction of the adjacent atomic layers, the vacuum slab was controlled
by 25 Å. Furthermore, the energy of the calculated materials in this work was set within
1 × 10−5 eV, while the Hellmann–Feynman forces on the atoms were set to less than
0.01 eV·Å−1.

3. Results and Discussions

We first optimized the structures of Hf2CO2, AlN and GaN, and the top and side
views of the crystal structure and band energy for the Hf2CO2, AlN and GaN monolayers
are shown in Figure 1a–c, respectively. The lattice constants of monolayered Hf2CO2 AlN
and GaN are obtained by 3.363, 3.127 and 3.255 Å, respectively. In addition, the bond
lengths of Hf−C, Hf−O, Al−N and Ga−N in Hf2CO2, AlN and GaN monolayers are 2.369,
2.132, 1.805 and 1.895 Å, respectively. In addition, the HSE06 method-calculated energy
band structures of Hf2CO2, AlN and GaN monolayers show that all these layered materials
have semiconductor features with the bandgaps of 1.820, 4.042 and 3.203 eV, respectively.
For the Hf2CO2 monolayer, the conduction band minimum (CBM) is located at the M point,
while the valence band maximum (VBM) appears at the Γ point. The CBM and VBM of
AlN (or GaN) are generated at the Γ point and K point, respectively. All these calculated
results are almost the same as the previous investigation results [65,66,88].
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Figure 1. The atomic structure and the band structure of the (a) Hf2CO2, (b) AlN and (c) GaN monolayers. The grey, red,
black, pink, green and blue marks are Hf, O, C, Al, Ga and N atoms, respectively, and the Fermi energy level is 0, shown by
gray dashes.

To construct the heterostructure by Hf2CO2 and MN (N = Al, Ga) monolayers, the
six most representative stacking configurations, shown in Figure 2, should be taken into
consideration. In the six Hf2CO2/MN heterostructures, the binding energy (Ebinding) of the
Hf2CO2/MN heterostructure is decided by:

Ebinding = EMXene/MN − EMXene − EMN (1)

where EMXene/MN, EMXene and EMN show the total energy of the Hf2CO2/MN heterostruc-
ture, monolayered Hf2CO2 and MN, respectively. The smaller the binding energy, the more
stable the structure of the heterostructure [89], and thus the most stable structure of those
six stacking configurations of the heterostructure is decided as the lowest binding energy,
which is demonstrated in the AA stacking style of the Hf2CO2/MN heterostructure. The
calculated Ebinding of the Hf2CO2/AlN and Hf2CO2/GaN heterostructures with the most
stable configuration is−56.98 and−52.44 meV/Å−2, respectively, in Table 1. It is worth not-
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ing that the framework of the quantum theory of atoms in molecules (QTAIM) functional
is not considered here, which is also a popular method for simulations [90–99]. The results
show that the Hf2CO2/MN heterostructure is formed by vdW interactions [100,101]. For
the most stable Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures, the bond lengths
of Hf−C, Hf−O and M−N are slightly changed compared with original layered materials,
which further proves the weak vdW forces between the interface of the heterostructures. In
addition, the interface distances of the Hf2CO2/AlN and Hf2CO2/GaN vdW heterostruc-
tures are 1.924 and 2.235 Å, respectively. Additionally, in the following sections, we only
discuss the most stable Hf2CO2/MN heterostructure stacking structure.
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Figure 2. Top and side views of the (a) AA, (b) AB, (c) AC, (d) AD, (e) AE and (f) AF stacking
configurations of the Hf2CO2/MN heterostructure.

Table 1. The optimized lattice parameter (a, Å), bond length (B, Å), binding energy (Ebinding,
meV/Å−2), interface height (H, Å) and bandgap (Eg, eV) obtained by HSE06 method for the Hf2CO2,
AlN, GaN monolayers and Hf2CO2/AlN, Hf2CO2/GaN heterostructures.

a BHf–C BHf–O BM–N Ebinding H Eg

Hf2CO2 3.363 2.369 2.132 1.820
AlN 3.127 1.805 4.042
GaN 3.283 1.895 3.203

Hf2CO2/AlN 3.328 2.354 2.121 1.922 −56.98 1.924 1.826
Hf2CO2/GaN 3.329 2.355 2.101 1.922 −52.44 2.235 1.734

In order to further investigate the thermal stability of the Hf2CO2/MN vdW het-
erostructure, AIMD simulations were explored for the Hf2CO2/MN vdW heterostructure
by the Nosé–Hoover heat bath scheme [102]. To consider the constraints of the lattice trans-
lation, we constructed a 6 × 6 × 1 supercell for the Hf2CO2/AlN and Hf2CO2/GaN vdW
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heterostructures in the AIMD simulation, which contained 252 atoms in total. The ambient
temperature of the simulation was set as 300 K, and the structures of the Hf2CO2/AlN
and Hf2CO2/GaN vdW heterostructures after relaxation for 5 ps are shown in Figure 3a,c,
respectively. The simulation results of AIMD show that the structures of the Hf2CO2/AlN
and Hf2CO2/GaN vdW heterostructures still remain intact after 5 ps under 300 K, revealing
the robust thermal stability of the heterostructure. In addition, as shown in Figure 3b,d,
the total energy fluctuation and simulation time for Hf2CO2/AlN and Hf2CO2/GaN vdW
heterostructures in AIMD calculation are demonstrated, respectively, and they all show the
convergence state by time, ensuring the reliability of the results.
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Figure 3. The calculated AIMD snapshots of the (a) Hf2CO2/AlN and (c) Hf2CO2/GaN vdW heterostructures at 300 K by
5 ps, and the monitoring of the energy and the temperature during the AIMD simulation for the (b) Hf2CO2/AlN and (d)
Hf2CO2/GaN vdW heterostructures, respectively.

Figure 4a,c show the projected band structure of the MXene/MN vdW heterostruc-
ture. It is obvious that Hf2CO2/AlN and Hf2CO2/GaN heterostructures have an indirect
bandgap of 2.006 eV and 1.899 eV, respectively. The gray and red marks represent the band
contribution of AlN (or GaN) and Hf2CO2 layers, respectively. Therefore, we can see that
the CBM and VBM of both MXene/MN vdW heterostructures are donated from the Hf2CO2
layer, and the MXene/MN vdW heterostructure shows I-type band structure. In addition,
we also investigated the partial density calculation of MXene/MN vdW heterostructures, as
shown in Figure 4b,d, which further proves the intrinsic type-I band structure characteristic.
The band structures of the MXene/AlN and MXene/GaN vdW heterostructures by all six
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different stacking configurations are calculated in Figures S1 and S2, respectively, in the
Supplementary Materials.
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heterostructures; the projected density of states of the (b) Hf2CO2/AlN and (d) Hf2CO2/GaN vdW
heterostructures. The energy of the Fermi is 0.

In the Hf2CO2/MN vdW heterostructure, the bandgap of the Hf2CO2 layer is smaller
than that of the AlN (or GaN) layer. Additionally, the CBM and VBM of the MXene/MN
vdW heterostructure are fixed in the band gap of the Hf2CO2 layer, as shown in Figure 5.
When some external conditions are applied, the electrons in the wide bandgap of MN will
be excited and move to the CBM of MN. At the same time, holes will be induced in the
VBM of MN. With the help of conduction band shift (CBO) and valence band shift (VBO),
the electrons and holes are excited from the MN layer to the Hf2CO2 layer at CBM and
VBM, respectively, as shown in Figure 5a. The CBO and VBO of the Hf2CO2/AlN (or
Hf2CO2/GaN) vdW heterostructure are obtained as 2.496 eV (or 0.432eV) and 1.744 eV
(or 0.383 eV), respectively. Due to the lower energy, the electrons and holes excited in the
Hf2CO2 narrow bandgap are prevented from transferring to the MN layer, as shown in
Figure 5b [50], suggesting the potential usage of the light-emitting device.
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Figure 5. Schematic of the carrier transport in the interface of the type-I band structure for the
Hf2CO2/MN vdW heterostructure. (a) Feasible and (b) restricted charge transfer path.

The interesting properties of the interface for the MXene/MN heterostructure were
induced by vdW forces, such as the charge difference density (∆ρ), which is evaluated by:

∆ρ = ρMXene/MN − ρMXene − ρMN (2)

where ρMXene/MN, ρMXene and ρMN show the total charge density of the Hf2CO2/AlN
(or Hf2CO2/GaN) vdW heterostructure, monolayered Hf2CO2 and AlN (or GaN), re-
spectively. Figure 6a,b show the difference in charge density between the interface in
Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures. It is obvious that AlN (or GaN)
acts as an electron donor in contact with Hf2CO2. In addition, the charge density is re-
distributed in Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures, which contributes
to the formation of electron-rich and hole-rich regions. It is found that there is charge
transfer between the two monolayers. The electron transfer of 0.1513 (or 0.0414) |e|
in the Hf2CO2/AlN (or Hf2CO2/GaN) vdW heterostructure is calculated by the Bader-
charge analysis method [103]. In addition, we observed that when Hf2CO2 and MN come
into contact and reach the equilibrium position, the potential across the interface of the
Hf2CO2/MN vdW heterostructure decreases to varying degrees due to the charge trans-
fer. The potential of Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures decreases by
6.445 eV and 3.752 eV, respectively, which can also be used as an effective driving force
to promote carriers in Figure 5. The charge density differences of the MXene/AlN and
MXene/GaN vdW heterostructures compared to the other five stacking configurations are
obtained by Figures S3 and S4, respectively, in the Supplementary Materials. It is worth
noting that the AlN (or GaN) layer still acts as an electron donor for the Hf2CO2 layer in
the other five stacking configuration heterostructures, and the transferred electrons are
calculated in Table S1 in the Supplementary Materials.
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Figure 6. The potential drop for the (a) Hf2CO2/AlN and (b) Hf2CO2/GaN vdW heterostructures between the interface.
The yellow demonstration shows the gaining of the electrons, while the cyan one means the loss of electrons. 0.0001 |e| is
used for the isosurface level.

The optical absorption capacity of the Hf2CO2/MN vdW heterostructure was also
investigated. The light absorption capacity of the MXene, MN and the MXene/MN
vdW heterostructure is obtained in Figure 7 by the optical absorption spectrum, which is
calculated as:

α(ω) =

√
2ω

c

{
[ε2

1(ω) + ε2
2(ω)]

1
2 − ε1(ω)

} 1
2

(3)

where ω is the angular frequency, α shows the absorption coefficient and c is the speed
of light. In addition, ε1(ω) is used to explain the dielectric constant for real parts, and
the imaginary one is demonstrated by ε1(ω). It is obvious that the MXene/MN vdW
heterostructure possesses the ability to absorb sunlight over a wide range in the visible
and NIR regions, which considerably overlaps with the wavelength range of the solar
spectrum. Importantly, one can see that the optical performance of the heterostructures is
much better than that of AlN and GaN monolayers. Near the wavelength range of visible
light, the calculated optical absorption peaks of the Hf2CO2/AlN and Hf2CO2/GaN vdW
heterostructures are 3.627 × 105 cm−1 and 3.778 ×105 cm−1, respectively. Furthermore, the
Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures also possess another peak value
obtained by 1.113 × 105 cm−1 and 0.962 × 105 cm−1, located at 405 nm and 410 nm,
which is higher than that of 0.853 × 105 cm−1 for the Hf2CO2 monolayer. All these results
reveal that both Hf2CO2/AlN and Hf2CO2/GaN vdW heterostructures have novel optical
characteristics. It is worth noting that the calculated optical spectra of these 2D materials in
this work do not consider the electron–hole interaction. At present, the GW+BSE method
has been regarded to be a very crediable method for including the electron–hole interaction,
which has been applied in other low-dimensional materials [104,105].
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Figure 7. The HSE06 functional obtained optical absorption spectrum for the Hf2CO2, AlN, GaN
monolayers and Hf2CO2/AlN, Hf2CO2/GaN vdW heterostructures.

4. Conclusions

The structural and electronic properties of Hf2CO2, AlN and GaN monolayers and
their heterostructures are investigated by the DFT method. Both Hf2CO2/AlN and
Hf2CO2/GaN vdW heterostructures have strong thermal stability and maintain the origi-
nal structure at 300 K. Importantly, it is found that both Hf2CO2/AlN and Hf2CO2/GaN
heterostructures are formed by vdW interactions, showing a type-I band structure with
a bandgap of 2.006 eV and 1.899 eV, respectively, and they are ideal candidates for light-
emitting devices. In addition, the potential of Hf2CO2/AlN and Hf2CO2/GaN vdW het-
erostructures is reduced by 6.445 eV and 3.752 eV, respectively. Furthermore, Hf2CO2/AlN
and Hf2CO2/GaN vdW heterostructures have excellent light absorption ability, which
can provide theoretical support and technical guidance for future light-emitting device
materials. For the efficiency of the light-emitting device, some properties play an important
role, such as carrier mobility, lifetime, diffusion and light emission capability, which can be
studied further.
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