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Abstract: This paper focuses on the research and development of a suitable method for creating a
selective emitter for the visible and near-infrared region to be able to work optimally together with
silicon photovoltaic cells in a thermophotovoltaic system. The aim was to develop a new method to
create very fine structures beyond the conventional standard (nanostructures), which will increase
the emissivity of the base material for it to match the needs of a selective emitter for the VIS and NIR
region. Available methods were used to create the nanostructures, from which we eliminated all
unsuitable methods; for the selected method, we established the optimal procedure and parameters
for their creation. The development of the emitter nanostructures included the necessary substrate
pretreatments, where great emphasis was placed on material purity and surface roughness. Tungsten
was purposely chosen as the main material for the formation of the nanostructures; we verified the
effect of the formed structure on the resulting emissivity. This work presents a new method for the
formation of nanostructures, which are not commonly formed in such fineness; by this, it opens the
way to new possibilities for achieving the desired selectivity of the thermophotovoltaic emitter.

Keywords: thermophotovoltaics; selective emitters; nanostructures; reactive ion etching; emissivity;
electron beam lithography

1. Introduction

Thermophotovoltaics belongs to the third generation of photovoltaics. The main goal
of the third generation is to increase the efficiency of photovoltaic systems by using new
methods. The advantage of thermophotovoltaics (TPV) is the ability to utilize both visible
(VIS) and infrared (IR) regions of radiation. Photons of infrared radiation have very low
energy and are therefore not capable of photovoltaic conversion because the frequency and
energy of the photons decrease alongside with increasing wavelength. Therefore, in order
to be able to use also low energy photons, the TPV system must be composed of several
parts. The first one is the PV cell. Based on the cell used and the width of its forbidden
band, the other parts of the system are selected, which include the filter and the emitter
(also called absorber or radiator). When choosing a suitable PV cell, several things need
to be considered: the width of the forbidden band, availability, toxicity of the materials
the cell is made of, and the price. For TPV systems, either silicon (Si; Eg = 1.12 eV) or
germanium (Ge; Eg = 0.66 eV) cells can be used, but also cells containing elements such as
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gallium (Ga), indium (In), arsenic (As), antimony (Sb), phosphorus (P)-GaAs (Eg = 1.42 eV),
and GaSb (Eg = 0.72 eV), as well GaInAs, GaInAsSb, and InAsSbP and many others [1,2].

Depending on which PV cell is used, the parameters of the other two parts of the
system are selected. One of them is the filter, which may or may not be part of the system.
Therefore, to maximize the efficiency of the entire system, the filter used must meet the
following basic conditions: minimum radiation absorption, high reflectivity for photons
with energy (E) lower than the width of the forbidden band (Eg) of the used PV cell back to
the radiator, and maximum transmittance for photons with energies E > Eg [3]. Instead of
a filter, a reflective layer on the back of the PV cell can also be used to reflect unwanted
photons back to the radiator [3,4]. Whether a filter is needed in the system is determined
by the characteristics of the most important element of the system, which is the radiator.

The TPV radiator performs two basic functions in the system—that of an absorber
and an emitter. Closer to the radiation source is the absorber side of the radiator, which
is supposed to absorb as much of the incident radiation on the surface of the radiator
as possible. The other side of the radiator, the one closer to the cell or filter, acts as an
emitter of photons to be used in PV conversion. The basic characteristic of a proper
radiator is the ability to emit maximum photons of energy E ≥ Eg and minimum photons
of energy E < Eg [3]. A constant temperature is important for the proper function of the
radiator [1,4]. The temperature is maintained in two ways: from the radiation source and
by back-reflected photons, whose energy is very small for conversion but sufficient to
maintain the temperature of the radiator. These photons can contribute to heating the
radiator or can be used in further emission.

Radiators can be divided into two types according to their specific properties: grey
and selective radiators. The main feature of a grey radiator is the same spectral emission
for all wavelengths. It is therefore obvious that when using this radiator, a filter will also
be needed for proper spectral management of the system [1,4]. Selective radiators, on the
other hand, are characterized by selectivity, i.e., sensitivity to certain wavelengths [4–6].

Depending on the heat source used by the TPV system, it can be divided into three
groups, which then indicate the actual area of application. The first is the “Solar TPV
System”, where the sun is the source of radiation. These systems do not differ much
from conventional PV systems in terms of appearance and/or use. The only difference is
the need to focus the sun radiation using lenses (mirrors) to achieve a sufficient radiator
temperature. The second group of TPV systems are so-called “Nuclear TPV Systems”,
which are based on the decay of radioisotopes. The greatest use is expected to be in
deep space where solar radiation is too small for conversion. The last group comprises
“Controlled Combustion Systems”, where various forms of combustion (gases, solid fuels)
are used as a heat source and the resulting heat is used for TPV conversion. This system
operates on the principle of heat recovery, where heat can be produced for heating and at
the same time this heat can be used for electricity generation. For the proper functioning of
this radiator, its constant temperature is important, which should be 1200 ≤ TE ≤ 2000 K
(900 ◦C or more) [1,4]. There is great interest in this technology, especially in areas without
electricity, such as mountainous areas and northern states. The same interest is also shown
by armies or hybrid vehicle manufacturers [1,4]. It is therefore possible to say that this
design system can have a very wide commercial application compared to the first two
variants, and we have therefore investigated this issue in more detail.

The first references to thermophotovoltaics began to appear around the 1950s. One
of the first to address the issue of selective emitters was Robert E. Nelson, followed by
others. Interest in the field of TPV declined after a while but picked up again at the turn
of the 20th century for several reasons. The biggest of them is the noticeable progress in
photovoltaics and the development of new technologies that have made other approaches
possible. Of course, much of the recent development has been due to increased interest
in the use of alternative energy sources [1,4]. There are several directions that this area
of research has taken in recent years. The main differences are the materials used, their
porosity, combinations, and the technologies used to treat them. Most of the selective
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emitters created in experiments around the world to date have shown enhanced emissivity
in the infrared region.

In our research, we wanted to achieve increased emissivity also in the visible spectrum
and thus push the boundaries of TPV systems’ operations and uses, where silicon cells can
be used in addition to germanium or gallium PV cells with much higher efficiency of the
resulting TPV system.

In recent years, the development of TPVs has taken different paths. If we only focus
on the area of using a tungsten substrate to produce a selective emitter, then in addition to
micro and nanostructures, some of the research has also focused on thin films. A typical
example is the use of a basic W substrate, W structures, and thin films of other materials. An
interesting direction is the use of a nanostructured selective emitter consisting of two thin
layers of Si3N4 silicon nitride and W in between. It is intended to increase the emissivity of
the surface in conjunction with the concentration of solar radiation. The system has been
tested for GaSb photovoltaic cells [7].

Theoretical analyses and simulations play an important role in the development of
TPV systems. They focus, for example, on the use of thin films and cavity reflectors to
enhance the performance of the TPV system [8,9]. Parametric studies are also key to
understanding how changes in temperature and solar radiation affect the flow of electricity
and heat [10]. Another important area is selective absorption and emission spectra, which
have a major impact on the performance of the overall system. Systematic thermal analyses
of TPV systems can help optimize the selective emitter to maximize the efficiency of the
overall system. In [11], the combination of W-HfO2 materials for the selective emitter and
GaSb photovoltaic cells is very interesting. These have been analyzed together with the
structures. Simulations confirmed enhanced emissivity at low directional sensitivity [12].
With the help of simulations and calculations, further possibilities, optimizations, and
directions for the development of TPV systems for different PV cells can be investigated
very efficiently.

2. Materials

The main objective was to achieve the elimination of undesirable thermal effects on
the PV cell while increasing the efficiency of TPV systems by using a specially developed
selective emitter in the visible and near-infrared region of the spectrum. Based on the
thermal requirements for the selective emitter, high temperature materials were used.
The theoretical assumptions and the requirements imposed on the thermal and selective
properties of the emitter were verified using experiments. Among the potentially suitable
materials for the field of selective emitters, after several experiments, we took a closer look
at the tungsten substrate.

2.1. Methods and Analyses

Different methods of substrate surface pretreatment and subsequent surface treatment
were used to achieve the desired emitter selective properties. Based on the results of the
methods used, we subsequently focused mainly on the use of lithography and reactive ion
etching (RIE), through which we created very fine structures with the desired parameters
in order to achieve an increase in the selective properties of the emitter. This technology is
commonly used in various fields; however, due to the substrate used and the fineness of
the structures, new techniques had to be developed to achieve these requirements. The
aim was to develop a method, using the available means, to create very fine structures that
are not commonly produced and thus achieve the required selectivity.

The structures or holes created act as cavity resonators. The resonance properties of
the holes were first simulated and then experimentally verified. The created structures
and the underlying substrate were continuously observed by microscopy and subjected to
emissivity tests.
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2.1.1. Basic Principle of the Design of Nanostructures and Verification by Simulations

In designing and creating nanostructures for improving emissivity in the VIS and NIR
spectra, we relied on the principle of waveguides, which are able to resonate at a specific
wavelength based on their dimensions. We performed calculations of circular cavities
that are intended to act as waveguides for them to be as close as possible to the needs of
commercially available silicon PV cells, which cover mainly the VIS and possibly the NIR
spectrum. Thus, we used as a basis the width of the forbidden band Eg of a silicon PV
cell, where Eg = 1.11 eV. Based on this value, we could determine the required resonant
wavelength λnm [13]:

λnm =
h · c
Eg

=
4.357 · 10−15 · 2.998 · 108

1.11
= 1.117 µm (1)

where h is Planck’s constant [eV], c is the speed of light [m·s−1] and Eg is the width of the
forbidden band. From the calculated value of the resonance wavelength, we were already
able to calculate the required diameter of the cylindrical cavity D [nm]. The calculation of
the diameter of the cylindrical cavity [13] is derived from the formula:

λnm =
πD
ρnm

or
πD
ρ′nm

(2)

where D is the diameter of the cylindrical cavity, and ρnm and ρ’nm denote the m-th zero
point of the n-th Bessel function Jm. The smallest possible values of these parameters give
the cut-off wavelength λ [13]. Using Bessel functions, it is possible to solve a number
of problems that have rotational or spherical symmetry. In optical systems such as the
structures we desire, rotational symmetry is common. Thus, after derivation, we obtain the
following formula for the cavity diameter [13]:

D =
λnm · ρ

π
=

1.117 · 1.841
π

= 0.655 µm (3)

where ρ is a constant determined from the root of the first order Bessel function, and π is the
Ludolph number. The constant ρ corresponds to the TE11 mode (transverse electric wave),
which is the dominant mode in the cavity. Thus, the ideal dimensions of the structure
should have a cavity diameter of 655 nm, a cavity depth of 440 nm, and a period of max
1 µm. The cavity depth was determined experimentally, based on the findings of available
previous foreign experiments obtained using simulations.

Due to the financial requirements of the materials and processes used, we performed
simulations before the actual physical formation of the structures to see how the desired
nanostructure should work in real life in terms of resonance in the structure. The simulation
was carried out using Solidworks 3D CAD software. For this purpose, we used the
Solidworks Flow Simulation module to observe the heat propagation in the selective
emitter. Flow Simulation works with the Finite Volume Method (FVM), which works on
the principle of dividing a given region into a finite number of small volumes using a
mesh [14]. For the purpose of the simulation, a 1 cm thick tungsten material was defined at
a source temperature of 1200 ◦C, which corresponds to the operating temperature range of
the radiator, as it is illustrated in Figure 1.
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Figure 1. Simulated heating of a tungsten emitter with micro/nanostructure. Adapted from [15] with kind permission from
Brno University of Technology.

Based on the simulation, the heat propagation in the cavities compared to the sur-
roundings could be seen, suggesting that the expected resonance inside the cavities is
indeed occurring. Based on the calculation and simulation, we already physically formed
the structures; the physical creation of the structures was preceded by the process of cutting
the samples and surface treatments needed to achieve the desired results.

2.1.2. Surface Treatment and Cutting of Samples

Among the options offered for cutting the tungsten substrate, mechanical cutting,
laser cutting, and waterjet cutting were considered. When selecting the method, the time
required, the availability of the technology, the efficiency of the design in relation to the
material used, and many other factors were considered. Waterjet cutting proved to be the
most suitable method. The method offers very high cutting accuracy even for hard and
thick materials, regardless of the shape to be cut. The cutting itself is a highly efficient and
environmentally-friendly process; the cut edge and surface do not need further processing
as in other methods, and the cold cutting process does not cause any stress on the material,
thus preserving the material’s material stability; the material is not thereby affected by
physical and/or chemical processes either.

Three sets of 1 mm thick samples were cut from a 99.95% tungsten rolled sheet using an
abrasive waterjet cutting system: square specimens of 20 mm × 20 mm, circular specimens
of 3” in diameter, and square specimens of 10 mm × 10 mm. The first two sets were used
for the basic experimental part and fine-tuning of new sample surface treatments and then
the formation of nanostructures to find the optimal procedure. The third set of samples
was used for re-verification of procedures developed by us and final measurements.

After cutting the samples, we focused on achieving the finest possible surface rough-
ness of the samples. Given the required parameters of the proposed nanostructure, the
surface roughness of the samples is a key factor. Again, we used several methods to achieve
the finest possible surface roughness. We repeatedly measured the roughness before and
after the process using a non-contact profilometer (Keyence International, Mechelen, Bel-
gium) and observed the changes on the sample surface using a microscope. The best
results were obtained by mechanical lapping using diamond lapping pastes of different
roughnesses. Lapping was performed in two stages, namely coarse lapping followed by
fine lapping to remove any undesirable effects caused during the first lapping stage. This
process was carried out in collaboration with the Thermo Fisher Scientific Company using
professional lapping equipment.
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2.1.3. Surface Roughness Measurement with Profilometer

The samples were then subjected to both in-line and in-surface roughness measure-
ments in order to obtain the most complete picture of the surface roughness. Looking at
the samples under a Keyence VK-X Series 3D laser scanning confocal microscope (Keyence
International, Mechelen, Belgium), it was apparent that the surface was not completely
even. Therefore, for both the in-surface (Figure 2) and in-line (Figure 3) measurements, two
distinct areas were always selected—one with a noticeably small amount of unevenness,
and one with a significantly larger amount of unevenness. These unevennesses, as it was
shown later, represented the remnants of corundum after polishing that had adhered to
the substrate surface. For the measured in-surface roughnesses, we arrived at a range of
Ra = 8 nm for surfaces with small unevenness and Ra = 23 nm for surfaces with larger
unevenness. For the in-line roughnesses, we arrived at a range of Ra = 3 nm for surfaces
with small unevenness and Ra = 34 nm for surfaces with larger unevenness. The original
surface roughness of the samples before lapping was around 600 nm.

Figure 2. In-surface roughness (laser + optical microscope): (A) surface with larger unevenness (×50); (B) surface with
small unevenness (×150). Adapted from [15] with kind permission of Brno University of Technology.

2.1.4. Reactive Ion Etching

The formation of structures using RIE was carried out with the support of the Institute
of Scientific Instruments, Academy of Sciences, in Brno. Electron lithography and reactive
ion etching techniques allow the recording of micro and nanostructures from different
types of inorganic and organic layers or surfaces [16]. However, the sample used in the
experiment, i.e., from rolled tungsten (containing large grains of material), is not exactly
one of the standard types of sample on which lithographic operations are performed, such
as recording the emission nanostructure. Therefore, it was necessary to design an optimal
etching procedure of this material for the formation of nanostructures. We had to perform
several test of recording of the pattern in resist type etching mask using electron lithography
with subsequent plasmatic and RIE to find out the optimal process of fabrication of the
desired pattern. The important role in designing a new fabrication process for forming
designed nanostructures in the lapped tungsten substrate was played by selection of the
type of electron resist used for etching mask, method and parameters of its deposition on
samples (like soft-baking temperature and time), exposure parameters, and development
parameters. The pattern motifs on the etching mask were chosen to include test and
measurement structures, coarse lattice motifs, and the desired fine lattice nanostructure, so
that we were able to gradually optimize the process of producing the structures (Figure 4)
and eliminate unwanted effects on the substrate and the structure formed.
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Figure 3. Roughness of the tungsten in-line sample: yellow line with small surface unevenness;
blue line with large surface unevenness (×150). Adapted from [15] with kind permission of Brno
University of Technology.

Figure 4. One of the mask motifs with multiple structures. Adapted from [15] with kind permission
of Brno University of Technology.
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After recording the grid motifs of the etching mask by electron lithography, these
structures were measured by AFM (atomic force microscopy; Nanopacific). The rationale
for this was to be able to compare the loss of resist mask material during etching in RIE and
to determine its masking properties, e.g., etching selectivity. Because we had no previous
experience with etching the material of the tungsten (rolled) substrate, we designed and
experimentally tested two types of RIE recipes. For the first experiment we used the
process based on recipe-resist AZ2070 (deposition by centrifugal casting, 2500 rpm/30 s),
drying (hot plate, 100 ◦C/90 s), exposure (UV, type e-flood, 151.2 mJ/cm2), developer (mif
726/150 s), measurement (contact profilometer), RIE (CHF3 + SF6, IPC power 3000 W/RIE
power 100 W/120 s/60 ◦C), and measurement (contact profilometer). Despite adjustments
to the etching time and RIE power, we did not achieve the desired results. The etching of
tungsten surface was very slow—in 120 s and at 100 W power at RIE electrode and 3000 W
IPC power, we reached only 100 nm according to the measurement on contact profilometer
KLA-Tencor Alpha D-120 Stylus (KLA Instruments, Milpitas, California). For this recipe
we observed a relatively rapid loss of mask material at a relatively low tungsten etching
rate, so we decided not to continue with this etching recipe. For the next experiments we
changed the RIE recipe for an SF6 + Ar-based process. Our assumption was that Ar ions
would help enhance the etching reaction. The etching time for the experiment remained
the same, but we reduced the RIE electrode power to 50 W. As a result of these changes,
the etching process was quite different from the previous procedure. According to the
measurement from contact profilometer, we reached a depth of etching of about 1200 nm.
The etching was therefore much faster. We again observed a high rate of resist thickness
loss and roughening of the etched surface due to Ar ion bombardment. We therefore
retained the gas used but adjusted the RIE power, etching time, and number of repetitions
at short time intervals so that the sample could thermally relax between the individual
etching cycles. By this, we achieved a gradual etching without the undesirable effect of
damaging the substrate and better selectivity of etching through the resist mask.

2.1.5. SEM Observations

The formed structures in the different fields with different coarseness of the structure
were subjected to closer examination under the SEM microscope (Magellan, Thermo
Fisher Scientific, Waltham, MA, USA). For the A2 lattice (Figures 4 and 5, respectively),
unevenness in the formed holes could be seen, which could be due to both the etching time
and impurities on the surface of the tungsten chip. A closer look showed that by etching,
we exposed the crystalline structure of the tungsten material itself.

Figure 5. Lattice A2 under SEM microscope: (A) view of the structure; (B) at 45◦ inclination. Adapted from [15] with kind
permission of Brno University of Technology.

In lattice B2 (Figure 6), the spacing between the holes was already almost negligible.
Their shape was regular and again, on a closer look, the structure of the tungsten chip itself
could be seen, which thanks to etching came out much more than the A2 lattices. The only
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drawback we encountered with all the structures we created was dirt on the surface of all
of the samples, which could not be removed by normal sample surface cleaning procedures.
This issue has been addressed in further research.

Figure 6. Lattice B2 under SEM microscope: (A) overall view including impurities; (B) closer view of the formed structure.
Adapted from [15] with kind permission of Brno University of Technology.

For the C2 lattice, the regularity of the formed structure was quite regular at first
glance, but a closer look showed that there was a slight rounding of the edges in some holes
(Figure 7), which was probably due to the longer etching times in different steps. On closer
inspection of the interior of each hole, it appeared at first that microlenses had formed (lens
effect); however, when looking at the structure at a 45◦ inclination, we found that these
were not microlenses, but that underetching had occurred in most holes. We also looked at
the strange patterns at the bottom of the holes. After an initial assessment, we thought that
these were crystallography-channeling. However, there was no noticeable difference at
1.5 keV and 10 keV energies, so they were likely to be a manifestation of morphology, with
preferential etching of some crystallographic directions.

Figure 7. Lattice C2 under SEM microscope: (A) overall view; (B) zoomed view of irregularities and damage to the holes.
Adapted from [15] with kind permission of Brno University of Technology.

At first glance, it is possible to notice the similarities between our artificially created
structures and naturally occurring photonic structures. Both use the principle of cavity pe-
riod and cavity resonance for certain wavelengths. Naturally occurring photonic structures
in some crystalline substances or animals acquire their optical properties precisely due to
the periodic structure, which can be 1D, 2D, or 3D. A similar effect can be achieved with
artificially created structures, the application of which can be wide.
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2.2. The Resulting Nanostructure

The outcome of the above procedures was to achieve a process thanks to which we
were able to create the desired unbroken structure over the entire surface of the sample,
excluding the edges that remained structureless, for better manipulation. We used the
similar process we developed on test samples for preparation of an etching mask, as well
as the RIE etching recipe except for the resist, etching time, and number of repetitions of
etching. Between the etching steps we monitored the depth of the etching in tungsten at
the lines of the sensitivity pattern at the edge of the sample (see Figure 8).

Figure 8. Main mask motif for the desired structure. Adapted from [15] with kind permission of
Brno University of Technology.

For the final experiment we used the improved process based on recipe-resist 6200.13
CSAR (deposition by centrifugal casting, 4000 rpm/45 s), drying (hot plate, 150 ◦C/90 s), expo-
sure (e-beam, 150 µC/cm2), developer (nAAc/190 s), measurement (contact profilometer), RIE
(SF6/50 + Ar/40, IPC power 3000 W/RIE power 15 W/60 s/60 ◦C), plasma resist stripping
(O2, IPC power 3000 W/RIE power 100 W/60 s), and measurement (contact profilometer).

The resulting lattice achieved the desired parameters, i.e., cavity diameter of 655 nm,
cavity depth of 440 nm, and period of max 1 µm. After fabrication, the structure on the sam-
ple was observed by the SEM microscope. As the images from SEM shows (see Figure 9) we
were able to archive basically the desired structure in the tungsten. The actual dimensions
corresponded to the desired ones; moreover, when viewed at a 45◦ angle, there was no
underetching and/or distortion of the structure and holes, as was the case in the previous
experiments. The edges of the holes were again rounded, but this was not an issue for us, as
circular holes have a much greater effect for our purposes. As with the other experiments,
the crystalline structure of the tungsten substrate was visible at the bottom of the cavities.
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Figure 9. Resulting lattice on tungsten chip: (A) overall view; (B) detail of the structure of the formed cavities (50×).
Adapted from [15] with kind permission of Brno University of Technology.

As with the previous structures, the main drawback here was the impurities that
irregularly covered the tungsten sample and thus introduced considerable error into the
entire process.

Measurements of Nanostructure Emissivity

On the resulting tungsten samples, emissivities were measured using the cryogenic
method, which is designed to measure emissivity and absorption in highly reflective
surfaces [17]. The measurements were carried out at the Institute of Scientific Instruments,
Academy of Sciences. The measurements were always performed on a sample without
structure and then with the resulting fine structure, which was previously created using RIE.
A common sample size for these measurements is 40 mm in diameter, which corresponds
to the requirements of the test chamber. In order to be able to measure emissivity even on
our considerably small non-circular samples, a copper ring plate was used as a base carrier.

Since the tungsten samples are considerably small compared to the total surface
of the carrier, different procedures had to be tried in order to make the measurements
possible. The copper itself has an emissivity of up to 1% [18], but when stuck to the center
of the tungsten sample carrier, the dark to black edges could introduce a large error into
the measurement. One percent of 100% black area on the reflective surface of a sample
with 1% absorption capacity will increase the overall absorption capacity of the sample
to approximately 2%. It was necessary here to address the issue of eliminating parasitic
effects when the sample is not over the entire surface of the Cu carrier. This factor has a
large effect on the resulting absolute accuracy of the results.

After several adjustments and measurements at 240 K, the temperature at which
emissivity is best measured [17], we then carried out reference measurements. We measured
the emissivity of the carrier used in the range of 20–320 K. We then glued a tungsten sample
to the center of the Cu carrier and taped its edges with Al tape. On the second piece of the
carrier, we glued Al tape in the same way at the same spacing, but this time without the
tungsten sample. Preparation of one sample before measurement took about 1 day, then
for each measurement another day at least, sometimes more, depending on the results and
necessary adjustments and/or technical problems.

In the next step, we measured the emissivity of the Cu carrier itself in a given tem-
perature range. Subsequently, we measured the emissivity of the Cu carrier with Al tape
under the same conditions. Only after that we measured the carrier with a pure tungsten
sample wrapped with Al tape and finally the carrier with a tungsten sample with structure,
also wrapped with Al tape identically as in the previous cases. Since each of the materials
introduces some intrinsic emissivity into the final measurement, which for us actually
means an error, it was necessary to correlate all results to the tungsten sample without
structure and then with structure (Figure 10). In this case, the Cu carrier, Al tape, and the
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area of pure tungsten formed the background for us so that we were able to determine the
resulting emissivity only of the formed structure on the tungsten sample.

Figure 10. Samples for emissivity measurement and subsequent correlation: (A) Cu carrier with Al tape; (B) Cu carrier with
pure tungsten sample and Al tape; (C) Cu carrier with tungsten sample with structure and Al tape. Adapted from [15] with
kind permission of Brno University of Technology.

After performing the correlation, we obtained the emissivity of the tungsten sample
with fine structure. The emissivity ranged from 1.8% to 7.25% depending on the tempera-
ture (Figure 11), i.e., 20 K–320 K. Using Wien’s displacement law, we could calculate the
range of wavelengths that corresponded to the given temperatures at which the emissivity
was measured. For temperatures of 20 K–320 K we were in the wavelength range of
144.90 µm–9.056 µm, which corresponded to the infrared region of the radiation.

Figure 11. Resulting emissivity of tungsten sample with structure (blue curve) after correlation relative
to the emissivity of the pure tungsten substrate (green curve) and the underlying copper carrier with
aluminum tape (red curve). Adapted from [15] with kind permission of Brno University of Technology.

Comparing the emissivity of the pure tungsten sample and the emissivity of the
formed structure, a significant increase in emissivity was obvious, which is highly desirable
for use in selective emitter applications for TPV. In order to obtain a better idea of the
emissivity under different conditions, it would be advisable to perform this experiment
several more times in the future. The only disadvantage of this method is that it is designed
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for measurements only up to room temperature, and it is not possible to use it to verify the
emissivity at higher temperatures. Even so, it is clear from the diagram that the emissivity
of the structure increased with increasing temperature, which suggests that it will behave
very well at higher temperatures. Thus, the emissivity should be more noticeable also in
the visible region, which is crucial for this experiment.

3. Results and Discussion

The main aim of the work was to use commonly available technology and develop a
new method specifically for the creation of nanostructures in order to increase the emissivity
of the samples to put their selective properties in line with the needs of silicon PV cells.
The TPV systems researched so far in the world mainly specialized in the use of VF cells
made of materials such as arsenite–gallium, which achieved higher yields only in the IR
region, whereas silicon ones were more suitable for the VIS and NIR region. This was the
area we focused upon. The dimensions of the structure were calculated based on the width
of the forbidden band of the silicon PV cell and using Bessel functions that are commonly
used for resonator calculations.

Prior to the actual creation of the fine structures, we performed a simulation using 3D
CAD Solidworks where we verified whether—when the desired structures were created—
this structure or individual cavities would work as a resonator to support the selective
properties of the emitter.

For the creation of very fine structures, the surface roughness is a key component of
the substrate used. For this reason, we focused on surface roughness treatment in the first
stage. Among the possible methods, based on experiments, we chose mechanical lapping
as the most effective one, which was carried out in two phases—coarse and then fine—to
achieve the best results. After selecting the optimal procedure, we reached roughnesses of
3 to 34 nm from the original 600 nm.

For the creation of the nanostructures, we used many performed experiments as a
basis and chose one method, which according to our results was the most effective, namely
RIE technology. In the course of designing a new procedure and optimizing the process
to create the resulting nanostructure with a cavity diameter of 655 nm, cavity depth of
440 nm, and max period of 1 µm, we proceeded to achieve increased emitter selectivity
in the VIS and NIR regions. During all the experiments, we tried to remove unwanted
effects such as underetching that arose during the procedure optimization. Therefore, we
proceeded from the coarsest motifs to the finest ones. In this way, we were able to eliminate
many imperfections that might otherwise have occurred during the formation of the final
nanostructure. The main shortcoming in the entire process of sample preparation and
subsequent formation of fine structures was the impurities on the surface of all samples.
These impurities could not be cleaned by conventional methods. Thus, their influence
was also evident in the formation of the resulting structures. This topic is being further
addressed in subsequent research, as it is a major issue.

For the resulting nanostructure, we performed emissivity testing to determine if there
was an improvement in the emitter selective properties, which is a very key factor for this
work. Since the surface of the tungsten sample was highly reflective, we could not use
conventional methods for emissivity measurements. For this purpose, it was possible to
use the cryogenic method, which is designed to measure emissivity from 20 K to 320 K,
corresponding to wavelengths in the infrared region. Due to the size of the sample and the
possible introduction of errors into the measurements from the surface edges of the sample,
which were darker, we arrived at a very positive result after several measurements based on
correcting the results for focusing on the structure. The emissivity of the lapped tungsten
substrate ranged from 0.8% to about 3%, whereas the emissivity of the tungsten sample
with structure, or the emissivity of the structure itself, ranged from about 2% to 7%. Thus,
we can say that the desired increase in emissivity due to the fine structure created by our
method was indeed confirmed. In this experiment, we were limited by the temperatures at
which we could measure the emissivity, which means that for temperatures around 900 K
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and above, it was not possible to directly measure it within this technology. However, from
the curve of emissivity increase as a function of temperature, it can be expected that even
at higher temperatures, i.e., even in the visible region of the spectrum, the emissivity of the
structure will increase. In the future, it would be useful to simulate the expected evolution
of emissivity at higher temperatures using computational programs.
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and T.F.; writing—original draft preparation, L.Š.; writing—review and editing, A.K. and M.M.;
visualization, A.K.; supervision, M.M.; funding acquisition, A.K. All authors have read and agreed to
the published version of the manuscript.

Funding: We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110).
We also acknowledge the Czech Academy of Sciences (RVO:68081731).

Acknowledgments: The authors would like to acknowledge Petr Meluzín for his invaluable help
regarding the eBeam-writer-data preparation, and Jakub Kolář and Petr Vyroubal for creating the
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