
����������
�������

Citation: Hsiao, Y.-W.; Song, J.-Y.;

Wu, H.-T.; Leu, C.-C.; Shih, C.-F.

Properties of Halide Perovskite

Photodetectors with Little Rubidium

Incorporation. Nanomaterials 2022, 12,

157. https://doi.org/10.3390/

nano12010157

Academic Editor: Sofia Masi

Received: 26 November 2021

Accepted: 30 December 2021

Published: 3 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Properties of Halide Perovskite Photodetectors with Little
Rubidium Incorporation
Yuan-Wen Hsiao 1, Jyun-You Song 1, Hsuan-Ta Wu 2, Ching-Chich Leu 3,* and Chuan-Feng Shih 1,4,*

1 Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
n28064012@mail.ncku.edu.tw (Y.-W.H.); c2781130@gmail.com (J.-Y.S.)

2 Department and Institute of Electrical Engineering, Minghsin University of Science and Technology,
Hsinchu 30401, Taiwan; htwu@must.edu.tw

3 Department of Chemical and Materials Engineering, National University of Kaohsiung,
Kaohsiung 81148, Taiwan

4 Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University,
Tainan 70101, Taiwan

* Correspondence: ccleu@nuk.edu.tw (C.-C.L.); cfshih@mail.ncku.edu.tw (C.-F.S.);
Tel.: +886-7-5919456 (ext. 7456) (C.-C.L.); +886-6-2757575 (ext. 62398) (C.-F.S.)

Abstract: This study investigates the effects of Rb doping on the Rb-formamidinium-methylammonium-
PbI3 based perovskite photodetectors. Rb was incorporated in the perovskite films with different
contents, and the corresponding photo-response properties were studied. Doping of few Rb (~2.5%)
was found to greatly increase the grain size and the absorbance of the perovskite. However, when the
Rb content was greater than 2.5%, clustering of the Rb-rich phases emerged, the band gap decreased,
and additional absorption band edge was found. The excess Rb-rich phases were the main cause
that degraded the performance of the photodetectors. By space charge limit current analyses, the Rb
was found to passivate the defects in the perovskite, lowering the leakage current and reducing the
trap densities of carriers. This fact was used to explain the increase in the detectivity. To clarify the
effect of Rb, the photovoltaic properties were measured. Similarly, h perovskite with 2.5% Rb doping
increased the short-circuit current, revealing the decline of the internal defects. The 2.5% Rb doped
photodetector showed the best performance with responsivity of 0.28 AW−1 and ~50% quantum
efficiency. Detectivity as high as 4.6 × 1011 Jones was obtained, owing to the improved crystallinity
and reduced defects.

Keywords: Rb doping; perovskite; photodetector; detectivity

1. Introduction

Organic perovskites have become the most important candidate in the future of high-
efficiency solar cells because of easy fabrication, high absorption coefficient, wide band
gap range, and fact charge transport [1]. As a hybrid organic-inorganic material, the crys-
talline properties and direct band gap characteristics mean that perovskites have different
optoelectronic properties to the inorganic materials. The halide perovskites are defined by
the formula AMX3 [2], which is composed by a monovalent cation, A = formamidinium
(H2NCHNH2

+, FA) and methylammonium (CH3NH3
+, MA); a divalent metal M from

group II; and a halide anion X [3]. When the octahedral anions in the A sites were replaced
by the inorganic cations such as cesium (Cs+) and rubium (Rb+), the hybrid metal halide
perovskites became more stable [4]. Various successful reports have used the alkaline
stabilized perovskite for solar cells [5], lasers [6], and light-emitting diodes applications [7].

Recently, perovskite photodetectors (PDs) have been shown to have potential for light
detection from visible to near infrared. Adjusting the structure by A-site doping improves
the overall performance of the photodetector, resulting in high responsivity, low noise
and fast response. For example, MA lead-halide-based PDs exhibited high detectivity, low
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noise, and large linear dynamic range. However, it is very unstable at high temperature.
Additionally, the quantum efficiency of the (MA+) perovskite based PDs is low [8–11].
FA+ perovskite improves the thermal stability, but the yellow δ-phase usually emerged
that seriously degrades the properties. Stability of the perovskite can be improved by
using mixing cations [12]. These kind of devices have better performance than the single
and double-cation ones and better stability [13–15]. For example, we have demonstrated
the FA-MA-Cs mixed perovskite PDs have superior behaviors than the FA-MA PDs [16].
Snaith et al. have reported that the FA-Cs mixed cationic perovskite film can be stable at a
temperature above 100 ◦C [17]. Rb is also an element of group I, which has been reported
to reduce the non-perovskite phase [18–20]. To our best knowledge, the influences of Rb
doping on the performance of FAMAPbI3 PDs has not been studied. In this work, the
Rb-doped organic perovskite PDs were investigated. The Rb-doped PDs demonstrated
a wide spectrum coverage in the visible range that has a maximum external quantum
efficiency (EQE) of ~50%.

2. Materials and Methods

Rbx(FA0.75MA0.25)1-xPbI3 precursor solution was made by dissolving methylammo-
nium (MA) iodide, formamidinium (FA) iodide, and lead iodide with 0.8 mL dimethyl-
formamide (DMF) and 0.2 mL of dimethyl sulfoxide. The concentration of the perovskite
precursor solution was 1.2 M. The solution was stirred until it was completely dissolved to
form FA0.75MA0.25PbI3 perovskite precursor solution. Rubidium iodide was pre-dissolved
in dimethyl sulfoxide with a molar concentration of 1.5 M and then added to form the Rbx
(FA0.75MA0.25)1-x perovskite precursor, in which x = 0, 0.025, 0.05, and 0.075. The indium
tin oxide (ITO) glass was treated by acetone, isopropyl alcohol, and distilled water before
coating. Then, it was dried with nitrogen and ultraviolet light ozone treated for 20 min.
The perovskite precursor solution was spin-casted on ITO substrate. 200 µL anti-solvents
of chlorobenzene (CB) was dropped at the last 15 s, and then annealed at 50 ◦C for 20 min
then heated up to 100 ◦C for 1 h.

The stacking sequence of the photodetector was ITO/PEDOT:PSS/perovskite/PC61BM/
BCP/Al. The PEDOT:PSS layer was coated on ITO-glass firstly. The perovskite thin film was
spin-coated on the PEDOT:PSS layer by one-step method. The PC61BM([6,6]-phenyl C61
butyric acid methyl ester) solutions was prepared by dissolving 20 mg PC61BM powder in
1 mL chlorobenzene, continuously stirring for >12 h to ensure the full dissolution. PC61BM
solution was spin-coated at 3000 rpm for 40 s. Bathocuproine (BCP) was coated on the
PCBM as the buffer layer. A 150 nm-thick Al electrode was thermally evaporated using a
shadow mask. The structure of the PD device was plotted in Figure S1.

The microstructure and elementary mapping of the perovskite thin films were ana-
lyzed by scanning electron microscope (SEM, Hitachi SU8000, Tokyo, Japan) with energy
dispersive X-ray spectroscopy (EDS, Bruker X-flash FlatQuad 5060FQ, Berlin, Germany).
The crystalline structures were characterized by X-ray diffraction (XRD, Bruker D8 Discover,
Karlsruhe, Germany). The steady-state photoluminescence (PL) spectra were collected
by Horiba Jobin Yvon LabRAM HR system (Kyoto, Japan). The absorption spectrum of
perovskite thin film was collected by using a HITACHI U4100 UV–vis–NIR spectrometer
(Tokyo, Japan). The space-charge limit current (SCLC) was analyzed by current-voltage
(I–V) measurement using Agilent E5270B in the dark. White light-emitting diode(300 lm,
10 Hz) was used to measure the photo-response, and solar simulator (AM 1.5, 100 mW/cm2)
was used to measure the solar cells. The photocurrent was acquired using a Tektronix
TBS-1104 digital oscilloscope (Beaverton, OR, USA).

3. Results

Figure 1a–d shows the morphologies of the perovskite films with 0%, 2.5%, 5% and
7.5% Rb, respectively. The grain size was estimated in the insets, increasing with the Rb
content. Besides, the grain size distribution was much improved by 2.5–5% Rb doping, as
compared with the pure (FA0.75MA0.25)1-xPbI3 film that small crystallites embedded. When
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the Rb content was increased to 7.5%, the small crystallites emerged between larger grains.
Because the large and uniform grain size have been reported to by key for enhancement
of the charge transport in the perovskites [13,21], the small amount of Rb incorporation
could be expected to improve the photovoltaic and photodetector devices behaviors. The
increase in the grain size by Rb doping was related to the stress-relief of the perovskite
phase that incorporates the small ionic radius of Rb [19].
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Figure 1. Top-view SEM morphology of Rb-doped (a) 0%, (b) 2.5%, (c) 5%, (d) 7.5% perovskite films.

The EDS elementary distribution of the Rb-doped films was shown in Figure 2 along
with the clustering of Rb was found when the Rb concentration is higher than 2.5%,
becoming more obvious when the doped Rb concentration reached 5% and 7.5%. The XRD
patterns of the Rbx(FA0.75MA0.25)1-xPbI3 were shown in Figure 3. All of the diffraction
peaks were associated with the planes of perovskites. The δ-FAPbI3 s phase was observed
in the 0% Rb sample, but was absent when 2% Rb was added to the perovskite films. The
photo-inactive yellow phase δ-FAPbI3 was almost eliminated by adding a moderate amount
of Rb. Furthermore, PbI2 precipitation that usually precipitates at grain boundaries was
also suppressed by 2% Rb doping. However, the RbPbI3 phase was found in the 5% and
7.5% Rb-doped samples that decreased the diffraction intensity. Figure 3b demonstrates
the normalized PL peaks. The PL intensity increased by 2.5% Rb doping and the peaks red
shift when the Rb content was increased, indicating a decrease in the band gap. This was
ascribed to the Varshni shift that caused the band gap narrowing with the increase in the
grain size [22]. Similar redshift upon RbI doping has been reported [23]. The PL intensity
was slightly decreased by 2.5% Rb doping, but was markedly reduced by 5% and 7.5% Rb
doping. This trend was similar with the variation of XRD intensity, therefore the mechanism
was ascribed to the appearance of the yellow phase. Figure 3c shows the ultra-violet to red
absorption spectra (400–650 nm) of the films. However, additional absorption edge was
found around 430 nm for the 5% and 7.5% Rb doped samples. This is caused by the RbPbI3
that has a larger band gap (2.7 eV) than FA0.75MA0.25 PbI3 (~1.55 eV) [24]. Due to the
Rb-rich clusters, the 7.5% Rb-doped perovskite film showed the worst absorbance. A red
shift caused by Rb doping in FA0.75MA0.25PbI3 was obtained in the absorption spectrum,
in good agreement with the PL result.

In order to study the defect behavior for the Rb-doped perovskite, the SCLC device
was fabricated and the density of defects and trap states can be calculated by the SCLC
model. Figure 4 demonstrates the dark J-V curves, in which three regions with different
slopes that corresponded to the linear ohmic region (J∝Vn, n = 1) at low bias, trap-filling
limited region (J∝Vn, n > 3) at middle bias, and a SCLC or Chlid’s region (J∝Vn, n = 2)
at high bias were found and fitted linearly. The trap densities (Nt) of the electron-only
devices were calculated [21]. The trap-filling limited voltage VTFL can be determined by
the onset of trap-filling limited region, and then the Nt can be derived. The linear fitting
of different regions was shown in the figure based on the equation, VTFL = (q ∗ Nt ∗ d2)/
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(2 ∗ ε ∗ ε0), where q, Nt, d, ε and ε0 are electronic charge, trap density, the thickness of
device, the dielectric constant of perovskite and the permittivity of free space, respectively.
The dielectric constant used here was derived by measuring parallel capacitance of the
perovskite using the structure of Ag/silicon/SiO2/perovskite/Ag. The capacitance of
native oxide Ag/silicon/SiO2/Ag was firstly measured as a reference. As a result, the
Rb-doped films had a lower VTFL of 0.33 V and trap densities 6.55 × 1015 cm−3 than
FA0.75MA0.25PbI3 (0.42 V, 1.17 × 1016 cm−3).
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Next, the influence of Rb+ doping concentration on the photodetector performance are
discussed. The continuous light response was shown in Figure 5, and the periodic switching
characteristics were clearly observed. A continuous light response at a microsecond speed
was observed. The doping of Rb caused an increase in the response time. The reason is that
the phase separation of Rb-rich phases leads to a decrease in the crystalline properties of
the film, which hinders carrier transfer behaviors. Differently, the response time of 7.5%
Rb-doped films was the lowest among all of the Rb-doped samples. It was ascribed to the
increase in the grain size. According to the literature, the larger crystal grains have lower
bulk defects and higher carrier mobility, speeding up the response time [25].

Figure 6 shows the measured response time, spectral responsivity (R), noise current,
EQE, and detectivity (D) of the PDs with various Rb. The EQE of the perovskite films
was shown in Figure 6a. The 2.5% Rb-doped perovskite film had a highest EQE of ~50%.
The enhancement of the EQE spectrum was caused by the increased absorption of the
perovskite. The EQE spectra were further used to represent the R (Figure 6b) [26]. Because
of the proportion relationship between EQE and R, the 2.5% Rb-doped perovskite film also
demonstrated the highest R of 0.273A/W. Figure 6c demonstrated the dark current (ID) of
the perovskite films. All of the Rb-doped showed lower leakage current compared with
the undoped samples. Additionally, the 2.5% Rb-doped perovskite film had the lowest
dark current. Detectivity of a PD can be determined from the ID and R [26]. Figure 6d
shows the relationship of D versus wavelengths. It was found that the detectivity was
obviously increased by Rb doping for all of the Rb-doped films. Among these samples,
the 2.5% Rb-doped PD showed the highest D (4.58 × 1011 Jones). The results revealed that
the incorporation of Rb was mainly on the improvement of the detectivity, owing to the
reduced internal defects and increased grain size and thin-film quality. Compared with the
effect of Cs doping in the perovskite PDs, the Cs-doped PDs showed marked reduction
in the response time but the change in the rise time and fall time of the Rb-doped PDs
is not obvious [27]. The appearance of Rb-rich second phase should be responsible for
this difference.
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The solar cell parameters were measured and shown in Figure S2 to further understand
the photo-response mechanism of the Rb-doped PDs. The light source was an AM1.5G solar
simulator. Similarly, 2.5% Rb+ doped solar cells had an increase in the conversion efficiency
when it was compared with the undoped one, mainly caused by the great increase in the
Jsc. It is believed that the improvement of the JSC was related to the decline of the trap
densities and improved crystal quality, caused by the incorporation of Rb that inhibited the
formation of δ-FAPbI3 phases and internal defects.
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4. Conclusions

The impacts of Rb doping on the organic perovskite PDs was investigated. It was found
that slight addition of the Rb with 2.5% Rb increased the grain size, reducing the unwanted
yellow phase. The lattice expansion was observed by XRD that shows monotonically shift
of peaks toward higher angle when the Rb contents was increased. As a result, the red
shift in PL and absorption spectra was observed by increasing Rb. SEM images shows that
when the Rb concentration is higher than 2.5%, the Rb-rich cluster emerged. For the PD
performance, the rise time and fall time changed little, but the detectivity was markedly
enhanced owing to the reduction of the dark current by Rb doping. By SCLC analysis, the
Rb doping was found to have passivated the defects in the perovskite, lowering the leakage
current and reducing the trap densities of carriers.
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