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Abstract: Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric
or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The
annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size
and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps
annihilation in nanocavities based on the fundamental role of the exchange correlations between
the Ps-electron and the outer electrons, which are not usually considered but must be considered to
correctly theorize the pickoff annihilation processes. We obtain an important relation connecting the
two relevant annihilation rates (for the p-Ps and the o-Ps) with the electron density, which has the
property of being totally independent of the geometrical characteristics of the nanoporous medium.
This general relation can be used to gather information on the electron density and on the average
cavity radius of the confining medium, starting from the experimental data on PALS annihilation
spectra. Moreover, by analyzing our results, we also highlight that a reliable interpretation of the
PALS spectra can only be obtained if the rule of 1/3 between the intensities of p-Ps and o-Ps lifetimes
can be fulfilled.

Keywords: nanoporous materials; positronium; exchange correlations

1. Introduction

Positronium atom (Ps), the hydrogen-like bound state of an electron and a positron,
was the subject of extensive studies in recent years in the research field of structural
analysis of nanoporous materials, with special regards to insulators and molecular solids.
In these materials, Ps is usually confined in nanostructured free spaces, defects, or
vacancies after formation by implanting positrons. Information about these nanometric
and subnanometric porous structures can be derived from the modification of confined
Ps annihilation lifetimes, which turn out to be deeply different from the corresponding
vacuum values. In particular, Ps lifetimes depend directly on the geometrical and on
the physical characteristics of the subnanometric voids or cavities, i.e., their average size
and the electron density in surface proximity, respectively. For the measurement of Ps
lifetimes, the technique of positron annihilation lifetimes spectroscopy (PALS) [1] is the
most commonly used between the few methods available to obtain this information.

As a matter of fact, depending on Ps internal spin configuration, in a vacuum we have
two distinct annihilation times: a short component τ2γ = λ−1

2γ = 0.125 ns and a long component

τ3γ = λ−1
3γ = 142 ns for the singlet (para-Ps, or p-Ps) and triplet (ortho-Ps, or o-Ps) state,

respectively, where λ2γ and λ3γ are the corresponding annihilation rates [2]. The subscripts
2γ and 3γ indicate annihilation with the production of 2 or 3 gamma rays, respectively.
When Ps is confined in porous materials, both short and long lifetime components in PALS
spectra are modified, reflecting the presence of a statistical mixture of Ps states modified
both in spin configuration and spatial wavefunction.
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The theoretical representation of annihilation rates of Ps inside nanoporous matter
is usually based on approximate one- or two-body descriptions of the so-called pickoff
process; i.e., the additional possibility of the positron annihilating with an electron in the
surroundings. The most used one-body models describing Ps confined in small cavities
are based on the Tao–Eldrup (TE) approach [3,4], relating pickoff annihilation rates λpo
to cavity sizes by considering Ps as a single quantum particle trapped inside an infinite
potential well. These models were extended to describe various cavity geometries and
temperature effects [5,6]. On the other hand, two-body models are developed to describe the
internal structure of confined Ps by considering separate degrees of freedom for the positron
and the electron [7–9]. Moreover, fully ab initio treatments of the confined two-particle
bound system can in principle be done [10], but they are usually avoided given the huge
computational efforts required.

At the basis of every one-body and two-body model is the implicit assumption that Ps
interaction with surrounding electrons can be described as a small perturbation, depending
only on their density. The external electronic environment only accounts for pickoff
annihilations without any correlation with the Ps spatial waveform and spin configuration.
But, only the two-body approach is a simple way of theoretically describing the lowering
of the contact density (i.e., the electron density at the positron position, governing the
annihilation processes) observed for Ps in nanomaterials [11,12]. This feature is usually
described by introducing a relative contact density parameter kr, defined as the probability of
finding the Ps–electron at the positron position in units of the vacuum value k0 = 1/8πa3

0 (a0
being the Bohr radius) [11], and is associated with some deformation of the Ps wavefunction
in the nanovoids [8,13].

However, the validity of these theoretical treatments in which Ps is considered as a sep-
arate “entity”, and the Ps-electron is somehow privileged with respect to external electrons,
must be questioned against the requirement of full electron indistinguishability, which has
a direct relation to the pickoff annihilation. In fact, complete electron indistinguishability is
evident in some materials or compounds exhibiting a single lifetime component (a simple
example of a Ps-like system having only one lifetime component is Ps−).

In Ref. [14], Tanzi et al. analyze in detail this problem and provide a theoretical
framework in which electron indistinguishability can be introduced perturbatively in a
natural way, while also preserving the concept of para/ortho Ps atoms essential for the
connection with the experimental results on nanoporous materials. Their treatment takes
into account explicit spin configurations and positron–electron correlations in the modeling
of the Ps-environment system by means of an especially developed symmetry-adapted
perturbation theory (SAPT) [15] and using a local density approximation (LDA) to describe
the properties of the electron system. Formal expression for annihilation rates are derived,
and numerical results on Ps lifetimes and contact density as a function of the small cavity
radius and of the surrounding electron density are obtained and interpreted physically.

Here, we resume these formal expressions for Ps pickoff and total annihilation
rates, and in the spirit of the TE modeling and by applying suitable approximations,
we obtain simple and practical expressions connecting annihilation rates with electron
densities. In particular, a fundamental formula directly connecting a proper combination of
measurable annihilation rates with the electron density near the cavity surface is derived.
This result is completely independent of the geometrical characteristics of the confining
cavity and of the form of the confining potential. Therefore, it is of invaluable utility for
experimentalists. Application of our theoretical results to PALS experimental data for some
solid polymers and molecular crystals is also considered and discussed. By resorting to the
spherical approximation for the nanocavities, which is at the hearth of the TE proposal, we
obtain some useful hints on the sizes and the radius of the confining free spaces.

Finally, we note that, by analyzing the results of our theory in comparison with
that of PALS experimental data, a reliable interpretation of the components of the PALS
annihilation spectra can be obtained only if the ratio between the intensities of the short
lifetime component (attributed to p-Ps) to the long lifetime component (attributed to o-Ps)
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can be imposed as equal to 1/3 during the analysis of the spectra themselves, as expected
by the theories on the formation of Ps in vacancies.

2. Ps Annihilation Rates and Exchange Correlations

In past literature, the most common expressions describing the measurable annihilation
rates of the two possible Ps states confined in nanocavities or in porous matter, denoted
λt and λs for o-Ps and p-Ps , respectively, are constructed by considering on the same foot
intrinsic and pickoff contributes [16]:

λt = kr λ3γ + λpo , (1a)

λs = kr λ2γ + λpo . (1b)

The first term is characterized by kr, the relative contact density parameter usually
assumed an intrinsic property of the confined Ps. The pickoff contribution λpo, identical
in both equations, is naturally a surface process, and in every model, it is assumed to
depend on a geometrical probability, commonly denoted by Pout, of finding Ps outside the
free-space (inner) region defining the nanocavity:

λpo = Poutλ̄ , (2)

where λ̄ is a suitable bulk annihilation rate, that can be taken as the weighted average of singlet
and triplet decay rates, following the original idea of the TE one-particle model [3,4]:

λ̄ =
1
4
λ2γ +

3
4
λ3γ = 2.01 ns−1 . (3)

Within this approximation, λ̄ is independent of the electronic properties of the
surrounding medium, which eventually are contained in the expression of Pout, and the
geometrical parameters of the model are chosen to fit the correct pickoff annihilation rate
in real systems.

In some one-particle models, the intrinsic Ps annihilation rate is assumed independent
of confinement by simply taking kr = 1 [17–19]. In more refined models [6,20,21]), different
prescriptions about the proper way of treating Ps in the inner and surface regions are
introduced. For example, in ref. [20] Ps annihilates with its intrinsic vacuum annihilation
rate only in the inner part of the cavity, whereas the surface region annihilation is dominated
by pickoff. In this way, one writes kr = 1 − Pout, i.e., the probability of finding Ps in the
inner spatial region.

Better characterization of Ps annihilation rates is obtained in two-particle models [8,13,22].
Here, pickoff annihilation is proportional to the probability P+

out of having only the positron
wandering outside the cavity, which is similar but different from Pout. Moreover, it also
depends on the electron density in the region around the cavity, which can be different with
respect to the average electron density in the bulk. On the other side, intrinsic annihilation
is assumed to take place only in the spatial region allowed to the motion of the electron
bounded to the positron, which can be either extended to the whole space [22] or strictly
limited to the inner cavity under the effect of strong repulsive Pauli exchange forces with
bulk electrons [8,23]. In this way, kr can be associated with possible modifications of the
internal spatial structure of Ps wavefunction, and its lowering below the vacuum value
usually found in experiments can be justified. Moreover, from these models, information
on nanopore sizes, positron work functions, and electron density near the cavity surface
can be obtained from experimental PALS spectra.

On the other hand, all these models do not depend on the effective spin configuration
of the Ps-electron, which therefore does not affect the pickoff annihilation behavior of
the Ps-positron in the outer region, and as a result, o-Ps and p-Ps have the same pickoff
annihilation rate. Hence, pickoff processes are exclusively represented by the term λpo
in both Equation (1), while kr is the only parameter associated to possible modifications
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of the internal spatial structure of Ps wavefunction. Another way to discuss this point is
to observe that no exchange correlation effects, due to the Pauli exclusion principle, are
ascribed to the Ps-electron in relation to the outer electrons. As a consequence, the positron
can annihilate with the same probability with all surrounding electrons independently from
their spin, as stated in the Expression (3). On the contrary, if exchange correlation effects
are considered, the positron annihilates, with different probability, with electrons having
opposite or parallel spin with respect to Ps-electron, with the consequence of different
pickoff annihilation rates for o-Ps and p-Ps.

To our knowledge, the possibility of having different pickoff annihilation rates was
only noted by Mogensen and Eldrup in 1977 [24], but never further investigated. Anyway,
this represents a minor problem to the positronium community since the presence of an
exchange effect has a negligible influence on the total annihilation rate of the o-Ps system,
i.e., the easily measurable long-life component of PALS spectra, because usually λpo � λ3γ.
On the contrary, for the short-life component belonging to the p-Ps system, pickoff and
intrinsic annihilation rates may be comparable.

A clarification of the role of exchange correlation effects on differentiating o-Ps and
p-Ps pickoff annihilation rates can be answered theoretically with the techniques of many-
body quantum mechanics. Recently, Tanzi et al. [14] used a rigorous SAPT (symme-
try–adapted perturbation theory) framework [15] to deal with the antisymmetrization of
the wave function of the external system of N electrons. A summary of the method and
the resulting expressions is presented in Appendix A. In [14], they show that, up to first
order in exchange contributions, the formal expressions for the total annihilation rates of
o-Ps and p-Ps interacting with the external electron system can be written as:

λt = λ3γ +
λ

3γ
ex

1− S
+
λsym

1− S
, (4a)

λs = λ2γ +
λ

2γ
ex

1− S
+
λsym

1− S
, (4b)

where the normalization term S is a wavefunction overlap factor, whose explicit expression
is given in the Appendix A. Equation (4) shows that all the pickoff annihilation contributions
of a Ps atom interacting with an environment system can be grouped into two distinct
terms. The term λsym represents the contribution to the annihilation rate that can be directly
linked to the presence of external electrons. This contribution is symmetric with respect
to Ps spin configuration, i.e., it is the same for o-Ps and p-Ps and, as we will show in the
next Section, it is very similar to the “standard” pickoff annihilation rate of Equation (2).
The other terms λ3γ

ex and λ2γ
ex in Equation (4) derive from exchange effects between the Ps

internal electron and the surrounding ones. As such, their contribution to annihilation rate
strongly depends on the symmetry of the Ps-environment wavefunction, hence, giving
different results for different Ps spin configurations.

We just note that these expressions can be considered of the same family of the general
Equation (1) as long as one realizes that these last can be written as:

λt = λ3γ +
[
(kr − 1)λ3γ + λpo

]
, (5a)

λs = λ2γ +
[
(kr − 1)λ2γ + λpo

]
, (5b)

where the term in square brackets is the overall contribution to the annihilation due to
the external electrons (the total pickoff), and each term of the sum can be put in direct
correspondence with the terms of Equation (4). This observation makes also clear that the
accurate Ps annihilation theory derived in [14] can give formal expressions for the relative
contact density kr and for the geometrical pickoff contribute λpo of Equation (2).
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3. The Effective Electron Density Felt by a Confined Ps

It is of paramount importance to put the formal Expressions (4) in a form that can
be directly related to PALS experimental measurements. Indeed, with a little algebra, the
overlap factor disappears, and these Equation are transformed into this single relation:

λ
2γ
ex + λsym

λ
3γ
ex + λsym

=
λs − λ2γ

λt − λ3γ
≡ KM(λs,λt) , (6)

where the quantity KM(λs,λt) defined on the right-side of the relation contains only
measurable or known quantities, while the ratio on the left-side contains only the exchange
contributions, which in turn depend on the electronic density n(r), the one-body reduced
density matrix (1RDM) Γ(1)(x; y) (see Appendix A), and geometrical overlap factors. Hence,
this relation allows to directly connect theoretical calculations with experimental data.

To make effective these considerations and to derive reasonable and practical expres-
sions for the involved quantities, it is necessary to introduce some further approximations.
In fact, the only assumption we made about the system interacting with Ps is that of uniform
spin distribution (Equation (A11)) of external electrons, a condition that translates in the
absence of local spin polarization around the cavity region in the unperturbed ground state
of the system. On the other hand, no assumption on the form of the electrons wavefunction
φ was done so that the formulation of the annihilation rates as given in Equation (4) is
completely general.

To go on, we use the same concepts discussed in Section 2, i.e., a vacuum-like separable
Ps-system whose wavefunction exhibits a probability Pout of finding itself into a certain
small interaction region Ω around the confining nanocavity. This interaction region is
considered filled with a near homogeneous electron gas. Given that this is a low-order
approximation, the relative motion part of the two Ps particles is taken as in vacuum, while
the center of mass is only responsible for defining Pout. For the current results, the specific
form of Ps wavefunction is not important as long as we assume the usual factorization:

Ψ(rp, re) = ψ(rpe)Ψ(Rpe) , (7)

where ψ(rpe) is the relative wavefunction, Ψ(Rpe) the center of mass wavefunction, and we
use, here and in the following, the compact notation rpe = rp − re for the relative coordinate,
and Rpe = (rp + re)/2 for the center of mass coordinate.

We neglect all Coulomb potentials, except the one leading to the bound Ps atom,
because these potentials describe an overall effect of interaction producing the confinement
of Ps; hence, determining the center of mass wavefunction Ψ(Rpe). However, the radial
part of the relative wavefunction can be taken as those of the unperturbed Ps (a 1S orbital):

ψ(rpe) =
√

k0 e−
rpe
2a0 , (8)

where k0 = 1/8πa3
0, the vacuum contact density (rpe = |rpe|).

On the other side, giving accurate expressions for the electron density function n(r)
interacting with Ps in the region Ω, and for the relative 1RDM, is an extremely complicated
task if one has to consider all the interactions naturally present in the system. For example,
the positron–electron attraction would lead to an enhancement of the electron density at the
positron position [25], therefore increasing the annihilation rate. Without any knowledge
of the amount of this enhancement, we can just define a quantity ρe to be the effective
electron density felt by the Ps in the interacting region, and treat it as a free parameter
to be determined later, as we will see that it is strongly connected to experimental data.
To determine the 1RDM, instead, we consider the local density approximation (LDA) as
detailed in the Appendix B (see Equation (A16)), which gives an explicit formula for this

quantity depending on the Fermi momentum kF =
(
3π2ρe

)1/3
, appropriate to the effective

electron density, and on the function B(kF rpe) there defined.
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With these statements, we obtain approximate explicit forms for the relevant quantities.
Let’s introduce the quantity Pout, defined as the probability of finding the Ps center of mass
in the limited interaction region outside the confining cavity,

Pout ≡

∫
Ω
|Ψ(R)|2 d3R . (9)

The symmetric contribution to the annihilation in Equation (A14) becomes, assuming
n(r) ' ρe uniformly in the small region Ω:

λsym = 8πa3
0 λ̄

∫
|Ψ(rp, re)|

2n(rp) d3rp d3re

≈ λ̄
ρe

k0
Pout

∫
|ψ(rpe)|

2 d3rpe = λ̄
ρe

k0
Pout .

(10)

The exchange contribution for o-Ps in Equation (A15) becomes:

λ
3γ
ex = −8πa3

0 λ3γ

∫
Ψ∗(rp, re)Ψ(rp, rp) Γ(1)

↑↑
(re; rp) d3rp d3re

≈ −λ3γ
ρe

2
√

k0
Pout

∫
ψ(rpe)B(kF rpe) d3rpe ,

(11)

while for p-Ps the exchange contribution is simply obtained by interchanging λ3γ
ex ↔ λ

2γ
ex .

Finally, the overlap parameter from Equation (A13) becomes:

S ≈
ρe

2
Pout

∫
ψ(rpe)ψ(rp1)B(kF re1) d3rpe d3rp1 . (12)

In this picture, these formulas represent the first-order interaction of the Ps with the
uniform gas of electrons in which it is immersed, with the consequence of a modification of
the annihilation behavior. The interaction probability is characterized by the geometrical
factor Pout, which is the probability that the two systems enter in contact. Moreover, both
the symmetric and the exchange annihilation contributions, and also the overlap factor, all
result in being proportional to Pout. On the other hand, the proper electron density ρe felt
by the Ps is present directly as a proportionality factor in all these quantities, but it is also
present in the definition of the Fermi momentum kF.

An interesting observation can be immediately extracted: while the symmetric
contribution to pickoff annihilation is naturally a positive quantity, independent of spin
configuration, the exchange contributions λ3γ

ex and λ2γ
ex are negative quantities, tending to

lower the total annihilation rates, and hence, showing something like a shielding effect on
the Ps. This effect can be interpreted as a consequence of the repulsive Pauli exchange
forces acting on the electron system. The positron will most likely annihilate with electrons
having opposite spin with respect to Ps–electron, with the consequence of different pickoff
annihilation rates for o-Ps and p-Ps due to spin exchange. This can be easily understood
because the function B(kF rpe) is essentially positive in the relevant integration range.

A second fundamental consequence of the above approximate expressions is that the
left-hand side of the relation in Equation (6) can be rewritten without direct dependence on
Pout, as shown below. Note that a similar observation cannot be valid for ρe because its
presence in kF.

Let’s formalize in a suitable way these statements. Firstly, we define two adimensional
auxiliary functions summarizing the dependence of the rates λ3γ

ex ,λ2γ
ex and of the overlap
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factor S on the electron density normalized with respect to the vacuum contact density ρe/k0:

A(ν) =
ρe

2
√

k0

∫
ψ(rpe)B(kF rpe) d3rpe =

2
π

[
arctan(ν) −

ν

1 + ν2

]
, (13a)

C(ν) =
ρe

2

∫
ψ(rpe)ψ(rp1)B(kF re1) d3rpe d3rp1 =

2
π

arctan(ν) −
ν− 8

3ν
3
− ν5

(1 + ν2)3

 , (13b)

where ν = 2kFa0 = (3πρe/k0)
1/3. In Figure 1, we plot these quantities as a function of the

normalized electron density ρe/k0 felt by Ps in the interacting region; both these functions
increase with increasing density values, while they vanish at the low-density limit.

Next, let’s calculate the ratio:

λ
3γ
ex

λsym
= −

λ3γ

λ̄

A(ν)

ρe/k0
, (14)

and similarly for λ2γ
ex . Finally, by inserting these expressions in the left-hand side of

Equation (6), we obtain the noteworthy simple formula:

1−
λ2γ

λ̄
A(ν)
ρe/k0

1−
λ3γ

λ̄
A(ν)
ρe/k0

= KM(λs,λt) . (15)

In this expression, the dependence on the Pout, the probability of finding the Ps center
of mass in the interaction region, completely disappears. Hence, for the purpose of using
this formula for connecting theoretical findings and experimental data, there is no necessity
of making any assumption or hypothesis on the form of the confining potential or on the
geometrical shape of the confining nanocavity (note that until now, there was no need to
assume a spherical geometry).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A( )

C( )

 

 

e/k0

Figure 1. Plot of the functions A(ν) and C(ν) of Equation (13), where ν = (3πρe/k0)
1/3, as a function

of the normalized electron density ρe/k0.

Moreover, this expression connects directly the normalized electron density felt by the
Ps with the experimental findings and known quantities, and this can be of paramount
importance in applications. A simpler and more useful version of this formula can be
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derived as follows: by remembering that λ2γ � λ3γ and that λ̄ = λ2γ/4+ 3λ3γ/4 ≈ λ2γ/4,
the relation in Equation (15) can be reduced in:

KM(λs,λt) ≡
λs − λ2γ

λt − λ3γ
= 1− 4

A(ν)

ρe/k0
, (16)

which explicitly shows the relation between the PALS measurable lifetimes λs and λt with
the electron density. A plot of the expression on the right-side of this relation, as a function
of the normalized electron density, is given in Figure 2. In this plot, we also indicated with
small circles the positions corresponding to the selection of materials listed in Tables 1 and 2, the
PALS data, which are analyzed in the next Section.

0.0 0.2 0.4 0.6 0.8 1.0
-10

-8

-6

-4

-2

0

 

 

KM

e/k0

Figure 2. Plot of quantity KM as a function of normalized electron density ρe/k0 from Equation (16).
Black circles and squares indicate values corresponding to materials listed in Table 1. Open circles
indicate values corresponding to all the materials listed in Table 2. These data are discussed in text.
Vertical dashed lines refer to selected values for curves with constant ρe/k0 plotted in Figure 3.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

 

 

1

3

 e/k0=0.1
 e/k0=0.3
 e/k0=0.5
 e/k0=1.0

Figure 3. Relationship between τ1 and τ3 lifetimes for some values of ρe/k0 (each represented
by a different color). Known experimental data of materials listed in Table 1 are represented by
black circles, for data respecting the intensity rule, and by black squares for the other data. Known
experimental data of the series of materials listed in Table 2 are represented by open symbols, as in
table. Straight black line represents the p-Ps lifetime in vacuum (0.125 ns).

Another important consequence of Equation (16) is that, while λt and λs singularly
depend on geometrical aspects of the confining medium, i.e., cavity size and shape, their
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function KM does not. This way, the electron density value obtained by inversion of KM is
more significative in materials where a vast range of pore sizes exists. This also means that,
generally speaking, for a given material with fixed electronic properties, the annihilation
rates turn out to be anticorrelated: bigger cavities correspond to lower λt and bigger λs,
while vice-versa, smaller cavities correspond to bigger λt and lower λs, up to the limit
where the overlap with outer electron is so strong that λs equals λt and it is not possible to
speak of a spin-polarized Ps [14].

Table 1. Experimental PALS data for some solid materials. Cases with multiple long lifetime components (τ3 and τ4), for
which only long component is considered, are indicated. The first four rows correspond to only samples for which the
correct ratio between signal intensities was respected. Fourth and fifth columns report calculated KM and ρe/k0. Sixth and
seventh columns are discussed in next section. These materials are represented in Figures 2 and 3, with symbols listed in
eighth column of table. Acronyms PMMA, PPD, and PPA stand for Polymethylmethacrylate, 2,5-Diphenyl 1,3,4 oxadiazole,
and Atactic polypropylene, respectively.

Name τ1 (ns) τ3,4 (ns) KM ρe/k0 Pout Rc (nm) Symbol Ref.

Acenaphtene 0.142 0.915 −0.88 1.00 0.36 0.22 • [26]
Byphenil 0.139 1.148 −0.93 0.968 0.31 0.25 [26]
Octadecane (solid) 0.133 1.504 −0.73 1.13 0.23 0.30 [27]
2,5-Diphenyloxazole (PPO) 0.142 1.065 −1.03 0.906 0.34 0.23 [28]

PMMA (τ4) 0.146 2.23 −2.61 0.375 0.38 0.21 � [29]
Polyethylene (PE) (τ4) 0.133 2.60 −1.27 0.767 0.20 0.33 [29]
Naphthalene 0.160 1.030 −1.82 0.557 0.48 0.17 [30]
Butyl-PBD 0.21 1.409 −4.61 0.166 0.79 0.09 [28]
PPD 0.261 1.217 −5.12 0.138 0.91 0.06 [28]
PPA (τ4) 0.211 2.66 −8.84 0.037 1.50 - [29]

Table 2. Experimental PALS data for some solid materials organized in series having undergone different treatments (see
text). Fourth and fifth columns report calculated KM and ρe/k0. Sixth and seventh columns are discussed in next section.
These series of materials are represented in Figure 3, with the symbols listed in eighth column of the table.

Name τ1 (ns) τ3,4 (ns) KM ρe/k0 Pout Rc (nm) Symbol Ref.

DOP-0 0.201 1.735 −5.31 0.128 0.83 0.08 © [31]
DOP-250 0.182 1.700 −4.31 0.185 0.69 0.11
DOP-500 0.187 1.737 −4.66 0.162 0.73 0.10
DOP-750 0.189 1.679 −4.60 0.166 0.73 0.10
DOP-1000 0.175 1.724 −3.99 0.209 0.64 0.13

ZMS5 as prep. 0.183 1.2 −3.07 0.305 0.61 0.13 � [32]
ZMS5 calc. 2 h 0.175 1.1 −2.53 0.388 0.56 0.15
ZMS5 calc. 4 h 0.180 1.0 −2.46 0.401 0.58 0.14
ZMS5 calc. 6 h 0.280 2.04 −9.17 0.032 1.77 −

pure polymer 0.139 1.623 −1.32 0.744 0.29 0.26 4 [33]
16.4 nm Ag/polymer 0.205 1.875 −5.93 0.103 0.91 0.06
19.5 nm Ag/polymer 0.195 1.785 −5.19 0.134 0.80 0.08
22.0 nm Ag/polymer 0.181 1.694 −4.24 0.190 0.68 0.11
25.8 nm Ag/polymer 0.188 1.679 −4.55 0.168 0.73 0.10
29.7 nm Ag/polymer 0.157 1.504 −2.48 0.398 0.47 0.18
33.3 nm Ag/polymer 0.169 1.753 −3.70 0.235 0.59 0.14

β-As4S4 REHE−0 0.193 1.976 −5.65 0.114 0.84 0.07 5 [34]
β-As4S4 REHE−200 0.191 1.968 −5.52 0.119 0.83 0.08
β-As4S4 REHE−500 0.202 2.076 −6.42 0.087 0.97 0.04
β-As4S4 REHE−600 0.203 2.125 −6.63 0.080 1.00 0.

Dipol-0 0.178 1.978 −4.78 0.155 0.71 0.11 ♦ [35]
Dipol-60 0.155 1.601 −2.51 0.393 0.46 0.18
eCTA-0 0.202 2.030 −6.28 0.091 0.95 0.04
eCTA-60 0.211 1.768 −5.84 0.106 0.27 0.05
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4. Connection with Experimental Data on Annihilation Rates

Information on the electron density felt by Ps can therefore be obtained directly
from PALS data on measurements of annihilation lifetimes, by inverting Equation (16).
In particular, we discuss known results for some solid polymers and molecular crystals
with nano- or subnano-voids, for which our theory is well-suited. Their PALS spectra
are usually decomposed in 3 or 4 lifetime components. In the common interpretation,
these materials show a shorter component of the spectra, τ1 & 0.125 ns, associated to
the p-Ps annihilation rate λs = 1/τ1. An intermediate lifetime τ2 ∼ 0.3–0.5 ns is due to
direct positron annihilation, and it is of no interest. The longest τ3 and τ4, which are of the
order of 1–5 ns for the materials considered here, can be associated to o-Ps annihilating via
pickoff process, eventually corresponding to nanocavities with different size distribution.
We consider the longest lifetime component as the reference annihilation time for the
calculation of the o-Ps annihilation rate. Of course, this rate is naturally λt = 1/τ3 for
materials having spectra with only three components. But in some other materials where
the fourth component τ4 is present and falls within the expected range of values, it can be
considered on the same foot as the previous data, and we define the annihilation rate as
λt = 1/τ4.

Before discussing the relation between our model and experimental data, a fundamental
comment is in order. Despite the above classification of the lifetimes τ1, τ3, and τ4 being
widely accepted, the implications on their relative intensities I1, I3, and I4 of the annihilation
channels, as observed in PALS spectra, are rarely considered. Indeed, any model describing
p-Ps and o-Ps formation by unpolarized positrons predicts the ratio I1/I3 = 1/3 for spectra
with three components, or I1/(I3 + I4) = 1/3 in the case of spectra with four components.
As a matter of fact, only very few spectra maintain this correct ratio between intensities.
This condition could be imposed during the spectrum analysis, but it is common practice to
ignore it and let all the intensities vary freely during the fitting procedure, thus improving
the fit convergence. This is because sometimes nonphysical values for the lifetimes are
obtained by imposing constraints on the intensities.

We stress that, without this rule, τ1 cannot in principle be associated to p-Ps , and it
is predictable that the component of direct positron annihilation can be mixed with the
p-Ps one, so introducing a bias on the observed shorter component of the spectra. Hence,
in some cases, τ1 values turn out to be too big, with the consequence of nonacceptable or
contradictory results about ρe/k0 or about the probability Pout. This is what happens with
a majority of the materials listed in the Tables that we discuss later.

In Table 1 we report known experimental data on τ1 and τ3 (or τ4) for a first series of
materials, with the corresponding estimated values for the quantity KM and the electron
density felt by Ps normalized with respect to the vacuum contact density. The first four
entries in this Table, designed by black circles in figures, correspond to the only samples
in which the intensity rule was imposed; therefore, in these cases, τ1 can be effectively
associated to the p-Ps lifetime.

In Table 2, we report known experimental data on τ1 and τ3 of some other materials,
which are organized in series that underwent different physical or chemical treatments,
to study any modifications of the nanovoid structure. In particular, the DOP series
corresponds to amorphous polycarbonate polymeric films (CR-39) samples exposed with
gamma radiation [31]; the ZMS-5 series corresponds to calcinated zeolites [32]; the series
signed Ag/polymer is Ag nanoparticles embedded in a polymer matrix [33]; the series β-As4S4
is mechanochemical milled nanoarsenical pellets [34]; finally the last series corresponds to
dimethacrylate composites after photopolymerization [35].

For all these materials we have represented in Figure 2, the found normalized electron
density felt by Ps with the corresponding value of the quantity KM. In particular, black circles
and squares correspond to the first four entries and to the other entries in Table 1, respectively.
Open circles correspond to the materials listed in Table 2. The density covers a wide range
of values, and the samples respecting the intensity rule (black circles) are placed around
ρe/k0 ∼ 1 (ρe ∼ 270 nm−3). On the other hand, the majority of the samples listed in Table 2
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present a lower density, around ρe/k0 ∼ 0.2 (ρe ∼ 54 nm−3), and this can be a result linked
to the nonperfect correspondence between τ1 and p-Ps lifetime, as discussed above.

Another useful representation of the relation between the experimental lifetime data
and the electron density predicted by our model is illustrated in Figure 3. In this figure,
the curves represent p-Ps and o-Ps lifetime components for different fixed values of ρe/k0.
In the figure, we also plot points representative of the materials listed in Tables. Regarding
the Table 1, while the materials for which the intensity rule was imposed are all placed
near the red curve (ρe/k0 ∼ 1), the other materials are spread around. On the other
hand, regarding the materials in Table 2, this plot shows the modification in the electron
density, which can be associated to the diverse treatments on the different family of samples.
For example, the DOP series (open circles) shows a slight increase in the density with the
radiation exposure; the zeolite ZMS-5 series (open squares), excluding the fourth element
of the series, seems to have undergone no changes; the Ag/polymer series (triangle) shows
a density much lower with respect to the pure polymer, but increases with the embedded
nanoparticle size.

5. Spherical Approximation and Determination of Nanocavity Average Sizes

Our model, describing the Ps properties in nanovoids, hence giving information on
the electron density surrounding the confined Ps, can also be used to determine nanocavity
average sizes. Adopting for definiteness a spherical approximation, and keeping in mind
the prescriptions of the TE model, the small interaction region Ω outside a spherical
confining cavity of radius Rc can be taken as a shell of thickness ∆, and the probability of
finding the Ps center of mass in Ω defined in Equation (9) becomes:

Pout =

∫
Ω
|Ψ(R)|2 d3R = 1−

Rc

Rc + ∆
+

1
2π

sin
2πRc

Rc + ∆
, (17)

which is of course the same result of the TE model (see Equation (2) [3,4,18,36]. Note that in
that model, it is commonly accepted that ∆ = 0.166 nm, though this value is well-confirmed
only in zeolite samples. Anyway, in absence of other information, we will adopt this value
for ∆. Note also that higher values of Pout imply lower values of Rc and vice-versa, and in
particular, with Pout = 1, one has Rc = 0 nm.

On the other side, with the help of the approximate formulas for the annihilation
contributions λsym, λ3γ

ex , λ2γ
ex , and S, expressed by using the auxiliary functions A(ν) and

C(ν) defined in the previous section, the o-Ps and p-Ps total annihilation rates assume the
explicit form:

λt =

[
1−

Pout A(ν)

1− Pout C(ν)

]
λ3γ +

[
ρe

k0

Pout

1− Pout C(ν)

]
λ̄ ,

λs =

[
1−

Pout A(ν)

1− Pout C(ν)

]
λ2γ +

[
ρe

k0

Pout

1− Pout C(ν)

]
λ̄ ,

(18)

The main advantage of this formulation is that geometrical effects are well-separated
from those due to electron exchange. In fact, geometrical parameters are contained only
in the definition of the quantity Pout, which depends, in this approximation, on Rc and ∆,
while the effects of the exchange interaction are represented by the normalized electron
density ρe/k0 and by the functions A(ν) and C(ν) which depend on it.

Now, with a little algebra, it is easy to derive Pout as a function of the known electron
density ρe/k0 for the materials listed in the two tables by using the experimental data for the
annihilation rates. The result is reported in the sixth column of the tables. For the majority
of the material samples, the probability Pout comes out well-below 1, as can be expected,
and in particular, this happens for the samples obeying the intensity rule, supporting the
validity of our theoretical elaboration. But for some other materials, the probability Pout
turns out to be very close to 1, and in particular, for the “PPA” in Table 1, the “ZMS5 calc.
6 h”, and the “REHE 600” in Table 2, Pout results greater or equal to 1, a result that is
obviously not acceptable. In all these cases, τ1 is greater than 0.2 ns, and hence, probably
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mixed with another component of the annihilation spectra, as discussed in the Section 3.
Therefore, these lifetimes cannot be attributed with certainty to the p-Ps lifetime, and our
model turns out to give these strange and absurd results in this situation.

By inverting Equation (17) we obtain the data on the nanocavity size Rc reported in
the seventh column of the tables. Evidently, given that the Ps radius amounts to 0.106 nm,
the range of values of Rc is between a maximum of near three times Ps radius and a
minimum that is slightly less than one half of Ps radius. The values of Rc extracted for
materials in which the intensity rule was not respected must be considered doubtfully,
especially when very small values are obtained, for the reason discussed earlier. On the
other hand, the Rc values obtained for the four material samples respecting the rule must
be considered fully realistic.

Importantly, in literature, the simple TE prescription of Equation (2) is usually used for
an estimation of Rc; hence, considering only the data on o-Ps annihilation lifetime. In fact,
this is what was done by the authors of some of the papers cited in Table 2, who obtained
values greater than ours in almost all cases. However, the simple TE prescription rests on
the assumption of a fixed shell thickness ∆ = 0.166 nm that cannot be fully justified for all
the different materials. In fact, the above choice for ∆ was calibrated only with zeolites.
Therefore, if we consider only these materials, in Table 2 we have three entries identified
by the acronyms: “ZMS5 as prep.”, “ZMS5 calc. 2 h”, and “ZMS5 calc. 4 h”. To these
samples, in Ref. [32] the authors attribute the following values for the cavity size: 0.143,
0.131, and 0.118 nm, respectively. On the other hand, our estimation gives 0.13, 0.15, and
0.14 nm, respectively. Hence, our results are very similar to those found in the safe range of
validity of the simple TE model, confirming the reliability of our treatment. Although the
determination of the cavity sizes still requires currently a guess on the shell thickness ∆,
as in TE model, we are confident that our model can give correct estimations for Rc, as well
as for the electron density surrounding trapped Ps, once the issues about the significance of
τ1 are resolved.

Finally, it is interesting to study the correlation between the cavity size Rc and ρe/k0;
this is represented in Figure 4. Apart from the question on the validity of these results, it is
apparent that the majority of the materials in Table 2, which have lower values of ρe/k0,
show lower values for Rc, while the materials in Table 1, which respect the intensity rule,
stand on an average value around 0.25 nm. This is surprising because one may naively
expect that the interaction between Ps and the surroundings may imply that higher electron
density would correspond to lower Rc and vice-versa.

But, our theory demonstrates that the basic interaction is the exchange correlation
between the Ps-electron with electrons outside the subnano pores or confining cavites.
Evidently, the contributes to the annihilation rates, λsym, λ3γ

ex , and λ
2γ
ex , are explicitly

given by Equations (10) and (11), which are roughly proportional to the product of the
normalized electron density with the probability Pout. Hence these two quantities tend
to be anticorrelated, and as a consequence a positive correlation between ρe/k0 and Rc is
naturally introduced.

A guess about a physical interpretation of these results can be given under the form of
these statements. On one hand, for very small pores, if the Ps has to be formed inside them,
it means that the surrounding electron density must be low, otherwise the annihilation rates
λs and λt tend to become indistinguishable and it is not possible to speak of a confined
Ps, as discussed in the previous Section. On the other hand, for larger pores, the Ps must
see a greater electron density in the surrounding for observing the modification on the
p-Ps and o-Ps lifetimes with respect to the vacuum values. Of course, this reading of the
results can be purely indicative, being subject to the validity of the interpretation of τ1 as
the p-Ps lifetime.
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Figure 4. Plot of data on cavity radius Rc versus the corresponding data on normalized electron
density ρe/k0. For sample materials considered in Table 1, black circles are used for samples
respecting the intensity rule, and black squares for others. Sample materials in Table 2 are indicated
by open circles.

6. Conclusions

We presented a theoretical description of the annihilation behavior of Ps atoms trapped
in nano- or subnano-porous materials. Our modelization is based on the unavoidable
presence of exchange effects between the Ps-electron and the external electrons in the
surface region of the confined nanocavities. This exchange interaction can affect, to some
relevant extent, the pickoff annihilation or, more generally, it can affect both the p-Ps λs and
the o-Ps λt annihilation rates, as demonstrated by our theory.

Starting from the explicit formal expressions of the annihilation rates λs and λt found in
a previous paper [14], we showed that a simple relation exists between p-Ps and o-Ps lifetime
components in matter and the external electronic density felt by Ps in its position. In
fact, this relationship results in being independent from the geometrical properties of the
confining medium, and it can be used to gather important information on electron density
and on the average cavity radius straight from an (intensity-constrained) experimental PALS
spectrum. These results were widely discussed by analyzing some annihilation lifetimes
data obtained from known examples of materials like insulators and molecular solids.

As we have pointed out during results analysis, the need for lifetimes components
whose intensities satisfy the well-known 1/3 ratio between the p-Ps and o-Ps observed
intensities is of mandatory importance to our model, since without that constraint, any
association between observed lifetimes with p-Ps or o-Ps Ps cannot be fully justified.

Furthermore, despite being a first-order exchange correction, our relationship high-
lights the fact that the two annihilation channels are deeply interconnected in a way that
goes beyond the intensity ratio. In previous literature, this connection was disregarded,
and for both channels, intensities and annihilation rates were considered independent.
Our framework suggests that more care in fitting PALS spectra should be taken in future
experiments to further improve the accuracy and the quantity of extracted information.
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Appendix A. Calculation of the Exchange Contribution to Annihilation Rates

The treatment of the antisymmetry problem in many-body physics is essentially based
on the methods of the symmetry-adapted perturbation theory (SAPT) [15] An accurate
review of SAPT theories is beyond the scope of the present discussion and can be found in
Ref. [37]. In all SAPT formulations, the first-order correction to the expected values of an
electron composite system, due to an interaction operator V, reads:

E(1) =

〈
ψ(0)

∣∣∣V∣∣∣Aψ(0)
〉〈

ψ(0)|Aψ(0)
〉 . (A1)

where ψ(0) represents a suitable unperturbed wavefunction, and the operator A is an
intermolecular antisymmetrizer operator, defined as

A =
1

N!

∑
p
(−1)pP , (A2)

with P representing a permutation operator of N electrons, while (−1)p stands for the parity
of the permutation. Note that with this definition, A is idempotent, i.e., A2 = A. The
normalization is guaranteed by the factor

〈
ψ(0)
|Aψ(0)

〉
=

〈
ψ(0)
A|Aψ(0)

〉
at the denominator

of Equation (A1) (which is called an intermediate–normalization condition in literature [37]).
As an unperturbed wavefunction of the system, we consider the product of a Ps

wavefunction Ψ jm times the (antisymmetric) ground state φ of the N-electron system:

ψ
(0)
jm (p, e, 1, · · · , N) = Ψ jm(p, e)φ(1, 2, · · · , N) , (A3)

where j, m are the Ps spin S and spin projection Sz quantum numbers ( j = 1 for o-Ps and
j = 0 for p-Ps), and we use, from now on, the compact notation p = (rp, σp) and e = (re, σe)
for the spin-spatial coordinates of the Ps positron and electron, respectively, while numbers
refer to the other electrons. This wavefunction is by construction antisymmetric with
respect to the exchange of any two electrons in 1, . . . , N since:

φ(1 · · · i · · · j · · ·N) = −φ(1 · · · j · · · i · · ·N) ∀i, j , (A4)

but it is not antisymmetric with respect to the exchange with Ps electron.
It is important to introduce some descriptive quantities of the many body outer electron

system. The external electron bulk density is connected to the square modulus of the
N-electron normalized wavefunction and is commonly defined in the density functional
theory (DFT) as:

n(r) = N
∑
σ1

∫
|φ(r, σ1, 2, · · · , N)|2 d2 . . . dN . (A5)

Here and in the following, we use the compact notation
∫

di =
∑
σi

∫
d3ri to represent

both spin summation and spatial integration. Other useful quantities are the reduced density
matrices (RDM), which offers a convenient way of describing the internal structure of a
many body system of N indistinguishable particles without the complete knowledge of its
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wavefunction. The simplest RDM is the one-body reduced density matrix (1RDM), which
is defined as:

Γ(1)(x; y) = N
∫
φ(x, 2, · · · , N)φ∗(y, 2, · · · , N) d2 · · · dN , (A6)

where x and y denote the couple (rx, σx) and (ry, σy). The 1RDM is composed in principle

by the 4 components Γ(1)
↑↑

, Γ(1)
↑↓

, Γ(1)
↓↑

and Γ(1)
↓↓

resulting from expansion in a complete set of
spin functions:

Γ(1)(x; y) =
∑

i j

Γ(1)
i j (rx; ry) si(σx) s j(σy) , (A7)

where i and j may represent ↑ or ↓ spin states. Furthermore, we can define the spatial
1RDM by summing Γ(1) over the spin variables:

Γ(1)(rx; ry) =
∑
σx,σy

Γ(1)(x; y) ≡ Γ(1)
↑↑

(rx; ry) + Γ(1)
↓↓

(rx; ry) , (A8)

where the last passage is valid if no spin mixing potential appears in the hamiltonian of
the bulk system, as assumed here. In this case, the wavefunction φ is an eigenstate of Sz

and the two spin channels decouple, so that Γ(1)
↑↓

= Γ(1)
↓↑

= 0 [38]. The diagonal part of the
spatial 1RDM is just the electron density defined in Equation (A5):

n(r) = Γ(1)(r; r) = n↑(r) + n↓(r) , (A9)

where n↑(n↓) is the local spin up(down) density.
To calculate the exchange correlation contributions to the annihilation rates, we apply

the SAPT to the annihilation operator given by [16]:

λ̂i = 8πa3
0 δ

3(rp − ri)

[
1− Σp,i

2
λ2γ +

1 + Σp,i

2
λ3γ

]
, (A10)

where 8πa3
0 is the inverse contact density of unperturbed positronium, rp and ri are positron

and electrons coordinates, respectively, and Σp,i is the spin exchange operator. Here,
λ̂ is basically a “contact operator”, being a linear combination of delta functions of the
electron-positron distance. The spin exchange operator Σ guarantees that the antisymmetric
spin configuration annihilates via 2γ emission, while the symmetric spin configuration via
3γ emission. It is easy to see that this form of λ̂i gives the correct annihilation rates for
p-Ps and o-Ps states in vacuum.

After separating spatial and spin part of the wavefunction, for example Ψ jm(p, e) =
Ψ(rp, re)χ jm(σp, σe), using the above definitions and assuming uniform spin distributions
of external electrons density:

n↑(r) = n↓(r) =
1
2

n(r) , (A11)

we obtain that the overall correction to the annihilation rate can be expressed as the sum of
three different contributions [14]:

λ(1) =
λsym + λex + λex-po

1− S
, (A12)

where S is the overlap parameter, which comes from the normalization factor:

S =

∫
Ψ∗jm(p, e)Ψ jm(p, 1) Γ(1)(e; 1) dp de d1 . (A13)
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This parameter becomes important when Ps approaches the external electronic system,
where its wavefunction will begin to “overlap” with the system’s one and exchange
correlation effects must be considered.

The first term of the sum in Equation (A12) is the symmetric contribution:

λsym = 8πa3
0

∫
|Ψ(rp, re)|

2δ(r1 − rp)

[
λ3γ n↑(r1) +

λ2γ + λ3γ

2
n↓(r1)

]
d3rp d3re d3r1

= 8πa3
0 λ̄

∫
|Ψ(rp, re)|

2n(rp) d3rp d3re ,
(A14)

resulting proportional to the averaged annihilation rate λ̄ defined in Equation (3).
The second term of the sum is the exchange contribution, which can be written in a

simple form containing the 1RDM (A6):

λ
2γ
ex = −8πa3

0 λ2γ

∫
Ψ∗(rp, re)Ψ(rp, rp) Γ(1)

↑↑
(re; rp) d3rp d3re

λ
3γ
ex = −8πa3

0 λ3γ

∫
Ψ∗(rp, re)Ψ(rp, rp) Γ(1)

↑↑
(re; rp) d3rp d3re ,

(A15)

for the two cases of p-Ps and o-Ps, respectively. The evident parallelism in the form of these
expression is a consequence of the uniform spin distribution and of the fact that Γ(1)

↑↑
= Γ(1)

↓↓
.

The exchange-correlation contribution λex-po can be calculated in the same way,
resulting in a dependence on a two-body reduced density matrix Γ(2) of the system.
As a matter of fact, the result contains spatial integrals over Ps wavefunctions like
Ψ∗(rp, re)Ψ(rp, r2) [14] that, by construction, vanish exponentially at large interparticle
separation i.e., when rpe, rp2 & 2a0 (the Bohr radius for positronium is twice that of hydrogen).
Hence, we can assume that the integration domain is extremely reduced, thus making
λex-po a higher order contribution to the annihilation rate, negligible with respect to the
other two contributes.

Appendix B. The Local Density Approximation

To determine the 1RDM one can consider the so–called local density approximation
(LDA). In LDA, the properties of an electronic system with a density profile n(r) are locally
modeled similarly to a free electron gas with the same density. In this simple picture,
the 1RDM has an analytical expression [39]:

Γ(1)(x; y) = δσxσy

n(Rxy)

2
B
(
kF(Rxy) |rxy|

)
, (A16)

where kF(Rxy) =
(
3π2n(Rxy)

)1/3
is a “local” Fermi momentum and

B(x) = 3
sin(x) − x cos(x)

x3 .

The notation of the spatial coordinates is as follows:

Rxy =
x + y

2
; rxy = x − y ,

to denote the average and the relative position of two particles x and y, respectively. Within
the usual assumption of uniform spin distribution, the spatial 1RDM is:

Γ(1)(Rxy; rxy) = Γ(1)
↑↑

(Rxy; rxy) + Γ(1)
↓↓

(Rxy; rxy) .
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