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Abstract: The theoretical investigation of interband and intraband transitions in an asymmetric
biconvex lens-shaped quantum dot are considered in the presence of an external magnetic field.
The selection rules for intraband transitions are obtained. The behaviors of linear and nonlinear
absorption and photoluminescence spectra are observed for different temperatures and magnetic
field strengths. The second and third harmonic generation coefficients as a function of the photon
energy are examined both in the absence and presence of an external magnetic field.
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1. Introduction

Nanoparticles or quantum dots attract the attention of researchers due to their wide
range of possible applications. One of these applications is the development of single
photon emitters that can be used for quantum cryptography, optical quantum computing,
and the development of highly secure communication networks [1]. Embedding the
quantum dots into multilayer metamaterials and multilayer grating nanostructures can
significantly increase the efficiency of such emitters due to the Purcell effect [2].

Possible optical transitions play an important role in the formation of the optical
characteristics of nanoparticles. Thus, it was shown in [3] that interband optical transi-
tions of charge carriers dominate the absorption and emission spectra in copper and gold
nanocubes, while the plasmonic enhancement in these objects is less important to the
emission. Along with this, enhanced intraband electron transitions can also be observed in
plasmonic nanostructures. For example, in small gold nanocubes, intraband electron transi-
tions make a significant contribution to photoluminescence, while interband transitions
are the main contribution to the emission of large gold nanocubes [4]. In this regard, the
analysis of optical effects associated with interband and intraband transitions of electrons
in quantum dots of various types is an urgent problem.

Recent papers [5–7] reported the realization of GeSi quantum dots (QDs) with a
strongly oblate lens-shaped geometry. In particular, the morphology of the structures
was determined, and the specific optical characteristics of such QDs were revealed. An
experimental confirmation of the implementation of Kohn theorem for the case of a heavy
hole gas in strongly oblate lens-shaped QD was also found [6]. It is noteworthy that

Nanomaterials 2022, 12, 60. https://doi.org/10.3390/nano12010060 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12010060
https://doi.org/10.3390/nano12010060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-6118-0098
https://orcid.org/0000-0001-6728-7286
https://doi.org/10.3390/nano12010060
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12010060?type=check_update&version=1


Nanomaterials 2022, 12, 60 2 of 13

the specific geometry of QDs makes it possible to apply the adiabatic approximation for
describing single-particle and few-particle states in such structures.

It is clear that for a description of the optical characteristics it is necessary to have
detailed information about the band structure of studied QD. Therefore, the problem of
constructing a realistic mathematical model of the investigated system becomes funda-
mentally important, which will affect the specific form of the one-particle or many-particle
Hamiltonian. Since the geometry of the system is complicated and the separation of vari-
ables in the Schrödinger equation does not take place even in the case of a scalar effective
mass, it is necessary to use various approximate methods to describe optical properties of
strongly oblate lens-shaped QD. Many works are devoted to this problem in which both
the spectral and optical characteristics of the QDs under study are discussed [8–19].

In [8], the authors considered optical transitions in a lens-shaped QD in the presence
of hydrogenic impurity. The effect of the size of QD on the absorption coefficient has
been investigated in the framework of density matrix formulation. Electronic and optical
properties have been studied under external magnetic field in [10]. Authors have calculated
the energy levels and wave functions using the finite element method (FEM) for different
magnetic field values. Moreover, authors have studied the effect of the magnetic field on
the second harmonic generation (SHG) and third-harmonic generation (THG) in the lens-
shaped quantum dot. According to the obtained results, they found that the presence of the
magnetic field affects the symmetry of the system. The influence of impurity on the binding
energy and optical properties of lens-shaped quantum dots have been studied in [14]. The
authors used FEM and the Arnoldi algorithm to calculate the absorption coefficient in
the presence of impurity. The results showed that the binding energy decreased with QD
size increase. Moreover, it has been shown that the absorption coefficient decreased, and
the absorption peaks shifted toward the higher energies in the presence of the impurity.
In another paper [15], the effects of QD sizes, pressure, and temperatures on transitions
lifetime, linear, and nonlinear absorption coefficients in terahertz range were theoretically
investigated. The authors considered two laterally coupled InAs/GaAs lens-shaped QDs
connected to a wetting layer. The structure was analyzed by using the finite difference
method (FDM) in the framework of effective mass approximation. The obtained results
showed that the total absorption coefficient achieved a maximum value in the terahertz
range, and the resonant peaks shifted toward the lower energies by increasing the pressure
or decreasing the temperature. In addition to the influence of the magnetic field on the
optical properties of a QD, the following factors can also affect the matrix in which the
dot is embedded, electric fields, pressure, etc., [20–23]. In particular, in [23], the effect
of pressure on interband and intraband transition of QDs was considered. The results
showed that the interband and intraband transitions follow blue-shift and red-shift under
pressure, respectively. The magnitude of the shift was, nevertheless, weaker in the intraband
transitions case than for the interband one.

One of the powerful mechanisms for studying the QD band structure is a compre-
hensive analysis of the linear and nonlinear absorption spectra of the investigated struc-
tures [24–32]. As indicated above, using the adiabatic approximation, one-particle states
can be successfully described, in particular, in the presence of external fields [6,33,34]. The
analytical form of the energy spectrum and wave functions for electrons and holes makes
it possible to give a complete and comprehensive description of the optical properties
of strongly oblate lens-shaped QD. This, in turn, makes it possible to draw a number of
conclusions regarding the specificity of the band structure of such structures.

In this article, in the framework of adiabatic approximation the linear and nonlinear
optical absorption and photoluminescence related to interband and intraband optical
electron transitions in strongly oblate lens-shaped InAs QD in the presence of external
magnetic field are considered. Note an important feature of the considered model. In the
axial direction size, quantization is much higher than in radial one. It is clear that when in
the presence of an axial magnetic field, we must take into account such fields at which the
axial subsystem will be fast, since, in the case of strong magnetic fields, the role of magnetic
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quantization can become more significant in comparison with size quantization in the axial
direction. As a result, the slow and fast subsystems are reversed. We do not cover such
magnetic fields in this article. However, we note that in the case of such high fields, the
energy spectrum will be characterized by a subband structure where a family of axial levels
will be associated with each Landau level.

2. Theoretical Model

Let us consider the electron states in an asymmetric biconvex lens-shaped QD (Figure 1)
in the presence of an external axial magnetic field. The confining potential has been chosen
in following form

Ucon f

(→
r
)
=

{
0, −

√
R2

2 − ρ2 + R2 − h2 < z <
√

R2
1 − ρ2 − R1 + h1

∞, other cases
(1)

where h1,2 are semi-axes for each convex part of asymmetric biconvex lens-shaped QD, R1,2
are the curvature radii of two spheres intersection.
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Along the axial direction, the particle is localized in the one-dimensional quantum
well with following boundaries [5,34] z+ =

√
R2

1 − ρ2 − R1 + h1

z− = −
√

R2
2 − ρ2 + R2 − h2

(2)

The Hamiltonian of the system has the form:

Ĥ =
1

2m∗

(
→̂
p +

e
c

→
A
)2

+ Ucon f

(→
r
)

, (3)

where m∗ is the effective mass of the particle,
→̂
p is the particle momentum operator, e is the

electron charge magnitude, c is the speed of light in vacuum, and
→
A is the vector potential

of the magnetic field.
The calibration of the vector potential in cylindrical coordinates was chosen as

→
A = {0, 0, Hρ/2}, where

→
H is the magnetic field strength.
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3. Energy Spectra and Wave Functions

For the Schrödinger equation of problem (3) with confining potential (1) in cylindrical
coordinates we have

− }2

2m∗

[
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂ϕ2 +
∂2

∂z2

]
ψ− i}ωH

2
∂ψ

∂ϕ
+

m∗ω2
Hρ2

8
ψ + Ucon f ψ = Eψ, (4)

where ωH = eH
m∗c is the cyclotron frequency.

In adiabatic approximation, the total wave function of the system is searched in the
following form [34]:

ψ(r, ϕ, z) =
1√
2π

eimϕ f (ρ)χ(z; ρ), (5)

where m = 0, ±1, ±2, . . . is the magnetic quantum number. According to (2) and (4), for
χ(z; ρ) we have

χ(z, ρ) =

√
2

a(ρ)
sin
(

πnz

a(ρ)

(
z +

√
R2

2 − ρ2 + h2 − R2

))
(6)

where a(ρ) =
√

R2
2 − ρ2 +

√
R2

1 − ρ2 + (h1 + h2)− (R1 + R2) is one-dimensional quantum
well length, nz = 1, 2, 3, . . . is axial quantum number. For energy spectrum we have

Enz =
π2}2

2m∗a2(ρ)
n2

z (7)

Axial energy plays the role of effective potential for radial one. Placing (7) in the Taylor
series around ρ = 0 for Ue f f , we obtain

Ue f f (ρ) =
π2}2n2

z

2m∗(h1 + h2)
2 +

m∗ω2
0ρ2

2
(8)

where ω2
0 = R1+R2

(m∗)2(h1+h2)
3R1R2

π2}2n2
z . For the radial Schrödinger equation, we can write

− }2

2m∗

[
∂2

∂ρ2 +
1
ρ

∂

∂ρ
− m2

ρ2

]
f (ρ) +

m∗Ω2

2
ρ2 f (ρ) = εnρ ,m f (ρ), (9)

where εnρ ,m = Enρ ,m − π2}2n2
z

2m∗(h1+h2)
2 − m}ωH

2 , Ω 2 =
ω2

H
4 + ω2

0. The solution of (9) is well

known, and for the wavefunction, we have

f (ρ) = Cρ|m|e−
λρ2

2 1F1

(
−nρ, |m|+ 1; λρ2

)
(10)

where λ = m∗Ω
} , nρ = 0, 1, 2, . . . is the radial quantum number, C is the wavefunction

normalization constant, and 1F1(a, b; c) is the confluent hypergeometric function. For the
energy spectrum, we can write

Enρ ,m = }Ω
(
2nρ + |m|+ 1

)
+

π2}2n2
z

2m∗(h1 + h2)
2 +

m}ωH
2

(11)

Note that all results were obtained for relatively weak magnetic fields, when the size
quantization in the axial direction is much higher than the magnetic field intensity.

4. Results

As was mentioned above, the case of the asymmetric biconvex lens-shaped QD made
from InAs was considered. The material parameters used in the calculations were the
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following:m∗e = 0.023m0 is the electron effective mass, m∗lh = 0.026m0, m∗hh = 0.41m0 are
the effective masses of the light and heavy holes, respectively, where m0 is the free electron
mass, εr = 15.5 [35,36]. Using the Varshni relation, the temperature dependence of the
bandgap in InAs can be described as Eg(T) = Eg(0) + αT2

(T+β)
, where Eg(0) = 415 meV and

α = 0.276 meV/K, β = 83 K [37].
Let us consider the direct interband absorption in the strong size quantization regime,

when the Coulomb interaction between electron and hole can be neglected. Then, the
absorption coefficient is given by [38]

α(}ω) = α0 ∑
νe ,νh

∣∣∣∣∫ Ψe

(→
r
)

Ψh

(→
r
)

dV
∣∣∣∣2δ
(
}ω− Eg(T)− Ee

νe − Eh
νh

)
(12)

where α0 is the quantity proportional to the square of the modulus of the matrix element
of the dipole moment taken over the Bloch functions, Ψe

(→
r
)

, Ψh

(→
r
)

are electron and

hole wave functions, Eg(T) is temperature dependence of the energy gap, Ee
νe

(
Eh

νh

)
is

electron (hole) energy, νe(νh) is set of quantum numbers for electron (hole), and }ω is
incident photon energy. The broadening was taken into account within the framework of
the Lorentz model. For this purpose, the delta function in (12) was replaced by the Lorentz
contour with the broadening parameter Γ. For the dependence of the broadening linewidth
Γ on the temperature, the following equation was constructed Γ(T) = Γ(0) + A · T + B · T2,
where }Γ(0) = 1.459meV, A = 0.00138 meV/K, B = 0.00005 meV/K2 [39].

Figure 2 shows the dependence of the interband absorption coefficient for∣∣m, nρ, nz >→
∣∣m′, n′ρ, n′z > transition on the photon energy. Note that the following selec-

tion rules were obtained 
m→ −m′

nz → n′z
nρ → n′ρ
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for different magnetic fields.

In this case, the transitions non-diagonal in nz or nρ have no probability; therefore,
they are not shown in the figure. It can be seen from Figure 2 that the account of the
magnetic field brings the blue shift of the interband absorption peak.
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Figure 3 shows the dependence of the absorption coefficient for different interband
transitions on the photon energy. In this case, the transitions non-diagonal in nz or nρ have
no probability; therefore, they are not shown in Figure 3.
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Figure 4 presents the dependence of the interband absorption coefficient for |0, 0, 1〉 →
|0, 0, 1〉 transition on the photon energy for different temperatures (260–300 K). As can be
seen from the figure, interband absorption also increases with temperature for constant
magnetic field. The account of temperature brings the red shift of interband absorption.
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The photoluminescence (PL) coefficient is calculated using the relation [40,41]

R(}ω) = R0 · }ω · α(}ω) · fc(1− fv)

fc − fv
(14)



Nanomaterials 2022, 12, 60 7 of 13

where R0 is the quantity proportional to the square of the modulus of the matrix element
of the dipole moment, taken over the Bloch functions, k is the Boltzmann constant, fc and
(1− fv) are the probabilities that the state of the conduction band is filled and the state of
the valence band is empty, respectively.

Figure 5 shows the dependence of the PL coefficient on the photon energy for different
the magnetic field strengths. The behavior of the PL coefficient with respect to temperature
and magnetic field is similar to the behavior of the absorption coefficient.
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Figure 6 demonstrates the dependence of the PL coefficient on the photon energy for
different temperatures, close to room temperature. The PL coefficient significantly increases
upon increasing the temperature in a rather narrow range from 260 to 300 K.
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Now let us consider the direct intraband light absorption. Analytical expressions for
the linear and nonlinear optical absorption coefficients are obtained, using the compact
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density matrix approach and iterative method [42,43]. Thus, the linear and third-order
nonlinear optical absorption coefficients of a QD can be written as:

α(1)(ω) = ω ·
√

µ

εr

σ · }Γ(
E f i − }ω

)2
+ (}Γ)2

∣∣∣M f i

∣∣∣2, (15)

α(3)(ω, I) = −ω
√

µ
εr

(
I

ε0nrc

) |M f i|42σ·}Γ[
(E f i−}ω)

2
+(}Γ)2

]2×

×
{

1− |Mii−M f f |2

4|M f i|2
(
(E f i−}ω)

2−(}Γ f i)
2
+2E f i(E f i−}ω)

(E f i)
2
+(}Γ)2

)}
,

(16)

where µ is the permeability of the system, σ is the electron density in a QD, E f i = E f − Ei
is energy difference between the final and initial states ( f and i, respectively), Γ = 1/τ is
the relaxation rate for states f and i (corresponds to the full width at half maximum), I is
the incident optical intensity, M f i =

〈
Ψ f

∣∣∣ez
∣∣∣Ψi

〉
is the matrix element of dipole moment,

and nr is the refractive index.
For the spectral dependences of the linear and nonlinear coefficients for different

magnetic fields and lens-shaped QD heights on the photon energy, when incident optical
intensity is I = 1 kW/cm2 and electron density in QD σ = 3·1016 cm−3 [44,45], the nonlinear
absorption has the opposite sign to the linear one. Calculations were for 300 K. First of all,
it should be mentioned that the nonlinear absorption value decreases, but the nonlinear
practically does not change (see Figures 7 and 8).
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where n1 and n2 are quantum numbers of intermediate levels.
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field values of photon energy. Calculations were performed for 300 K. It should be noted
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5. Conclusions

In this paper, the interband and intraband optical transitions in an asymmetric bi-
convex lens-shaped QD made in InAs in the presence of an external magnetic field were
investigated. An advantage of our approach is the possibility of using an analytical method
for describing electron and hole states in a strongly oblated quantum lens. This approach
made it possible to obtain explicitly the selection rules for interband transitions. A study of
the interband and intraband absorption coefficients showed a broadening of the absorption
peaks with increasing temperature and a decrease in the peaks amplitudes with magnetic
field strength increasing. The SHG and THG nonlinear parameters of the system decreased
with an increase in the magnetic field and/or temperature. Our results highlighted the
significant difference between linear and nonlinear absorptions (calculations showed that
the contribution of the linear absorption significantly exceeded the contribution of the
nonlinear one. With a magnetic field increase the interlevel distances also increased, as
a result of which, the overlap of the wave functions weakened. Therefore, the contribu-
tion of the corresponding matrix elements decreased, while this was more significant for
nonlinear absorption). Moreover, magnetic field shifted the absorption peaks to higher
light frequencies in the case of interband transitions and to low frequencies in the case of
intraband transitions. In the case of relatively low temperatures, SHG and THG can be
clearly observed. The results obtained above suggest that the temperature and magnetic
field significantly affect the optical properties of the considered nanostructure.
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