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Abstract: Blue-luminescence materials are needed in urgency. Recently, zero-dimensional (0D)
organic metal halides have attractive much attention due to unique structure and excellent optical
properties. However, realizing blue emission with near-UV-visible light excitation in 0D organic metal
halides is still a great challenge due to their generally large Stokes shifts. Here, we reported a new (0D)
organic metal halides (TPA)2PbBr4 single crystal (TPA+ = tetrapropylammonium cation), in which
the isolated [PbBr4]2− tetrahedral clusters are surrounded by organic ligand of TPA+, forming a 0D
framework. Upon photoexcitation, (TPA)2PbBr4 exhibits a blue emission peaking at 437 nm with a
full width at half-maximum (FWHM) of 50 nm and a relatively small Stokes shift of 53 nm. Combined
with density functional theory (DFT) calculations and spectral analysis, it is found that the observed
blue emission in (TPA)2PbBr4 comes from the combination of free excitons (FEs) and self-trapped
exciton (STE), and a small Stokes shift of this compound are caused by the small structure distortion
of [PbBr4]2− cluster in the excited state confined by TPA molecules, in which the multi-phonon effect
take action. Our results not only clarify the important role of excited state structure distortion in
regulating the STEs formation and emission, but also focus on 0D metal halides with bright blue
emission under the near-UV-visible light excitation.

Keywords: self-trapped exciton; 0D organic metal halides; photoluminescence mechanism; blue
emission; excited state structure distortion

1. Introduction

Due to their unique photophysical properties, 0D organic metal halides play an important
role in many fields, such as light-emitting diodes (LEDs), solar cells, photodetectors [1–6]. In
0D organic metal halides, anionic metal halide polyhedron is encapsulated and completely
isolated by organic cations, thus forming a unique “host-guest” structure. As a result of
the spatial constraints of isolated metal halides, the emission of 0D organic metal halides
is caused by the radiation relaxation of local excitons, and generally exhibits efficient
broadband emission with a large Stokes shift upon photoexcitation [7–9]. These remarkable
characteristics make it an ideal candidate material for solid-state lighting. However, most
of the energy dissipated in the form of vibration due to the large Stokes shift, making it a
great challenge to achieve blue emission in 0D metal halides [3,10–12].

Due to their structural diversity and excellent optical properties, lead-based organic
metals become one of the most studied 0D hybrid materials. For example, (C9NH20)6Pb3Br12
exhibits a green emission and a Stokes shift of 151 nm [5]. (N-MEDA)[PbBr4] shines a white
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emission band with a Stokes shift of 170 nm [13]. Obviously, the large excited state struc-
ture distortion of the above 0D organic metal halides under photoexcitation leads to their
exhibition of a large Stokes shift and a wide FWHM [14]. Therefore, the realization of blue
emission by reducing stoke shift is of great significance in the study of 0D hybrid materials.

Of course, there are also some reports of 0D metal halides with blue emission [15].
For example, Zhou et al. synthesized a 0D metal halide of (C9NH20)7(PbCl4)Pb3Cl11 with
blue emission band at 470 nm excited by 350 nm UV light sources, and a Stokes shift of
120 nm [16]. Sun et al. reported a 0D metal halide of [BAPrEDA]PbCl6·(H2O)2 with
broadband blue emission peaking at 392 nm excited by 300 nm UV light sources and a
Stokes shift of 90 nm [17]. However, in order to obtain 0D metal halides with blue emission,
the excitation wavelength needs to have higher energy and the excitation peak is generally
less than 350 nm, which is affected by the large Stokes shift of 0D metal halide. Therefore,
considering most of these 0D organic metal halides with blue emission need to be excited by
harmful high-energy UV light sources, and there is a huge energy loss between excitation
and emission, these compounds are unsuitable for use in solid-state lighting.

Here, we report a new compound of lead-based (TPA)2PbBr4 single crystal (SCs),
which shows a blue emission band at 437 nm with a relatively small Stokes shift of 53 nm
and a narrow FWHM of 50 nm. The photophysical mechanism of (TPA)2PbBr4 SCs was
discussed via temperature-dependent PL spectra, temperature-dependent Raman spectra
and DFT calculation, which indicated that the observed blue emission in (TPA)2PbBr4
comes from the combination of FEs and STE. The theoretical calculation shows that the
small excited state structure distortion is the dominant reason for the relatively small Stokes
shift in this compound. Therefore, our results not only deepen the understanding of the
relationship between structure distortion and the emission characteristic, but also provide
some new ideas for the design of high-performance metal halides with blue emission.

2. Experiment Section
2.1. Materials

Lead bromide (PbBr2, 99.95%), tetrapropylammonium bromide (TPABr, 99%), and
N, N-Dimethylformamide (99.5%) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., LTD (Shanghai, China) and used as received.

2.2. Synthesis of (TPA)2PbBr4 Single Crystals (SCs)

The 2.5 mmol PbBr2 and 5 mmol TPABr were fully dissolved in N, N-Dimethylformamide
at room temperature (RT). Subsequently, the solution was volatilized slowly in the hot
stage of 60 ◦C. After 24 h, the bulk SCs of (TPA)2PbBr4 can be harvested.

2.3. Characterization

The crystal structure information of (TPA)2PbBr4 was performed on Bruker D8 Quest
X-ray single crystal diffractometer at 298 K. The powder X-ray Diffraction (PXRD) data
were collected by Bruker Advance D8 diffractometer with Cu-Kα radiation. The photolu-
minescence (PL) and PL excitation (PLE) spectra were collected by HORIBA FluoroMax+
instrument. The absorption spectrum was conducted by Shimadzu UV-3600 spectropho-
tometer. Decay lifetimes and photoluminescence quantum efficiency (PLQE) were obtained
by Edinburgh Instruments of FLS980. Variable-temperature PL spectra were also collected
by Horiba instrument with the excitation wavelength at 365 nm. The Raman spectra were
collected by LabRAM HR Evolution. Thermal stability was measured by TA discovery
instrument in nitrogen atmosphere.

2.4. Calculation Details

The electronic structure of (TPA)2PbBr4 was calculated via Density Functional The-
ory (DFT) calculations using the Vienna Ab initio simulation package (VASP) [18]. The
generalized gradient approximation of the Perdew–Burke–Ernzerhof (PBE) [19,20] parame-
terization with projector-augmented wave [21] method is performed for the exchange and
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correlation functional. Experimental structure information of (TPA)2PbBr4 was directly
used for the theoretical calculations. Ultra-soft pseudopotentials are utilized for all ele-
ments, including C, H, N, Pb, and Br. 400 eV, 1.0 × 10−5 eV and 0.01 eV/Å were chosen
as the cutoff energies for the plane-wave basis, the self-consistent total-energy difference,
and the convergence criteria for forces on atoms, respectively. In the first Brillouin zone, a
Monkhorst-Pack k-mesh grid of 4 × 4 × 2 is used.

3. Results and Discussion

Bulk (TPA)2PbBr4 SCs were synthesized by simple solution synthesis method. Then,
we characterized its crystal structure information by SCXRD and the detailed crystal
structure parameters are given in Tables S1–S3. Clearly, (TPA)2PbBr4 was composed of
isolated [PbBr4]2− clusters ionically bonded with TPA+ (Figure 1a), resulting a typical
0D structure. (TPA)2PbBr4 shows monoclinic I2/a symmetry with the cell parameters of
a = 14.93 Å, b = 14.51 Å, c = 31.93 Å, and V = 6895.2 Å. Moreover, each Pb atom is coordi-
nated with four Br atoms, thus forming a unique tetrahedral structure (Figure 1b), which is
relatively rare. The bond distance of Pb–Br ranges from 2.7241 to 3.0042 Å, while the angle
of Br–Pb–Br varies from 97.04◦ to 126.18◦ (Figure 1c). It is worth noting that (TPA)2PbBr4
has excellent environmental stability. As shown in the Figure S1, the PXRD pattern of
the sample stored in air for one month has a similar profile to that of the pristine one. In
addition, it is stable under high-intensity UV irradiation (Figure S2). We found that its
intensity could still maintain 95% of the initial intensity after high-intensity ultraviolet
irradiation for 300 min. The thermal stability of this compound was analyzed by thermo-
gravimetric analysis (TGA). As shown in Figure S3, the initial decomposition temperature
of the compound was 247 ◦C, which may be caused by the organic components in this
material. In addition, the second decomposition temperature of (TPA)2PbBr4 is 550 ◦C,
which may be related to the evaporation of inorganic components in this compound [22].
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Figure 1. (a) Crystal structure of 0D (TPA)2PbBr4 (blue spheres: lead; red spheres: bromine; pink
spheres: nitrogen; cyan spheres: carbon; white spheres: hydrogen). (b) View of individual tetrahedral
clusters [PbBr4]2−. (c) Ball-and-stick diagram of an individual [PbBr4]2− cluster.

Figure 2a shows the optical images of (TPA)2PbBr4 SCs, which is colorless in sunlight
and shows blue emission under a 365 nm UV lamp. Subsequently, we explored the RT
photophysical properties of (TPA)2PbBr4. As shown in Figure 2b, this compound has
distinct bands at 325 nm and 385 nm in the PLE spectrum (monitored at 437 nm), and the
excitation cutoff wavelength is 432 nm. Based on the electron transition rules in Pb2+ with
6s2 electron configuration, the two PLE bands can be attributed to the 1S0 → 1P1 and the
1S0 → 3Pn transitions, respectively [23]. Upon excitation at 350 nm, this compound shows
a distinct emission band at 437 nm with a Stokes shift of 53 nm. Moreover, (TPA)2PbBr4
has a PLQE of 12%, and the corresponding CIE color coordinate (Figure 2c) is calculated
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to be 0.1555, 0.0544. The PL spectra under different excitation wavelength (300–400 nm)
show a similar profile (Figure 2d), thus the observed blue emission in (TPA)2PbBr4 SCs
stems from the intrinsic emission [24,25]. Combining previously reported Pb(II)-based
metal halides with broad emission, the blue emission can be attributed to STEs [26–28].
Figure 2e shows that this compound has intense absorption bands at 274 nm and 353 nm at
RT. In addition, the bandgap of (TPA)2PbBr4 was calculated to be 3.2 eV by Tauc equation.
The RT decay lifetime of this compound was also measured by using a 365 nm picosecond
pulsed laser, (Figure 2f), and the decay curve can be fitted by double exponential function of
I(t) = A1exp( τ/t1) + A2exp(τ/t2), where I is the luminescence intensity, τ represents the
time after excitation, A is a constant and τ is the lifetime for the exponential component [29].
The decay curve contains a shorter-lived lifetime (τ1) of 1.8 ns and longer-lived lifetime
(τ2) of 17 ns, which is comparable to other Pb(II)-based metal halides with STEs emission
reported recently [30,31]. Moreover, the LT PLE spectrum has a distinct blue shift compared
with RT PLE band out of the feeble electron-phonon coupling at low temperature, as shown
in Figure S4. Subsequently, we compared the photophysical parameters of (TPA)2PbBr4
with other low-dimensional metal halides with blue emission (Table S4), and we found that
this compound has a small Stokes shift and low-energy light excitation. Therefore, we next
study the causes of this phenomenon in detail.
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Figure 2. (a) Photographs of (TPA)2PbBr4 SCs under daylight and 365 nm illumination. (b) PL
and PLE spectra of (TPA)2PbBr4 SCs measured at RT. (c) CIE color coordinates of (TPA)2PbBr4 SCs.
(d) Excitation-dependent PL spectra of (TPA)2PbBr4 SCs. (e) Absorption spectrum, and the inset
shows the Tauc plot of (TPA)2PbBr4 powder. (f) Decay lifetime of (TPA)2PbBr4 SCs measured at 298 K.

We used DFT calculations to study the luminescence characteristics and electronic
structure of (TPA)2PbBr4. Figure 3a shows the band structure of this compound. As can be
observed, the valence band maximum (VBM) at Γ point and the conduction band minimum
(CBM) at the Z point, indicating that (TPA)2PbBr4 is an indirect bandgap semiconductor.
The calculated bandgap is 3.20 eV, which is slightly smaller than the experimental value of
3.58 eV. This may be due to the PBE bandgap error [32]. Moreover, the difference between
the indirect gap and the direct gap is only ∼0.01 eV, illustrating the edge characteristics of
the fluorescent band in the Brillouin region. Therefore, the electronic state of (TPA)2PbBr4
is highly localized. Figure 3b is a diagram of the total density of states (DOS) and orbital-
resolved partial DOS, which shows that the highest occupied molecular orbital (HOMO)
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and lowest unoccupied molecular orbital (LUMO) are derived from the electronic state in
[PbBr4]2-, but the former is composed of Br-4p and Pb-6s orbitals, and the latter has the
mixed characteristics of Pb-6p and Br-4p. Figure 3c,d describe the electron distribution
profiles of LUMO and HOMO in (TPA)2PbBr4, respectively. The electronic state of LUMO
shows local characteristics, which is highlighted in [PbBr4]2−, and the electronic state of
HOMO is mainly controlled by the Pb-p state. This is combined with the nearly flat band
structure of VBM and CBM, which indicates that there is a strong quantum confinement
effect in (TPA)2PbBr4. The distance between the nearest Pb-Pb in this compound is about
10.4 Å, so there is no electron band between the adjacent [PbBr4]2− anions. Therefore, each
[PbBr4]2− can act as an independent luminescence center.
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Figure 3. The electronic structure properties for (a) band structures and (b) DOS of (TPA)2PbBr4.
The charge distribution density of LUMO (c) and HOMO (d) in (TPA)2PbBr4. (e) Schematic dia-
grams of the excited and ground states for [PbBr4]2− structure with the specific bond lengths of
Pb-Br, respectively.

The structural deformation degree of the excited state is related to the change of Stokes
shift [33,34], and then we calculated the structural deformation parameter of the ground
state (GS) and excited state to explain the observed small Stokes shift in (TPA)2PbBr4.
Figure 3e shows the change of bond length of [PbBr4]2− in the GS and excited state,
and the changes of bond angles and bond length of GS and excited state are listed in
Tables S5 and S6, respectively. Particularly, most bond lengths in the calculated excited state
of axial, such as Pb−Br2, Pb−Br3 and Pb-Br4, increase about 0.49−0.84% in comparison to
the GS, while the bond length of Pb−Br1 is decreased by 1.09%. Compared with previously
reported of (C9NH20)2SnBr4 [35], the degree of excited state structure distortion is greatly
reduced. Meanwhile, the deformation parameter of (TPA)2PbBr4 was calculated by the
Equation (1) [27]:

∆d =

(
1
n

)
∑
[

dn − dave

dave

]2
(1)

where n is the number of Pb−Br bonds, dave is the Pb−Br average bond length, and dn is
the length of each Pb−Br bond. According to the detailed bond length data in Table S2, the
deformation parameter (∆d) in the GS is 8.098 × 10−4, while the deformation parameter
in the excited state is 5.299 × 10−4. The result shows that the excited state of (TPA)2PbBr4
is distorted, indicating that this compound has the potential to achieve broadband emis-
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sion. However, its deformation parameters are one order of magnitude smaller than
(TMA)2SbCl5·DMF [33], which may be the dominant reasons for (TPA)2PbBr4 having a
small Stokes shift [36]. According to the detailed bond length data of Bmpip2PbBr4 and
(C13H19N4)2PbBr4 SCs, the deformation parameter (∆d) in the ground state is 24.3 × 10−4

and 19.7 × 10−4, respectively, which are larger than (TPA)2PbBr4 (8.098 × 10−4). Thus, the
low distortion of [PbBr4]2− species in (TPA)2PbBr4 may the dominant reason for the small
Stokes shift.

In order to better understand the mechanism of the blue emission of (TPA)2PbBr4, the
variable-temperature PL spectra (78–298 K) of this compound were measured excited by
the 365 nm UV lamp, and the results are given in Figure 4a. Clearly, only one emission
band can be observed in all temperature windows, which illustrates that (TPA)2PbBr4 has
a single emission channel and stable phase structure. Then, the PL spectra of (TPA)2PbBr4
SCs at 78 and 298 K were fitted by Gaussian curves as shown in Figure S5. At 298 K, we can
observe two distinct components, 427 nm (green line) and 452 nm (blue line), respectively.
In addition, the emission bands at 427 nm and 452 nm can be attributed to the FEs and
STEs, respectively [37]. However, PL spectrum at 78 K has a Gaussian shape, which should
be assigned to FEs. The above conclusion can be demonstrated by temperature-dependent
decay lifetime measurements of (TPA)2PbBr4 SC. The decay lifetime at 78 K (Figure S6) can
be fitted via the mono-exponential function and the fitting decay lifetime is 6.68 ns, which
can be ascribed to FEs emission, while the decay lifetime at 298 K contains a shorter-lived
lifetime (τ1) of 1.8 ns and longer-lived lifetime (τ2) of 17 ns, which can be assigned to
FEs and STEs emission, respectively. Moreover, the decay lifetime of FEs decreases from
6.68 ns to 1.8 ns with the increase in temperature, which can be attributed to the exciton
fission to free carriers at high temperature, and the similar phenomenon was also found in
CsPbX3 nanocrystals [38].
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Figure 4. (a) Relationship between emission spectra and temperature of (TPA)2PbBr4. (b) Peak
position; FWHM versus temperature. (c) PL intensity versus temperature. (d) FWHM obtained
from PL spectra versus temperature. (e) The Raman spectra of (TPA)2PbBr4 SC at 298 K and 98 K,
respectively. (f) Possible photophysical process of (TPA)2PbBr4.

In Figure 4b, the position of the PL peak and the FWHM against temperature are
plotted. With the temperature increase from 78 to 298 K, the peak position redshifts by
26 nm, which is similar to common semiconductors, such as CdS and ZnSe [39,40]. This
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phenomenon is possibly due to electron-phonon coupling causing the bandgap to shrink.
Further, the FWHM is effectively widened with increasing temperature, similarly to other
0D organic metal halides, such as [BAPrEDA]PbCl6·(H2O)2 and (C4H9)4NCuCl2 [17,41].
In general, the enhanced coupling of electronic and acoustic phonons can be attributed
to this phenomenon. In Figure 4c, we can observe the maximum PL intensity versus
temperature. As the temperature rises from 78 to 198 K, the PL intensity of (TPA)2PbBr4
increases gradually. After the temperature rises from 198 to 298 K, the ratio begins to
decrease. Traditionally, the strongest emission intensity can be observed at low temperature
due to the prohibition of nonradiative recombination [42,43]. The unusual phenomenon
observed in (TPA)2PbBr4 is due to the generation process of STE state and a large potential
barrier (∆E = KT = 17.1 meV). When the temperature is below 198 K, it is the production
process of ste state, and its luminescence is affected by the phonon assisted tunneling effect.
When the temperature reaches 198 K, its emission intensity is the strongest because the
excited carriers larger than 17.1 mev cross the barrier and enter the self-trapped state. As
the temperature increases beyond 198 K, the emission intensity weakens due to carrier
scattering and thermal quenching. As for the similar process of FEs, the possible reason is
that the lattice thermal expansion plays a key role at 78–198 K; thus, the FE intensity shows
a linear increasing trend with the increase in temperature. When T > 198 K, the electron
phonon interaction is enhanced, resulting in a large number of STE. In addition, the STE
state dominates the luminescence, resulting in a decrease in the intensity.

The Huang–Rhys factor (S) closely correlates with the electron-phonon coupling
strength and calculates its value using Equation (2) [44]:

FWHM = 2.36
√

S}ωphonon

√
coth

}ωphonon

2kBT
(2)

where the kB is Boltzmann constant, and ωphonon is phonon frequency. One can calculate that
S is 7.098 by fitting the FWHM versus temperature (Figure 4d). The value is significantly
higher than those reported for CdSe, ZnSe [45,46], and is comparable to other lead-free
compounds [30,47]. Therefore, (TPA)2PbBr4 shows a high electron-phonon coupling.

The Raman spectra of (TPA)2PbBr4 excited by 532 nm laser at 298 and 98 K are
shown in Figure 4e. The Raman bands at 39, 51 and 101 cm−1 can be attributed the
Ag, B1g and B2g mode of the layered structure of PbBr2 [48]. Clearly, the Raman bands
at high temperature move towards a low wavenumber, which may be caused by the
lattice expansion [49], and 3D lead halide perovskites were found to exhibit the same
phenomena [50]. Another interesting feature is that the Raman mode intensity decreases
significantly at low temperature, which indicates that the electron–phonon interactions
become stronger at high temperature. Notably, the modes at 101 and 309 cm−1 can be
viewed as the overtone of B1g mode. The Raman bands at 139 and 373 cm−1 are the sum-
frequency of Ag and B1g modes, because of 139 ≈ 39 + 2 × 51 and 373 ≈ 3 × 39 + 5 × 51.
The Raman peak at 160 cm−1 should be the overtone of the B1g and B2g mode, with some
contribution of acoustic phonon in this lattice, because 161 = 101 + 51 + 9. A peak near
79 cm−1 can be observed at low temperature. This is a two-phonon state, because it
can reflect more phonon information at low temperature. Based on these spectral profile
characters, we can conclude that this compound exhibits strong anharmonic electron-
phonon interactions and further demonstrates the formation of STE in (TPA)2PbBr4.

Based on the above discussion, the observed blue emission in (TPA)2PbBr4 originates
from the FEs and STEs, and its photophysical process can be inferred as shown in Figure 4f.
Upon photoexcitation, [PbBr4]2− clusters are excited from GS to excited state. FEs are
produced first, and then they transit to self-trapped state. At low temperature, FEs can
hardly overcome the energy barrier (∆E) between the excited state and self-trapped state,
so the observed emission is dominated by FEs. While at RT with the high thermal energy,
the generated FEs can overcome the energy barrier and reach self-trapped state. At this
time, we can observe the emission coexistence of FEs and STEs emission at RT. Overall, the
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external thermal energy plays an important role in regulating the photophysical properties
of (TPA)2PbBr4.

4. Conclusions

In summary, a new monoclinic 0D organic lead bromide of (TPA)2PbBr4 SCs with I2/a
symmetry was synthesized by the simple solution method. Interestingly, this compound
shines a blue emission band at 437 nm with a relatively small Stokes shift of 53 nm and
a FWHM of 50 nm. According to theoretical calculations based on DFT, we attributed
this abnormally small Stokes shift to the small excited state structure distortion, that is
FX coupled with the vibration introduced by amine. Moreover, the emission mechanism
of (TPA)2PbBr4 were studied by temperature-dependent PL and Raman spectra, which
reveals that the observed blue emission in (TPA)2PbBr4 stems from the FEs and STEs, and
the population of FEs and STEs are affected by the external temperature. Our achievements
provide some new ideas to design 0D organic−inorganic hybrid metal halides with blue
emission under the near-UV-visible light excitation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12132222/s1, Table S1. Crystal data and structure refinement
for (TPA)2PbBr4 single crystal. Table S2. Bond lengths for (TPA)2PbBr4 single crystal. Table S3.
Bond angles for (TPA)2PbBr4 single crystal. Table S4. Summary of emission peak, excitation peak,
Stokes shift, FWHM, and PLQY of the low- dimensional metal halide with blue emission. Table S5.
Simulation table of bond angles of ground state and excited state. Table S6. Simulation table of bond
lengths of ground state and excited state. Figure S1. PXRD pattern result of (TPA)2PbBr4 powders
after one month. Figure S2. Photostability of (TPA)2PbBr4 powders under continuous illumination
using a high power mercury lamp. Figure S3. TG curve of (TPA)2PbBr4 powders. Figure S4. PL and
PLE spectra at RT and 77 K of (TPA)2PbBr4 SCs crystals. Figure S5. The PL spectra of (TPA)2PbBr4
SCs at (a) 78 and (b) 298 K were fitted by Gaussian curves. Figure S6. The decay lifetime curves of
(TPA)2PbBr4 SCs at 98 K. References [3,15–17,51–60] were cited in Supplementary Materials.
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