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Abstract: This research reports the first-ever study on abundantly available, environmentally friendly,
low-cost and ready-for-use Nutraceutical Industrial Cumin Seed Spent (NICUS) as an innovative
adsorbent for bioremediation of a bisazo Acid Red 119 (AR119) dye, a probable mutagen from
textile industrial effluents (TIEs). The experiment at the laboratory scale is designed to suit the
concepts of sustainability and valorisation under the domain of circular economy. The experimental
qe value obtained was 96.00 mg g−1. The optimised conditions of parameters are as follows: pH
of 2; adsorption time, 210 min; adsorbent dosage, 0.300 g L−1; particle size, 175 µM; initial dye
concentration, 950 mg L−1; orbital shaking, 165 rpm and temperature, 50 ◦C, producing an impressive
value of 748 mg of dye adsorbing on 1 g of dry NICUS. The adsorption capacity of NICUS obtained
from the quadratic model developed for process optimisation gave values of 748 mg g−1. As a
prelude to commercialisation, five variables that affect the adsorption process were experimentally
studied. For the feasibility and efficiency of the process, a two-level fractional factorial experimental
design (FFED) was applied to identify variables that influence the adsorption capacity of NICUS.
The identified variables were applied to scale experiments by three orders. Nine isotherm models
were used to analyse the adsorption equilibrium data. The Vieth–Sladek adsorption isotherm model
was found to be the best fit. The pseudo-second-order reaction was the appropriate mechanism for
the overall rate of the adsorption process. Mechanistic studies related to mass transfer phenomena
were more likely to be dominant over the diffusion process. Techniques such as SEM, FTIR and CHN
analysis were used to characterise NICUS. The dye-adsorbed NICUS obtained as “sludge” was used
as a reinforcing material for the fabrication of composites using plastic waste. The physicomechanical
and chemical properties of thermoplastic and thermoset composite using dye-adsorbed NICUS were
evaluated and compared with NICUS composites. Prospects of integrating Small and Medium
Enterprises (SMEs) into the circular economy of Nutraceutical Industrial Spent (NIS) are discussed.

Keywords: circular economy; bioremediation; textile industrial effluent; Nutraceutical Industrial Spent;
composites; SME
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1. Introduction

The third decade of the third millennium is probably the most crucial decade for
ensuring water security [1]. Safeguarding water security is one of seventeen sustainable
development goals recognised by the United Nations [2]. The principle of sustainable
development is to maximise economic growth by decoupling from water consumption and
wastewater expulsion [3]. Thus, water constitutes a major apprehension, impairment and
pathway for sustainable development of industries that generate effluents containing large
amounts of toxic and hazardous substances. According to the Water Footprint Network, the
dyeing of textiles consumes 9.00 trillion litres of water every year [4]. The massive amounts
of water used in textiles have generated textile industries’ dubious distinction as one of the
most pestilential industries in the world [5]. Moreover, the lack of stringent regulations in
many developing countries means the textile producers dump wastewater directly into
waterways, which are affecting the environment and the ecology very seriously [6]. Thus,
sustainable index measurements of textile production assume paramount importance [6].

The sustainable index considers the impact on human health due to pollution arising
from the production of textiles, placing emphasis on the management of the effluents. Such
transitions toward sustainability have placed emphasis on the importance of water man-
agement and waste treatment in textile industries. The latter assumes importance as one of
the key challenges of today’s economy, which is addressed through the concept of valorisa-
tion [7,8]. Valorisation is the process of conversion of waste into constituent parts for further
utilisation, which has value beyond the cost of the process of transformation. It highlights
practices and processes that decrease the discharges and reduces the environmental impacts.
Unlike linear economics, which lay emphasis on end-of-life concepts [9], circular economy
(CE) envisages the concept of reusing the waste of one process as a resource for another
process [10]. Accordingly, both concepts attempt to decouple economic growth from natural
resources through the process of reduction, reuse, recycling and returning to attain the status
of a sustainable economic system [11]. Thus, valorisation and CE have been placed before
the world to redesign laboratory research in tune with newer concepts.

Azo dyes extensively used in textile and allied industries comprise about 70% of the
total synthetic organic compounds. These compounds are proscribed all over the world
for carcinogenic and mutagenic properties. Despite their established harmfulness, they
are extensively used in developing countries for their demonstrated advantages such as
(i) simple and cost-effective methods of synthesis in aqueous media, (ii) the availability of a
colossal choice of starting materials, (iii) a wide spectrum of shades, (iv) high intensity and
superior fastness of the colour, (v) versatility in applications on a variety of substrates and
(vi) the energy-saving dyeing process at 60 ◦C compared to the boiling temperature of its
counterparts, which have made them important and indispensable to the textile industry [12].
However, due to the lack of suitable techniques to dispose of ~4.50 × 105 tons of dyes per
annum worldwide, these dyes are released as textile industrial effluents (TIEs) [13]. The
Nutraceutical market is projected at US $336 billion by 2023 at the compound annual growth
rate of 8% per annum [14]. However, the processing and production of principal components
and/or active ingredients in the Nutraceutical market generates a voluminous 50–95% of
spent. Though no figures are available about the total amount of the spent generated,
considering the economics of the Nutraceutical market, it may run into millions of tons.

Cumin belongs to the family Apiaceae, which contains cyminum as a single species. The
cumin seed has been known to humankind for centuries. Its total annual world production
is estimated at 4.00× 105 MT [15]. The seeds have two components: the pleasant odour due
to volatile oil content and cuminol, also named cuminaldehyde. The latter is the principal
component that has medicinal value. The extraction of the principal component and oil
content by mechanical, thermal and chemical processes generates a by-product commonly
known as Nutraceutical Industrial Cumin Seed Spent (NICUS). NICUS has no feed or
fertiliser value. Presently, the spent is used as a fuel with low calorific value due to its
porous structure, which traps moisture and enhances carbon footprints.



Nanomaterials 2022, 12, 1684 3 of 25

A survey of the literature revealed that only one research article has reported on the
decolourisation of AR119, a bisazo dye from textile industrial effluents [16]. The methods
reported for azo dyes are broadly classified as biological [16], chemical [17] and physical
methods [18,19]. Among these, biological methods fall short of achieving the degradation
of AR119 dye, which is designed to remain a stable and long-lasting colourant and resist
microbial degradation. The use of chemical treatment methods imposes a high operational
cost of the treatment and disposal of large amounts of chemical sludge that contravenes the
environmental sustainability and financial feasibility of industries [20].

Adsorption is a physical method for the remediation of AR119 using sewage sludge
and sewage sludge ash. This method is user-friendly, easy to operate and incurs low
maintenance costs [19]. The use of the aforesaid materials involves two pretreatments,
namely, drying and incineration. The economic aspects of the drying process are greater
compared to incineration [21]. However, the latter leaves a carbon footprint and involves
the Environmental Impact Factor, also commonly known as E-factor [22]. These deficiencies
have encouraged the authors to use NICUS as a superior and innovative adsorbent for
bioremediation of AR119 from TIEs, which has the following characteristics: (i) it is ready-
for-use adsorbent material for the removal of AR119 from TIEs by providing sustainable,
clean technology, (ii) abundantly available, (iii) eco-friendly, (iv) low-cost, (v) provides a
tenable solution to valorise Nutraceutical Industrial Spent (NIS), (vi) contains prospects to
fabricate low-cost green composites using plastic waste and dye-adsorbed spent as filler
material, (vii) has a competitive edge over reported agriculture waste and (viii) fosters
innovation and suits moderate technology adopted in SMEs.

SMEs are the backbone of all economies in the world and are likely to play an important
role in the success of the CE. They are a part of business and depend heavily on an innovation-
friendly environment. There are 30 million SMEs in the USA alone [23], and they contribute to
two-thirds of employment in Europe [24]. The WRAP and Green Alliance report on recycling
and remanufacturing sectors mentions an estimated 205,000 jobs can be created in the United
Kingdom by adopting the CE concept [25]. The Global Innovation Index 2020 is proactively
boosting innovation-driven entrepreneurship and economic growth [26]. However, barriers such
as lack of financial resources and lack of technical skills pose challenges in their transition to CE.

The present work focuses on the first-ever study on the use of NICUS for remediation
of textile effluents by simple adsorption technology. Additionally, one of the objectives of
the study is to replace charcoal that is extensively used in the industries. Charcoal as an
adsorbent has serious limitations of high cost and high E-factor for the regeneration of the
material [27]. One of the principal targets of this study is to use dye-adsorbed NICUS, a
waste material, as filler/reinforcing material using plastic waste to fabricate composites.
This will meet the demands for a sustainable solution for bioremediation of textile industrial
effluents. Additionally, the proposed methodology offers a laboratory-scale demonstration
of the concept of circular economy and opportunity for SMEs to integrate with the circular
economy of Nutraceutical Industrial Spent (NIS).

2. Materials and Methods
2.1. Materials

Acid Red 119 (AR119) dye was obtained from Sigma Aldrich, India. The dye is
commonly referred to as Acid Red V (C.I. = 262,085; CAS registry number = 12220-20-1;
chemical formula = C31H25N5Na2O6S2; molecular weight = 673.67. λmax at 526 nm). A
UV–vis spectrometer (Perkin-Elmer Lambda EZ-201, Waunakee, WI, USA) was used. The
molecular structure of the AR119 dye is shown in Figure 1.
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2.2. Studies on the Variables Affecting Adsorption of AR119 Dye on NICUS

The influence of variables affecting the adsorption of AR119 dye on NICUS was studied
using batch experiments. The stock solution of AR119 (1000 mg L−1) was prepared using
double-distilled water and was used to prepare the required 25–500 mg L−1 concentration
solutions. To a series of 250 mL Erlenmeyer flasks, 50 mL aqueous AR119 dye solution
(25–500 mg L−1) (adsorbate) was added. An amount of 50 mg of NICUS (adsorbent) was
introduced into each Erlenmeyer flask. Three temperatures, 303, 313 and 323 K, were
selected for the adsorption kinetic studies. Experiments were designed to study the effect
of AR119 dye initial concentration (25–500 mg L−1) and dosage of NICUS (adsorbent) in
the range of 0.025–0.300 g 50 mL–1/0.500–6.000 g L−1. The experiments were also designed
to study the effect of pH 2, 4, 6, 7, 8, 10 and 12 on the process of adsorption. The pH of
the solution was attuned using 0.01–1.00 M HCl or NaOH solution. All the trials were
carried out using 200 mg L−1 as the initial dye concentration at almost neutral pH 7.
During each trial, the solution was subjected to stirring in a thermostatic orbital shaker for
180 min at 165 rpm. Samples were withdrawn at predetermined equilibrium time. The
unadsorbed AR119 dye in the solution phase was separated from NICUS by centrifugation
at 3000 rpm for five minutes. If the solution was unclear, the centrifugation was repeated
for an additional five min. The AR119 dye concentration at equilibrium pertaining to the
supernatant centrifuged solution was determined using a UV–visible spectrophotometer.
The coefficients of variance of the data obtained for the experiments carried out in triplicate
did not exceed ±2% error.

2.3. Statistical Optimisation of Variables Affecting the Adsorption Process

The five independent variables affecting adsorption of AR119 dye on NICUS using
batch experiments were time of contact of dye and adsorbent (A), the temperature of the
system (B), initial dye concentration (C), adsorbent dosage (D) and pH (E) of the solution,
using two-level Fractional Factorial Experimental Design (FFED) to optimise the adsorption
capacity of NICUS statistically. The data were fitted to a second-order polynomial model
for calculating the optimum conditions to obtain a quadratic regression equation. The
empirical second-order polynomial model is as follows:

Y = β0 + ∑ βiXi + ∑ βiiX2 + ∑ βijXiXj.

where Y represents the dependent response variable, β0 is a regression coefficient, βi is
the linear effect, βii is the squared effect and βij is the interaction effect of independent
variable X. Statistical software was used for a Response Surface Methodology study and
graphical representation of 3D and contour plots for the effect of independent variables on
the response. Analysis of variance (ANOVA) was used as a tool for the analysis of data
obtained from polynomial models using 95% confidence level and a value of the coefficient
of determination R2 ≥ 0.90.

3. Characterisation Methods

IR spectra were recorded using the FTIR spectrophotometer (Perkin Elmer 3 lambda,
USA). JEOL model 3300 (Japan) scanning electron microscope was used to record SEM
images. A pH meter Model 802 from Systronics, India was used to measure pH.

3.1. Analysis of Adsorption Kinetics

The models provide an insight into the performance of adsorption of AR119 dye on
NICUS with time as an independent variable. This is of significance to scale for commercial
applications. To provide the variation in adsorption rate, a concentration of 100, 200 and
300 µg mL−1 of AR119 dye was used to carry out kinetic studies at 303, 313 and 323 K. The
kinetic data of adsorption of AR119 on NICUS were analysed using pseudo-first-order Equa-
tion (1) and pseudo-second-order Equation (2) [28]. The results from each of the adsorption
kinetics were statistically analysed. Based on one of the statistical parameters, coefficient of
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variance, R2, and the error function χ2 Chi-squared test, the model that best described the
results of each experiment was determined out of the two evaluated kinetic models, namely,
pseudo-first order and pseudo-second order. Subsequently, the constants of each equation
and the equilibrium capacity (qe) were calculated. Table 1 shows the calculated values of the
constants corresponding to each of the adsorption kinetics models and equilibrium times. The
model that best described the data for all the experiments was the pseudo-second order.

q = qe (1 − e−k1t) (1)

q =
q2

e ktt
1 + qektt

(2)

Table 1. Experimentally determined and theoretically predicted parameters for adsorption kinetics models.

Initial
Concentration

[µg mL−1]

Temp
[K]

qe expt
[mg g−1]

Pseudo-First Order Pseudo-Second Order

Qm pred
[mg g−1] k1 R2 χ2 Qm pred

[mg g−1] k2 R2 χ2

100
303 98 96.05 3.15 × 10−1 0.91 0.04 97.78 1.61 × 10−2 0.95 0.01
313 97 95.45 3.29 × 10−1 0.92 0.03 96.96 1.86 × 10−2 0.97 0.00
323 98 97.60 5.08 × 10−1 0.90 0.01 98.01 7.91 × 10−2 0.90 0.01

200
303 188 179.26 2.27 × 10−1 0.91 1.14 188.14 3.00 × 10−3 0.91 0.42
313 190 185.73 1.86 × 102 0.92 0.10 65.88 1.71 × 10−3 0.90 1.65
323 193 184.74 3.03 × 10−1 0.94 0.07 188.42 7.46 × 10−3 0.97 0.01

300
303 276 263.09 2.88 × 10−1 0.94 0.23 269.55 4.29 × 10−3 0.96 0.04
313 275 270.13 2.68 × 10−1 0.92 48 278.41 3.31 × 10−3 0.91 0.12
323 274 268.91 3.49 × 10−1 0.90 0.17 273.05 7.14 × 10−3 0.90 0.05

Mathematical models of adsorption reaction and adsorption diffusion are proposed
to determine the importance of diffusion in the adsorption process of the adsorbate onto
adsorbent [29–35]. We have resorted to a functional empirical relationship of the uptake of
the substrate at a given time qt varying almost proportionally with t1/2. This was performed
by fitting an intraparticle diffusion model, Equation (4). These results demonstrate that the
process of adsorption is not rate-limiting, and the progression of adsorption takes place in
multiple steps. Thus, it may be envisaged that the movement of AR119 dye molecules onto
the surface of NICUS proceeds to the diffusion into the pores of NICUS.

Analysis of adsorption kinetics data confirmed multiple levels of linearity, which in
turn suggests multiple mechanisms. Higher concentrations and higher temperatures lead
to higher adsorption rates, which lead to different linear routes. However, the process of
adsorption becomes stabilised with respect to time. This was observed in a film diffusion
model, Equation (3) [36]. It can be seen in Figure 2 and Table 2 that the values of diffusion
constant R′ of a liquid film are in agreement with high R2 values. Furthermore, the values of
R′ infer fast adsorption of a thin film onto the surface of the solute particles. The phenomena
retard the process of diffusion, which affects the rate of adsorption. This step confirms that
the adsorption process is limited by the diffusion phenomenon.

According to the Weber–Morris model [37], the solute uptake varies with t1/2, as
shown in Equation (5). A straight line was obtained on plotting qt versus t1/2. This
observation conveys that intraparticle diffusion is the rate-limiting step for the process
of adsorption of the dye on the adsorbent. Therefore, a straight line is anticipated for
the plot qt versus t1/2 whose diffusion rate constant was obtained from the slope (kint)
(Figure 3). Conversely, the Dumwald–Wagner model [38] calculates the true absorption
rate (Equation (6)). The result infers the intraparticle diffusion as the rate-limiting step. The
data are presented in Table 2 and Figure 4 [28].
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Figure 2. Kinetics data fitted to the film diffusion model with initial AR119 dye concentration (a) 100 µg mL−1, (b) 200 µg mL−1 and (c) 300 µg mL−1.
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Table 2. Calculated parameters for diffusion models.

Initial
Concentration Temp Film Diffusion Model Weber–Morris Model Dumwald–Wagner

[µg mL−1] [K] R′ [min−1] R2 kist [mg g−1 s−0.5] R2 K [min−1] R2

100
303 0.0289 0.90 0.79 0.90 0.029 0.90
313 0.0344 0.91 0.89 0.91 0.034 0.92
323 0.0362 0.93 1.04 0.93 0.036 0.93

200
303 0.0433 0.91 5.27 0.93 0.042 0.91
313 0.0346 0.99 2.14 0.96 0.034 0.99
323 0.0188 0.92 2.19 0.90 0.018 0.92

300
303 0.0255 0.98 3.90 0.97 0.022 0.98
313 0.0634 0.98 4.87 0.90 0.063 0.98
323 0.0479 0.92 2.62 0.99 0.048 0.92
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ln(1 − qt/qe) = −R1t (3)

qt = kint t1/2 (4)

qt = kidt1/2 + C (5)

log (1 − F2) = −K/2.303t (6)

The data obtained for the classical thermodynamic parameters, namely, ∆G◦, ∆H◦

and ∆S◦, indicate the nature and type of a reaction (Figure 5 and Table 3). For example, the
positive ∆H◦ (enthalpy) values obtained from 303 to 323 K of NICUS indicate endothermic
processes. The overall negative values of ∆G◦ (free energy) obtained for the AR119–NICUS
system confirm the spontaneity and viability of the adsorption process. The magnitude of
∆G◦ values is indicative of rapid and almost spontaneous adsorption at lower temperatures.
Further, it is inferred that the negative values of ∆S◦ (entropy) suggest minimum changes
in the internal structure of the adsorbent and indicate the decrease in the randomness at
the dye–NICUS interface.
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and Gibbs free energy of AR119–NICUS and (b) the pseudo-second-order kinetics for adsorption of
AR119–NICUS.



Nanomaterials 2022, 12, 1684 9 of 25

Table 3. Experimental design of individual factors for RSM studies.

Factor Name Units Minimum Maximum

A Time minutes 0 180
B Temperature ◦C 27 50
C Concentration mg L−1 25 500
D Adsorbent dosage g L−1 0.500 6.000
E pH 2 12

3.2. Studies on Composites
3.2.1. Preparation of AR119-Dye-Adsorbed NICUS

To a 100-litre barrel, 100 g of commercial AR119 dye was transferred. The dye was
dissolved in 25 litres of TIE. An amount of 5 Kg of commercial NICUS was transferred,
and the solution was stirred manually using a plastic rod that was 20 mm in diameter.
The solution was kept for about 24 h with occasional stirring. The dye-adsorbed NICUS
was separated using a cloth, and the precipitate was washed thoroughly with distilled
water till the filtrate was almost colourless. The blue-coloured dye-adsorbed NICUS was
air-dried. The resultant powder containing lumps was ground and sieved through 177 mµ

mesh and dried in an oven at 60 ◦C for 24 h. The powder was cooled in a closed container
with an airtight lid. AR119-dye-adsorbed NICUS was referred to as dye-modified NICUS
powder (dm-NICUS).

3.2.2. Preparation of the Composites

Thermoplastic bio-composites of polypropylene (polymer matrix) and NICUS (filler
material) and dm-NICUS (filler material) were prepared as follows: polypropylene (PP)
(H110MA) was purchased from Reliance, India (MFI = 11.0 g/10 min). NICUS and dm-
NICUS were oven-dried at 100 ◦C for 12 h. Maleic anhydride-grafted-PP (MAg-PP) was
used as a coupling agent. The thermoplastic composites of PP/dm-NICUS and PP/NICUS
were prepared in three stages; first, dry-blending of PP resin with different proportions of 10,
20, 30, 40 and 50% (w/w) dm-NICUS and NICUS in a tumble mixer and melt compounding
of master batches were conducted. The co-rotating fully intermeshing twin-screw extruder
was used to mix the polymer matrix, coupling reagent and filler material screws and barrels.
Third, the extrudates were collected, cooled and granulated into pellets. The injection-
moulding process was used to prepare the dumb-bell specimens of the granulated blends
and was tested for physicomechanical and chemical properties.

Thermoset composites of unsaturated polyester resin (USP) and dm-NICUS and
NICUS in different proportions of 2, 5, 10, 15 and 20% (w/w) were prepared using 2%
(v/v) methyl ethyl ketone as a catalyst. The following simple procedure was adopted. The
mixture was agitated to obtain the homogenised slurry, which was transferred carefully
to a glass frame of required dimensions. The slurry was allowed to dry. The resultant
thermoset was placed under a pressure plate for about 3 h. A piece of required dimension
as a sample was used to study the chemical and physicomechanical properties. Relevant
ASTM procedures of ASTM D 570-98, ASTM D 638-95, ASTM D 792-00 and ASTM D 2240
were adopted to prepare thermoplastic and thermoset composites to study their properties.

4. Results and Discussion
4.1. Characterisation of NICUS and AR119–NICUS Surfaces

Surface characterisation of NICUS (Figure 6a) and dye-adsorbed NICUS (Figure 6b)
was performed through SEM. The images display the surface of NICUS covered with the
AR119 dye. The broadband near 3000–3500 cm−1 represents adsorbed water molecule and
hydroxyl groups of cellulose (Figure 6c). An intense band at 3319 cm−1 supports –OH
stretching. Additionally, it indicates possibilities of hydrogen bond formation to help in
stabilising the conformations of certain macromolecules present in the adsorbent. Aliphatic
C–H stretching bands appear at 2821 cm−1, 2904 cm−1 and 2923 cm−1, while C=O anti-
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symmetric stretching vibration of lignin is exhibited at 1521 cm−1 and 1775 cm−1. The
phenolic, ester and ether groups are manifested as a doublet at 1390 cm−1 and 1310 cm−1,
respectively. Additional bands at 1335, 1307, 1268, 1248 and 1016 cm−1 are ascribed to the
C–O–C stretching.
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4.2. Study of Independent Variables in the Adsorption Process

Keeping in view our design of the experiments targeted for commercialisation, all our
studies were carried out at almost neutral pH 7.

4.2.1. Effect of Time

Adsorption as a separation technique is widely used for the elimination of toxic and
hazardous substances from industrial effluents. The uptake of the dye by the adsorbent
with respect to time at constant pressure and initial dye concentration helps to study
adsorption kinetics by means of kinetic models. The influence of contact time on AR119
dye adsorption onto NICUS is presented in Figure 7a. From the results it can be concluded
that the process of adsorption is almost spontaneous and efficiency of removal of the dye
is about 90% within 15 min of the contact time. Thereafter, there is a marginal increase of
about 7% in an additional 150 min.
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Figure 7. Effect of (a) contact time, (b) temperature, (c) initial dye concentration, (d) dosage and
(e) pH on qe and percent removal efficiency of the AR119–NICUS system.

4.2.2. Effect of Temperature

Keeping in view our focus to scale to commercial applications, evaluation of the
process of adsorption of dyes onto NICUS as a function of solution temperature was
studied using Equations (7) and (8). The influence of temperature on AR119 dye adsorption
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onto NICUS is presented in Figure 7b. From the data presented, it is inferred that the
process of adsorption is almost independent of the temperature range studied (30–50 ◦C).

∆G◦ = ∆H◦ − ∆S◦T (7)

ln KC = ∆S◦/R − ∆H◦/RT (8)

4.2.3. Effect of Initial Dye Concentration

The adsorption capacity of NICUS is highly dependent on the initial AR119 dye
concentration. This is manifested in the results displayed in Figure 7c. The shape of the
curve suggests that the percent removal capacity of the adsorbate (AR119) by the absorbent
(NICUS) is almost independent of the initial dye concentration in the range studied. This
observation assumes paramount importance when the design is transformed to enhance
the commercial viability of the technique.

4.2.4. Effect of Adsorbent Dosage

The dosage as a parameter will also have a great influence on the commercialisation
of the process because it decides the procedure’s economic feasibility. The range 0.50 to
6.00 g L−1 of the adsorbent dosage studied illustrated an influence of removal capacity of
the dye only at lower concentrations (0.50 to 1.00 g L−1) and remains almost constant up
until 6.00 g L−1. This observation shows that scientific and commercial importance is in
increasing the number of trials with minimum amounts of the adsorbent, substantially
increasing the dye’s removal efficiency by NICUS (Figure 7d).

4.2.5. Effect of pH

The adsorption capacity of NICUS depends on solution pH. The pH plays two im-
portant roles; it influences, first, the characteristics of the adsorbent surface and, second,
the chemistry of the dye solution [39]. The parameter, pH, is important to substantiate the
efficiency of the adsorbent under study and plays a significant role to scale to commercial
levels [30]. At lower pH, AR119, a bisazo dye, will be positively charged, which helps
with the adsorption of NICUS, a cellulose material containing abundant –OH groups. As
the pH increases, the positively charged dye gradually loses its positive character, which
influences the decrease in the adsorption of the dye. The shape of the curve displayed in
Figure 7e was consistent with the expected chemistry.

4.3. Adsorption Data Analysis Using Isotherm Models

The study of the isotherm models was intended to provide a view of the efficiency
of NICUS for the remediation of the dye for commercial applications with an eye on the
degree of economic advantages. The data of adsorption of AR119 dye onto NICUS were
analysed using the adsorption isotherm models proposed by the Langmuir, Freundlich,
Jovanovic, Toth, Brouers–Sotolongo, Sips, Vieth–Sladek, Radke–Prausnitz and Redlich–
Peterson isotherm models. The main criterion of the study of adsorption isotherms was
to select a model where qe (the experimental equilibrium) values were almost equal to Qm
(monolayer adsorption capacity) values with a coefficient of variance (R2) value ≥ 0.90.
To refine the results and to make a distinction between almost-similar data obtained by
various isotherm models, SSE and χ2, as two additional error functions, were incorporated
in our study.

Langmuir [40] proposed a model with the assumption that the adsorbent will have
active sites possessing almost uniform energies. This was further established in the idea
that no lateral interaction takes place between adsorbed molecules. A plateau in a two-
dimensional graph with equilibrium concentration (Ce) as an independent variable and qe
(Figure 8a) as a dependent variable characterises the saturation of the active sites on the
surface of the adsorbent. This implies that further adsorption cannot take place, and the
possibility of multilayer adsorption of the dye is ruled out. The equations of the Langmuir
isotherm model are shown in Equations (9) and (10). The experimental data, R2 = 0.95,
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qe = 96.00 mg g−1 and Qm = 483.40 mg g−1 and the separation factor (RL) values of 0.025 and
0.112 indicate adsorption of AR119 dye onto NICUS. If the increase in initial concentrations
decreases the RL value, the adsorption process is considered more favourable. However,
the variation between Qm and qe values of 483.40 and 96.00 mg g−1, respectively, for the
AR119–NICUS system has provided impetus to explore other models. In contrast to the
Langmuir isotherm model, Freundlich proposed heterogeneity of the surface sites with
different energies of adsorption and demonstrated relevance to multilayer adsorption [41].
The mathematical expression is shown in Equation (11). The values of nF = 2.264 and
1/nF 0.442 (Table 4) of NICUS indicate that the process of adsorption is physical in nature
and suits the Langmuir isotherm model’s behaviour.

qe =
QmKaCe

1 + KaCe
(9)

RL =
1

1 + KaC0
(10)

qe = KFC
1

nF
e (11)

Table 4. Calculated parameters of adsorption isotherms.

Two-Parameter Isotherms

Langmuir Freundlich Jovanovic

Qm 483.4 KF 70.13 Qm 391.51

KS 0.079 nF 2.264 KJ 0.079

Three-Parameter Isotherms

Toth Brouers–Sotolongo Sips Vieth–Sladek Radke–Prausnitz Redlich–Peterson

Qm 4,237,909 Qm 2,034,296 Qm 17,050.7 Qm 194.3 Qm 4.2 ARP 23,457.4
nT0 0.059 KBS 3.45 × 10−6 Ks 3.97 × 10−6 KVS 4.196 krp 580,882 BRP 333,865
bT0 0.931 α 0.442 ms 0.442 βVS 0.367 mrp 0.558 g 0.559

The Jovanovic model [42] attempts to minimise the deviancies of the experimental
results obtained from the Langmuir isotherm model by introducing the exponential term
KJ. The mathematical model is presented in Equation (12). Upon comparing the difference
in the values of qe = 96.00 mg g−1 and Qm = 391.51 mg g−1 with the values obtained by
the Langmuir isotherm model, one may surmise that values obtained with the Jovanovic
isotherm model are better than that of the Langmuir isotherm model.

In the pursuit to identify a specific model(s) that has a smaller gap between experimen-
tal qe values and Qm values, six isotherm models, namely, Toth, Brouers–Sotolongo, Sips,
Vieth–Sladek, Redlich–Peterson and Radke–Prausnitz, were also studied. The importance
of these models is described elsewhere [43]. The mathematical Equation (13) represents
the Radke–Prausnitz isotherm model [44]. The Redlich–Peterson isotherm model [45]
in Equation (14) has a ‘g’ value of 0.559 as a correction exponent, which illustrates simi-
larity to Langmuir isotherm model (Figure 8b). To describe a heterogeneous adsorption
system, an empirical mathematical Equation (15) was developed by Toth [46]. The Sips
isotherm model [47] (Equation (16)) combines the Langmuir and Freundlich adsorption
isotherm models and suggests heterogeneity during the adsorption process (Figure 8c).
Equations (17) and (18) represent the Brouers–Sotolongo isotherm model [48] and Vieth–
Sladek isotherm model [49], respectively. The results are presented in Figure 8d.
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Figure 8. Fitting of adsorption data to (a) Langmuir, Freundlich and Jovanovic models, (b) Redlich–
Peterson and Radke–Prausnitz models, (c) Sips and Toth models and (d) Vieth–Sladek and Brouers–
Sotolongo adsorption isotherm models of the AR119–NICUS system.

qe = Qm(1− e(KJCe)) (12)

qe =
KRPQmCe

(1 + KRPCe)
mRP

(13)

qe =
ARPCe

1 + BRPCg
e

(14)

qe = QmCe(bTo + CnTo
e )

−1
nTo (15)

qe =
Qm(KsCe)

mS

(1 + KSCe)
mS

(16)

qe = Qm[(1− exp(−KBS(Ce)
α)] (17)
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qe = KVSCe +
QmβVSCe

1 + βVSCe
(18)

The study of nine isotherm models and evaluation of statistical parameters are pre-
sented in Table 5. In brief, the graphs obtained by nine models are similar in that they
contain two parts, viz., a nonlinear part and a plateau. The former indicates that the dye
molecule adheres to the active site of the porous NICUS, and the latter characterises the
saturation of the adsorption process. Considering the values of Qm, R2, SSE and χ2, the
Vieth–Sladek isotherm model fits best.

Table 5. Statistical parameters for adsorption isotherm model fitting.

Isotherms Langmuir Freundlich Jovanovic Toth

SSE 5736.2 1467.3 9917.5 1560.5
χ2 24.927 9.102 44.829 9.123
R2 0.95 0.98 0.92 0.98

Brouers–Sotolongo Sips Vieth–Sladek Radke–Prausnitz Redlich–Peterson

1467.4 1467.6 914.9 1467.5 1468.1
9.102 9.102 7.297 9.100 9.099
0.99 0.99 0.99 0.99 0.99

4.4. Statistical Process Optimisation using Two-Level FFED

Fractional Factorial Experimental Design (FFED) is a type of research method that
allows the investigation of interaction effects between two or more variables. There are two
types of variables, namely, independent variables and dependent variables. The value of
the latter depends on the independent variables. These variables are also called factors. The
factorial designs involve up to five factors. A two-level factorial design was investigated to
evaluate the interaction effects of the factors run at two levels each, and only linear effects
of the quantitative factors were studied (Table 6). The resultant data were improved and
optimised using statistical and mathematical procedures using RSM. This methodology
is extensively used in industrial processes to identify potentially influential parameters
to redesign or improvise the production process. A two-level FFED is embedded in the
central composite design (CCD). This design was adopted to study the quadratic effects
of the factors suited to predictive modelling and optimisation. The former is a process
that uses data and statistics to predict outcomes, while the latter is the action of making
effective use of the data [50,51].

Table 6. Thermodynamic parameters of AR119–NICUS system.

Initial Concentration Temperature ∆G◦ ∆S◦ ∆H◦
ln A

Ea

[µg mL−1] [K] [kJ mol−1] [J mol−1 K−1] [kJ mol−1] [kJ mol−1]

100
303 −9.92

112.41 87.56 2.43 168.55313 −9.54
323 −9.15

200
303 −7.89

185.92 158.37 8.21 300.69313 −7.69
323 −7.38

300
303 −6.57

252.41 180.15 21.43 533.58313 −6.47
323 −6.36

4.5. Quadratic Regression Equation

The quadratic regression equation derived from analysis of variance (ANOVA) shows
the possible individual and combined effect of the factors for the AR119–NICUS system
(Table 7). It was observed that actual or experimental values are in conformity with the
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predicted responses (Figure 9). The regression equation for the AR119–NICUS system
obtained is shown below:

AR119 NICUS = −46.5 + 17.0× A + 0.9× B + 195.9× C− 102.1× D− 75.5× E− 3.5× AB + 9.3× AC
+2.3× BC− 16.0× A2 − 1.3× B2 − 20.2× C2 + 117.2× D2 + 58.3× E2

Table 7. ANOVA for fractional factorial experimental design of AR119–NICUS system.

Source Sum of Squares Degree of Freedom Mean Square F Value p Value

Model 669,281.7 13 51,483.2 287.1 <0.001 **

A 6558.5 1 6558.5 36.6 <0.001 **
B 22.1 1 22.1 0.1 0.7264
C 255,634.1 1 255,634.1 1425.5 <0.001 **
D 42,967.9 1 42,967.9 239.6 <0.001 **
E 26,655.7 1 26,655.7 148.6 <0.001 **

AB 302.0 1 302.0 1.7 0.1977
AC 880.6 1 880.6 4.9 0.0292 *
BC 27.4 1 27.4 0.2 0.6966

A2 2294.8 1 2294.8 9.8 <0.001 **
B2 20.1 1 20.1 0.1 0.7386
C2 1068.4 1 1068.4 6.0 0.0166 **
D2 15,624.4 1 15,624.4 87.1 <0.001 **
E2 6005.7 1 6005.7 33.5 <0.001 **

Residual 16,318.4 91 179.3

Total 685,600.1 104
* Moderately significant (p value: 0.01 < p≤ 0.05). ** Strongly significant (p value: p≤ 0.01).
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Figure 9. Actual versus predicted values of AR119–NICUS system.

The graph in Figures 10 and 11 suggests a close interrelationship between the exper-
imental data and expected responses. If the cross products of the variables, namely, A,
B, C, D and E are zero, they are considered insignificant and not considered in the devel-
opment of the regression equation. The multiple regression analysis based on CCD was
obtained using the optimum values of variables studied using a second-order polynomial
equation. The confidence interval of 95%, p-value < 0.05%, F-Value of 287, R2 value of
78.8% and adjusted R2 of 97.2 were considered imperative. The latter value of 97.2% and
7.9% coefficient of variance provides an opportunity to traverse into the systematic analysis
and snip unwanted design points based on parameters of interest to indicate the effect
of the variable(s) on the adsorption capacity. The contour and surface plots illustrate the
combined effect of two factors on the process of adsorption, and the results are graphically
presented in Figures 10 and 11. In brief, the importance of statistical optimisation of the
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process variables leads us to interesting results which help to commercialise the process.
At the optimised conditions of the parameters: pH 2; adsorption time, 210 min; adsorbent
dosage, 0.300 g L−1; particle size, 175 µM; initial dye concentration, 950 mg L−1; orbital
shaking, 165 rpm and temperature, 50 ◦C, an impressive value of 748 mg of dye adsorbs on
1 g of dry NICUS.
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dosage versus pH.

4.6. Analysis of 3D Response Surface Plots

The study on the effect of process variables and the data generated from the performed
experiments showed an optimum time of 210 min for maximum adsorption at an initial
dye concentration set at 200 µg mL−1. The temperature has only a marginally positive
effect and increases along with time. This observation is helpful for the commercialisation
process in the tropical countries where most of the Nutraceutical industries are located.
The effect of initial dye concentration on the adsorption capacity of NICUS is marginal
and remains almost constant in the range studied. A marginal decrease in the adsorption
capacity was observed at higher dye concentration, probably due to expended active
sites on the adsorbent. The adsorbent dosage has a negative effect on adsorption when
plotted against time. However, the process of adsorption is improved by increasing the
contact time, while pH has a negative effect with an increase in time on the adsorption
capacity (Figures 10 and 11). The maximum predicted adsorption capacity obtained through
statistical optimisation was found to be 748 mg g−1.

4.7. Adsorption Process for Textile Industrial Effluents

The details about the composition of the industrial textile effluent (TIE), sample
collection and measurement of absorbance are adopted as detailed elsewhere [29]. Solutions
of 1% (w/v) AR1190 were prepared by dissolving 5 g each of the dye in 5-litre distilled
water (Solution 1) and in 5-litre TIE (Solution 2). Preliminary investigations were carried
out to understand the factors responsible for the enhancement of the adsorption efficiency
of the dye from aqueous matrices. We observed that the addition of fresh samples at short
intervals provided better adsorption results. We also observed that the adsorbent had the
capacity to eliminate the dye along with the allied materials present in Solution 2. The
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recovery of the dye by the process of adsorption measured from UV–visible spectroscopy
was 98% (Figure 12).
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Figure 12. Colour of the solutions before and after bioremediation: 1. distilled water; 2. AR119 in
distilled water; 3. TIE; 4. AR119 in TIE; 5. filtrate after adsorption of dye on NICUS after 15 min;
6. 30 min; 7. 45 min; 8. 60 min; 9. filtrate of NICUS in distilled water.

To scale up the experiments by one and two orders, 0.5 and 5.0 g each of NICUS was
transferred to 1-litre and 10-litre polyethylene beakers. The 500 mL and 5 L Solution 2 was
added to 1-litre and 10-litre polyethylene beakers, respectively. Using a magnetic stirrer,
the solutions were agitated. The procedure was repeated.

4.8. Characterisation of Composites

Physicomechanical properties of thermoplastic bio-composites of polypropylene and
unsaturated polyester thermoset composites were studied. Additionally, the effect of
ageing on tensile strength and the chemical resistance of unsaturated polyester thermoset
composites was also evaluated. These results are detailed in Tables 8–11.

Table 8. Physicomechanical properties of thermoplastic polypropylene composites.

Properties

Percent Composition of Polymer Matrix and Filler Material

PP:NICUS PP:dm-NICUS

100:00 90:10 80:20 70:30 60:40 50:50 100:00 90:10 80:20 70:30 60:40 50:50

Tensile strength
(MPa) 30.8 29.6 28.6 26.8 24.4 18.7 30.8 29.8 28.7 26.4 23.3 19.6

Tensile modulus
(MPa) 1040 1359 1548 1763 1727 1618 1040 1363 1538 1752 1745 1639

Tensile
elongation at

break (%)
156 13.2 10.2 6.2 3.8 3.1 156 13.4 10.6 5.9 3.9 2.9

Flexural strength
(MPa) 33.2 49.9 52.3 54.1 55.7 NRR 33.2 51.3 53.1 55.6 56.1 NRR

Flexural
modulus (MPa) 826 1497 1588 1753 2094 NRR 826 1130 1575 1787 2147 NRR

Density (g.cm−3) 0.904 0.928 0.988 1.014 1.059 NRR 0.904 0.928 0.986 1.015 1.063 NRR

Surface hardness
(shores D) 70 74 76 79 84 NRR 70 74 75 78 86 NRR

Water absorption
in 48 h (%) 0.01 0.14 0.28 0.80 2.67 NRR 0.01 0.15 0.30 0.81 2.87 NRR

NRR: non-reproducible results.
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Table 9. Effect of ageing on tensile strength of unsaturated polyester thermoset composites.

Properties

Percentage Composition

USP:NICUS USP:dm-NICUS

100:00 95:05 90:10 85:15 80:20 100:00 95:05 90:10 85:15 80:20

Density (g mL−1)
Experimental

1.219 1.221 1.228 1.223 1.239 1.219 1.219 1.229 1.231 1.233

Theoretical - 1.222 1.230 1.240 1.241 - 1.222 1.230 1.240 1.241

Surface hardness
(shores) ±2 89.0 90.2 91.8 0.98 1.07 89.0 90.6 91.4 92.0 92.6

Void content (%) - 0.47 0.89 0.95 1.04 - 0.45 0.86 0.96 1.11

Specific tensile
strength

(KN m kg−1)
37.0 25.6 25.1 21.2 19.1 37.0 25.8 25.3 21.3 18.9

Table 10. Physicomechanical properties of unsaturated polyester thermoset composites.

Properties

Percent Composition

USP:NICUS USP:dm-NICUS

100:00 90:10 80:20 70:30 60:40 50:50 100:00 90:10 80:20 70:30 60:40 50:50

Density (g cm−3)
(experimental)

1.219 1.221 1.228 1.223 1.239 1.219 1.219 1.229 1.231 1.233 1.219 1.221

Density (g cm−3)
(theoretical)

- 1.222 1.230 1.240 1.241 - 1.222 1.230 1.240 1.241 - 1.222

Surface hardness
(Shores) (±2) 89.0 90.2 91.8 0.98 1.07 89.0 90.6 91.4 92.0 92.6 89.0 90.2

Void content (%) - 0.47 0.89 0.95 1.04 - 0.45 0.86 0.96 1.11 - 0.47

Specific tensile
strength

(kN m kg−1)
37.0 25.6 25.1 21.2 19.1 37.0 25.8 25.3 21.3 18.9 37.0 25.6

Table 11. Studies on chemical resistance of unsaturated polyester thermoset composites.

Chemical Reagents

Percentage Change in Weight After Seven Days

Neat USP USP:NICUS USP:dm-NICUS

100:00 95:05 90:10 85:15 80:20 95:05 90:10 85:15 80:20

Water 1.13 2.20 3.18 3.40 4.99 2.21 3.20 3.46 5.00
10% (v/v) Acetic acid 0.31 0.43 0.40 0.42 0.53 0.37 0.39 0.43 0.52

10% (v/v) Hydrochloric acid 0.36 0.41 0.50 0.52 0.56 0.40 0.48 0.51 0.53
10% (v/v) Nitric acid 0.40 0.45 0.64 0.70 0.72 0.44 0.62 0.68 0.70

10% (v/v) Ammonium
hypochlorite 0.70 0.77 0.83 0.85 0.89 0.75 0.81 0.84 0.88

10 % (v/v) Sodium hydroxide 2.93 3.38 4.40 5.99 7.84 3.23 4.33 5.96 7.73

A study of physicomechanical properties of thermoplastic PP composites suggests
the increase in filler content of dm-NICUS or NICUS increased the tensile modulus and
decreased elongation at break and tensile strength. Nevertheless, flexural properties
improved substantially compared to neat PP. The presence of hydrophilic NICUS had an
impact on the water adsorption properties, as manifested by the increase in weight shown
in Table 8.

The results of our study suggest that thermoset composites of USP and dmNICUS/NICUS
have better dimensional stability compared to USP. Moreover, our study also confirmed
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improved chemical resistance to all the chemical reagents studied except sodium hydroxide
(10% w/v). However, with the increase in filler content, the tensile strength decreased
probably due to reduced interfacial adhesion resulting in reduced interaction between the
polymer matrix and the filler material.

4.9. Importance to Small and Medium Enterprises (SMEs)

A report on the global market of wood–plastic composites for the period 2020–2027
published by Grand View Research reported a value of USD 5.3 billion during 2019 and a
projected CAGR of 11.4% for the period 2020–2027. The demand for wood–plastic com-
posites is mainly due to better properties compared to conventional wood products, such
as durability, shear strength, low moisture content and low water absorption. However,
extensive research is occurring in order to replace wood with other cellulosic materials
due to dwindling resources and stringent regulations against deforestation [52]. The use of
bagasse, coir, corn Stover and stalks, jute, rice and wheat straw have been reported in the
literature as a replacement for wood. However, the use of the aforesaid materials as fodder,
fuel and feed restricts its use to the ever-increasing problem of the present century—food
security, which also includes animal feeds. Thus, the use of Nutraceutical Industrial Spent
(NIS), which has no feed, fertiliser and/or fuel value, embodies significant importance.
Recently, the dye-adsorbed NIS as material in the fabrication of the composites using waste
and/or virgin plastic has been reported [32].

The major barriers to the SME shift from a linear economy to CE include the following
reasons: administrative burden, company’s environmental culture, innovation policies,
technological know-how and privation of capital, effective legislation, government inad-
equate financial support and lack of information and technical back-up [53]. All these
barriers are of no concern if the raw material is replaced with dye-adsorbed NIS or nano-
materials [54–56], which requires only optimising process parameters before production
using the same machinery and know-how.

5. Conclusions

The adsorption capacity of NICUS obtained from the quadratic model developed
for process optimisation produced values of 748 mg g−1 and followed the Vieth–Sladek
isotherm model. Our adsorption of AR119 onto NICUS illustrated that the reaction is
almost spontaneous in rate and endothermic due to low enthalpy values. Kinetic studies
revealed the best fit matches with the pseudo-second-order model. Intraparticle diffusion
was significant in mass transfer phenomena. The process is physical in nature, as evidenced
by the low enthalpy values. SEM images and FTIR spectra confirmed the adsorption of
the dye onto the adsorbent. In brief, stringent regulations, ever-increasing pollution due
to textile industries and the high cost of activated charcoals have led to the resurgence of
Nutraceutical Industrial Spent as a new class of low-cost, ready-for-use and abundantly
available biomass, encompassing a better alternative to the available agriculture waste
biosorbents. NICUS as an efficient adsorbent reduces grey water footprints, minimizes
E-factor and maximizes water security of the textile industry. The use of dye-adsorbed
NICUS “sludge” as a resource material for the fabrication of green composites using plastic
waste reduces carbon footprints. What is more, the unattended challenge of the disposal of
the sludge can be addressed to cater to the demands of a circular economy. In summary, an
attempt has been made to provide an alternative paradigm using the sustainability concept
in tune with the circular economy model. Dye-adsorbed NICUS as ‘waste’ generated after
the remediation of the textile industry was used as a resource for composite industries
using plastic waste. It is envisaged that the methodology, if adopted at a commercial scale,
will have ample benefits in terms of economics and reducing carbon and water footprints
by providing an alternative route for the problem associated with resource depletion—one
of the major challenges of the 21st century. The authors hope that our endeavour will
open up new routes to sustainability and green technology based on a circular economy to
integrate SMEs.
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