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Abstract: Open pore mesoporous silica (MPS) thin films and channels were prepared on a substrate
surface. The pore dimension, thickness and ordering of the MPS thin films were controlled by
using different concentrations of the precursor and molecular weight of the pluronics. Spectroscopic
and microscopic techniques were utilized to determine the alignment and ordering of the pores.
Further, MPS channels on a substrate surface were fabricated using commercial available lithographic
etch masks followed by an inductively coupled plasma (ICP) etch. Attempts were made to shrink
the channel dimension by using a block copolymer (BCP) hard mask methodology. In this regard,
polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin film forming perpendicu-
larly oriented PEO cylinders in a PS matrix after microphase separation through solvent annealing
was used as a structural template. An insitu hard mask methodology was applied which selectively
incorporate the metal ions into the PEO microdomains followed by UV/Ozone treatment to generate
the iron oxide hard mask nanopatterns. The aspect ratio of the MPS nanochannels can be varied by
altering etching time without altering their shape. The MPS nanochannels exhibited good coverage
across the entire substrate and allowed direct access to the pore structures.

Keywords: open mesopores; silica channels; block copolymers; hard mask; etching

1. Introduction

Ordered mesoporous materials have attracted attention since their discovery by Mobil
Oil Research and Development scientists in 1992 [1,2]. Mesoporous silica (MPS) thin films
have promising applications in microelectronics, sensing, catalysis, separation and optoelec-
tronics [3–9]. The evaporation-induced self-assembly (EISA) method, developed by Lu et al.
in 1997 [10], has become the most convenient method to generate these films. Briefly, at
casting the film at a concentration of the solution below the critical micelle concentration
(CMC) no micelles are formed [11]. As the solvent evaporates, the film concentration ex-
ceeds the CMC, micelles will form and as higher concentrations are developed, the micelles
can stack forming an ordered structure. The ordered mesoporous silica film is formed
around the micellar template and can be obtained through drying/calcination to remove
the organic surfactant [12–14]. The structure, morphology, periodicity is dependent on
variables such as reactant concentration, synthesis temperature, pH of solution and the
nature of surfactant [12].

However, a limitation of these materials is that they are ‘closed’ (the pores running in
the surface plane) and inaccessible from the surface. For practical exploitation of these high-
tech materials (in application such as microelectronics, catalysis, photonics, chip-based
sensing, etc.) pore access is required and the development of micro- and nanofabrica-
tion patterning technologies to expose the pores are required [15]. Here, patterning is
defined as creating topographical arrangements that reveal the pores. Various patterning
techniques have been proposed for mesostructured films. They are often based on estab-
lished methods, including conventional and less conventional lithographic techniques [15],

Nanomaterials 2022, 12, 2223. https://doi.org/10.3390/nano12132223 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12132223
https://doi.org/10.3390/nano12132223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-2535-7132
https://doi.org/10.3390/nano12132223
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12132223?type=check_update&version=2


Nanomaterials 2022, 12, 2223 2 of 15

UV patterning [16], rapid prototyping by micropen lithography [17,18], dip-pen nano-
lithography [19,20], site-selective deposition on surfaces pre-patterned with self-assembled
monolayers [21], electron-beam lithography [22,23] and inkjet printing [24]. These methods
are mostly restricted to flat surfaces only and can be challenging compared to etching of
dense films.

Block copolymers (BCP) self-assembly has potential use in the nanofabrication of
memory and semiconductor devices due to the ease of processing, inexpensive cost and
simple integration capability [25,26]. BCP lithography offers an attractive alternative
patterning technology to conventional lithography since the BCPs can self-assemble on
length scales from a few to tens of nanometers [27]. Spin-cast followed by solvo-thermal
treatment is a simple approach that can be applied to generate vertically oriented cylindrical
microdomains through the formation of solvent fronts and/or alteration of interfacial
chemistry. It is also necessary to adapt a simple, cost effective method to convert them into
the material patterns in terms of identical size/shape, regularity where each individuals
with same composition.

This paper describes the synthesis of thin films of MPS with a two-dimensional
(2D) hexagonal structure using TEOS (tetraethylorthosilicate) and PluronicTM triblock
copolymer surfactants. Variation in mesopore sizes and the film thicknesses of MPS thin
films with respect to concentrations of precursors has been studied. MPS channels was
achieved by patterning the film with a commercial available lithographic mask followed by
ICP etching. Smaller dimensional MPS nanochannels was fabricated by using ‘insitu’ BCP
hard mask methodology.

2. Experimental
2.1. Materials

TEOS (≥99.999%), 0.2 M HCl, anhydrous ethanol (≥99.9%), oxalic acid dihydrate
(C2H2O4, 2H2O) and iron (III) nitrate nonahydrate (Fe(NO3)3, 9H2O) were purchased
from Sigma-Aldrich and used as received. All Pluronic surfactants were purchased from
BASF and used as received. A polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock
copolymer was purchased from Polymer Source and used without further purification
(number-average molecular weight, Mn, PS = 42 kg mol−1, Mn, PEO = 11.5 kg mol−1,
Mw/Mn = 1.07, Mw: weight-average molecular weight).

2.2. Synthesis of Mesoporous Silica Thin Films

Mesoporous silica thin films were prepared using triblock copolymers (Pluronics) on
silicon substrates by following a variation in the procedure reported previously [28]. The
procedure to synthesis the mesoporous silica thin film is shown in Scheme 1. 2.08 g of TEOS,
3 g of 0.2 M HCl, 1.8 g water and 5 mL anhydrous ethanol were mixed and heated at 60 ◦C
for 1 h in temperature-controlled preheated oven. This solution was allowed to cool to
room temperature. 15 mL of a 5 wt% of Pluronic surfactant and 10 mL anhydrous ethanol
were added with vigorous stirring. Silicon substrates were coated using this solution at
3000 rpm for 30 s. These silicon substrates were then calcined at 450 ◦C for 2 h at a ramp
rate of 1 ◦C min−1.

2.3. Synthesis of Mesoporous Silica Channels Using Lithographic Masks

The procedure to generate mesoporous silica channels using lithographic masks is
shown in Scheme 2. Commercial lithographic resist materials such as SU-8 2000 was used
to generate the mesoporous silica channels. SU-8 2000 is a commonly used epoxy-based
negative photoresist originally developed at IBM [29]. Firstly, SU-8 2000 was spin coated
over a mesoporous silica thin film (30 s at 2000 rpm). The thickness of photoresist can
range from below 1–300 µm and still be processed with standard contact lithography. It is
used to pattern high aspect ratio (>20) structures. To obtain vertical sidewalls in the SU-8
2000 resist, a long pass filter was used to eliminate UV radiation below 350 nm. Strong
agitation was applied while developing thick film structures to improve the etching quality
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which reduces anisotropic etching and surface roughness and simultaneously increases
the etching rate. Then this photoresist is ICP dry etched for specific time to fabricate the
mesoporous silica topographies.

Nanomaterials 2022, 12, 2223 3 of 15 
 

 

 
Scheme 1. Schematic of the synthesis of mesoporous silica thin films. 

2.3. Synthesis of Mesoporous Silica Channels Using Lithographic Masks 
The procedure to generate mesoporous silica channels using lithographic masks is 

shown in Scheme 2. Commercial lithographic resist materials such as SU-8 2000 was used 
to generate the mesoporous silica channels. SU-8 2000 is a commonly used epoxy-based 
negative photoresist originally developed at IBM [29]. Firstly, SU-8 2000 was spin coated 
over a mesoporous silica thin film (30 s at 2000 rpm). The thickness of photoresist can 
range from below 1–300 µm and still be processed with standard contact lithography. It 
is used to pattern high aspect ratio (>20) structures. To obtain vertical sidewalls in the SU-
8 2000 resist, a long pass filter was used to eliminate UV radiation below 350 nm. Strong 
agitation was applied while developing thick film structures to improve the etching qual-
ity which reduces anisotropic etching and surface roughness and simultaneously in-
creases the etching rate. Then this photoresist is ICP dry etched for specific time to fabri-
cate the mesoporous silica topographies. 

 
Scheme 2. Schematic for the synthesis of mesoporous silica channels using lithographic resist fol-
lowed by ICP dry etching. 

Scheme 1. Schematic of the synthesis of mesoporous silica thin films.

Nanomaterials 2022, 12, 2223 3 of 15 
 

 

 
Scheme 1. Schematic of the synthesis of mesoporous silica thin films. 

2.3. Synthesis of Mesoporous Silica Channels Using Lithographic Masks 
The procedure to generate mesoporous silica channels using lithographic masks is 

shown in Scheme 2. Commercial lithographic resist materials such as SU-8 2000 was used 
to generate the mesoporous silica channels. SU-8 2000 is a commonly used epoxy-based 
negative photoresist originally developed at IBM [29]. Firstly, SU-8 2000 was spin coated 
over a mesoporous silica thin film (30 s at 2000 rpm). The thickness of photoresist can 
range from below 1–300 µm and still be processed with standard contact lithography. It 
is used to pattern high aspect ratio (>20) structures. To obtain vertical sidewalls in the SU-
8 2000 resist, a long pass filter was used to eliminate UV radiation below 350 nm. Strong 
agitation was applied while developing thick film structures to improve the etching qual-
ity which reduces anisotropic etching and surface roughness and simultaneously in-
creases the etching rate. Then this photoresist is ICP dry etched for specific time to fabri-
cate the mesoporous silica topographies. 

 
Scheme 2. Schematic for the synthesis of mesoporous silica channels using lithographic resist fol-
lowed by ICP dry etching. 

Scheme 2. Schematic for the synthesis of mesoporous silica channels using lithographic resist
followed by ICP dry etching.

2.4. Synthesis of Mesoporous Silica Channels Using In Situ Hard Mask BCP Approach

Schemes 3 and 4 illustrate the process flow diagram of the fabrication of ordered MPS
nano-channels by a BCP assisted approach. The synthesised MPS thin film on a silicon
substrate is shown in Scheme 4A. The PS-b-PEO (42K-11.5K) thin film was fabricated by
spin coating the polymer solution at 3000 rpm for 30 s on the as-synthesized mesoporous
silica film. The film was exposed to a toluene/water (50:50, v/v) mixed vapour placed
at the bottom of a closed vessel kept at 50 ◦C for 1 h to induce chain mobility and allow
microphase separation to occur (Schemes 3a and 4B). Separate reservoirs were used for
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each solvent to avoid azeotropic effects. The resultant phase separated film was immersed
in ethanol at 40 ◦C for 15 h to partially modify the PEO component causing ‘activation’ of
the cylinders (Schemes 3b and 4C). The film was dried under nitrogen. For the fabrication
of oxide nanodots, iron (III) nitrate nonahydrate (Fe(NO3)3, 9H2O) precursor was used.
0.4 wt% of iron nitrate was dissolved in ethanol and spin coated onto the nanoporous film
(Schemes 3c and 4D). UV/ozone treatment was carried out to convert the precursor into iron
oxide as well as for complete degradation of the residual polymers (Schemes 3d and 4E).
Iron oxide nanodots remain on the top of mesoporous silica film.
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Scheme 3. Process flow diagram of the fabrication of mesoporous silica channels by hard mask
BCP approach. (a) Perpendicularly oriented PEO cylinders in PS matrix after solvent annealing.
(b) Chemical etching/modification of PEO cylinders creates nanoporous templates (c) Spin coated
precursor-ethanol solution onto the template. (d) Iron oxide nanodots prepared by by UV/ozone
treatment removing polymer. (e) Vertical MPS channels with iron oxide at top obtained by silica ICP
etch. (f) MPS channels formed after removal of oxide masks.
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Scheme 4. Schematic illustration of the fabrication mesoporous silica channels using in situ hard
mask BCP approach. (A) MPS thin film on Si substrate (B) Hexagonally arranged PEO cylinders
perpendicular to the substrate in PS matrix after solvent annealing. (C) Modification of PEO cylinders
creates nanoporous templates for the metal ion inclusion. (D) Spin coated precursor-ethanol solution
onto the template. (E) Iron oxide nanodots prepared by by UV/ozone treatment removing polymer.
(F) Vertical MPS channels with iron oxide at top obtained by silica ICP etch. (G) MPS channels formed
after removal of oxide masks.

2.5. Plasma Etch Pattern Transfer

These iron oxide nanodot arrays were used as a hard mask for pattern transfer onto
the substrate. Pattern transfer was accomplished using an STS, Advanced Oxide Etch
(AOE) ICP etcher. The system has two different RF generators, one to generate and control
the plasma density by direct connection to the antenna coil, while the other one was used
to adjust and control the energy of ions by connecting it to the substrate holder. During
etching, the sample was thermally bonded to a cooled chuck (10 ◦C) with a pressure
9.5 Torr. For the oxide etch, the process parameters were optimised to a C4F8/H2 gas
mixture (21 sccm/30 sccm) using an ICP coil power of 800 W and a Reactive Ion Etching
(RIE) power of 80 W. MPS nano-channels having nanodots on the top were formed by ICP
dry etching for 20 s (Schemes 3e and 4F) using the iron oxide as a hard mask. The height of
the mesoporous silica features was varied by simply varying the silica etch time. For the
removal of iron oxide nanodots, the substrate was immersed into 10 wt% aqueous solution
of oxalic acid dihydrate (C2H2O4 2H2O) for 2 h at room temperature followed by washing
with water and drying of substrates (Schemes 3f and 4G).

2.6. Characterization

X-ray diffraction (XRD) patterns were recorded on a PANalytical MPD instrument
using an Xcelerator detector and a Cu Kα radiation source at a working power of 45 kV and
40 mA. BCP film thicknesses were measured using a spectroscopic ellipsometer “Plasmos
SD2000 Ellipsometer” at a fixed angle of 70 ◦ at a minimum of five different locations on
the sample. Average values were reported as the measured thickness value. A two-layer
β-spline model (SiO2 + BCP) was used to simulate experimental data. Top-down and cross-
sectional SEM images of samples were obtained by a high resolution Field Emission Zeiss
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Ultra Plus-scanning Electron Microscope (SEM) operating at 10 kV. Samples were prepared
for transmission electron microscopy (TEM) cross sectional imaging with an FEI Helios
Nanolab 600i system containing a high resolution Elstar™ Schottky field-emission SEM
and a Sidewinder FIB column and TEM was carried out on a JEOL JEM 2100 microscope
operated at a voltage of 200 kV.

3. Results and Discussion
3.1. Silica Mesoporous Thin Films Formation Using Different Pluronics

To form uniform and well-ordered silica mesopores, the concentration of silica pre-
cursor i.e., TEOS was carefully optimized [30,31]. Figure 1 shows the low angle XRD
patterns of MPS thin films synthesized using 0.01, 0.005 and 0.0033 M concentration of
TEOS respectively in the presence of Pluronic P-123 surfactant. The as-synthesized MPS
thin films using 0.01 M TEOS predominantly exhibits the (100) reflection peak, the 2nd (200)
and 3rd (300) order reflections at 1.54◦, 2.95◦ and 4.42◦ respectively (Figure 1a) and these
indicates a high degree of long range ordering in the MPS thin films. The absence of 3rd
(300) order reflections, broadening of the main peaks and presence of additional multiple
peaks were seen in mesoporous silica thin films prepared using 0.005 and 0.0033 M TEOS
as shown in Figure 1b,c respectively, suggesting less structural ordering in the mesoporous
silica thin films with lower TEOS concentrations [32–35]. The absence of a (110) reflection
indicates that the porous arrangements within the films is 2D hexagonal and pores are
parallel to the surface plane for 0.01 M TEOS with the P-123 system.
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TEOS precursor. Inset of figure (a,b) shows expanded region around the peak for clarity.

The pore sizes and spacing in mesoporous silica thin films also depends on the type
of Pluronic used for the synthesis. Different Pluronics P-123, P-85 and P-65 were used
to form the MPS thin films. Each surfactant corresponds to differing molecular weights,
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used to vary the pore sizes due to the specific micellar arrangement in solution [34,35].
Figure 2 shows the XRD patterns of synthesized MPS thin films using P-123, P-85 and P-65.
MPS thin films synthesized using Pluronic P-123 and P-85 with 0.01 M TEOS exhibits a
main (100) peak, 2nd (200) and 3rd (300) order reflections at 1.54◦, 2.95◦, 4.42◦ and 1.86◦,
3.62◦, 5.51◦ respectively, and again indicate the high degree of long range ordering present
in the MPS thin films. However, the shift in peak positions for mesoporous silica thin
films synthesized using P-85 towards the high angle direction confirms a decrease in pore
spacing. Whereas, broadening of the main peak and the absence of 2nd and 3rd order
reflections indicates less structural ordering in the MPS thin films synthesized using P-65.
The absence of the (110) reflection indicates that the porous arrangements within the films
is 2D hexagonal and pores are parallel to the surface plane for P-123 and P-85 systems. The
pore sizes of all of the synthesized MPS thin films were calculated from the low angle XRD
patterns. The diameter of the pores for P123 with different TEOS concentrations and also
for P85 and P65 were calculated from Scherrer formula.

D =
0.9 λ

β cos θ

where D is the diameter of the pores in nm, λ is the X-ray wavelength in nm, β is the
full width half maximum (FWHM) of the diffraction peak in radians and θ is the angle of
diffraction in degrees. The film thickness, pore sizes and peak positions of mesoporous
silica thin films with varying experimental parameters are summarized in Table 1.
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(c) P-65.

Table 1. Film thickness, pore sizes and peak positions of mesoporous silica thin films with varying
experimental parameters.

Precursor 2θ (Degree)
(Main Peak) Film Thickness (nm) Average Pore

Diameter (nm)

0.01 M TEOS + P-123 1.54 100 14
0.005 M TEOS + P-123 2.99 42.2 11

0.0033 M TEOS + P-123 3.78 25.6 10
P-123 + 0.01 M TEOS 1.54 100 14
P-85 + 0.01 M TEOS 1.86 95 7
P-65 + 0.01 M TEOS 1.85 87 Not measurable
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3.2. Morphological Study of Mesoporous Silica Thin Films by SEM

The morphology and pore size of MPS thin films were determined from the SEM
studies. Figure 3a shows that cross-sectional SEM of mesoporous silica thin film obtained
using Pluronic P-123. The SEM images confirm XRD observations that mesoporous films
have a 2D hexagonal structure with the pores lying parallel to the substrate plane. The
mesopores have diameter within the range of 13–15 nm. The thickness of film was found
to be 100 nm. Furthermore, these films showed no evidence of structural deformation
either at the film surface or at the film-substrate interface indicating good adhesion with
the substrate.

Nanomaterials 2022, 12, 2223 8 of 15 
 

 

3.2. Morphological Study of Mesoporous Silica Thin Films by SEM 
The morphology and pore size of MPS thin films were determined from the SEM 

studies. Figure 3a shows that cross-sectional SEM of mesoporous silica thin film obtained 
using Pluronic P-123. The SEM images confirm XRD observations that mesoporous films 
have a 2D hexagonal structure with the pores lying parallel to the substrate plane. The 
mesopores have diameter within the range of 13–15 nm. The thickness of film was found 
to be 100 nm. Furthermore, these films showed no evidence of structural deformation ei-
ther at the film surface or at the film-substrate interface indicating good adhesion with the 
substrate. 

 
Figure 3. Cross-sectional SEM images of mesoporous silica thin films synthesized using (a,b) P-123 
on Si and graphoepitaxial defined substrate respectively. (c) P-85. 

Figure 3b shows the cross-sectional SEM images of MPS thin films formed on a topo-
graphically defined trench patterned silica substrate. The alignment of nanopores within 
the channel was affected by using low aspect ratio (channel width to depth) trenches of 

Figure 3. Cross-sectional SEM images of mesoporous silica thin films synthesized using (a,b) P-123
on Si and graphoepitaxial defined substrate respectively. (c) P-85.

Figure 3b shows the cross-sectional SEM images of MPS thin films formed on a
topographically defined trench patterned silica substrate. The alignment of nanopores
within the channel was affected by using low aspect ratio (channel width to depth) trenches
of Si/SiN substrates previously reported by us [36]. Wu et al. have also exploited this
technique for aligning MPS films for use as resist moulds [37]. These alignment methods
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can be improved by a physically modified substrate guiding the long-range ordering of the
MPS system. Such an approach has been successfully used to control macroscopic ordering
of colloidal spheres and block copolymer films [38,39]. In our case, the MPS thin films
prepared on a trenched substrate showed less ordered arrangement of the pores than on
planar substrates (Figure 3b). Poor ordering and defects (shape, size and spacings between
the pores) can be related to several reasons. These includes non-uniform width of the trench
throughout the depth, incommensurability of the pore spacing and complex interfacial
interactions of the trench wall with the precursor material during pore development.

Figure 3c shows the cross-sectional SEM of the mesoporous silica thin films with
hexagonally arranged pores synthesized using Pluronic P-85. The average diameter of
mesopores was found to be 7 nm. The thickness of film was found to be around 95 nm.
These films also showed no evidence of structural deformation either at the film surface or
at the film-substrate interface as well as exhibiting good adhesion to the substrate. It is also
important to note that in all studies, the upper surface of the film is dense silica and pores
are generally not present. This is typical for these films.

3.3. Fabrication of MPS Channels Using Lithographic Masks

Figure 4 shows the cross-sectional SEM of MPS channels synthesized using a litho-
graphic mask of resist SU-8 2000. SU-8 can be processed with a number of patterning
techniques to render high-aspect-ratio and 3D submicron structures. The irradiation source
and configuration used for processing determines the maximum lateral resolution, aspect
ratio and geometrical complexity of the patterned features [40]. To fabricate mesoporous
silica channels, the mesoporous silica thin film surface is partially protected using litho-
graphic resist SU-8 2000 as an etch mask, followed by ICP dry etching. The depth and
width of the channels can be varied using different dimensional lithographic resist as well
as by varying the etching time. Figure 4a shows ICP dry etched mesoporous silica channels
having the lithographic resist on the top. Figure 4b shows the magnifying image of etched
and unetched (protected below the lithographic resist) MPS thin film. The thickness of the
unetched part is 100 nm. After 10 s ICP dry etching, film thickness decreased to approx-
imately 50 nm. After the etching process, the lithographic resist can be easily removed
using mild oxalic acid solution. Figure 4c shows the 10 s ICP dry etched and unetched
mesoporous silica thin film after removing lithographic resist. A magnified image of the
ordered mesopores are shown in inset of Figure 4c. All of the images suggests that MPS
channels can be fabricated by ICP etch process using a resist mask without hampering the
hexagonally arranged mesopore structure.

3.4. Fabrication of Mesoporous Silica Channels Using In Situ Hard Mask BCP Approach

The standard lithographic mask appeared to indicate good ability to retain the or-
dering of the mesoporous film and prevent the pore structure from collapsing during
etching. But with conventional lithographic methods, it is challenging to shrink the channel
dimensions to the size of a few mesopore diameters. The continual reduction of critical
dimensions of advanced electronic devices challenges conventional ultraviolet (UV) lithog-
raphy and requires the use of new and alternative patterning techniques such as double
or triple patterning to create substrate features for use in both logic and memory device
and interconnect level circuitry which has proven to be slow, complex and expensive [41].
While the lithographic mask can create features down to few tens of nanometers, BCP
lithographic technique is capable to create feature as small as sub-5 nm depending on the
type and molecular weights of BCPs. For proper validation of the film robustness it is
necessary to prepare small features since these are consistent with modern manufactur-
ing dimensions. In this study, an approach to create channels with smaller dimension is
attempted using block copolymer lithography. The successful integration of BCP methods
into the device requires ultimate control of the self-assembly and the pattern transfer onto
the underlying material. However, etching becomes complicated when feature sizes reduce
and etch limitations of BCP patterns can lead to silicon features of low aspect ratio and
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high line edge roughness (LER). To overcome this barrier, we have generated a ‘hard mask’
material using our established insitu inclusion method [42,43].
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Figure 5a shows an AFM image of the PS-b-PEO thin film demonstrating the vertically
orientated hexagonal arrangement of PEO cylinders inside the PS matrix. The long-range
ordering and perpendicular cylinder orientation were formed by annealing [44,45]. The
spin coated film in mixed toluene–water environment at a temperature of 50 ◦C for 1h
which induces microphase separation. In the AFM image, darker contrast corresponds
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to PEO cylinders. The measured average centre-to-centre cylinder spacing is ~42 nm and
PEO cylinder diameter is ~19 nm. The SEM image in Figure 5b also represents long range
ordering of the PS-b-PEO thin film.
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These films were used as a template to prepare iron oxide hard etch mask as reported
previously by our group [42–45]. PEO microdomains are the preferred site to incorporate
metal ions into the template. This is realised by an etching and/or modification of the
PEO site through immersing the film in anhydrous ethanol at 40 ◦C for 15 h. Structural
arrangement, dimensions and ordering remain unchanged after the treatment [46]. The
AFM image (Figure 5c) shows some increase in the phase contrast after this treatment indi-
cating etched/modified PEO microdomains. Also, the SEM image contrast was enhanced
by ethanol exposure as seen in Figure 5d reveals porous structure. No thickness change of
the polymer film was observed after the ethanol treatment.

Iron oxide nanofeatures were formed by insitu inclusion of iron ions by spin coating
the metal nitrate ethanolic solution into nanoporous BCP template. The PEO cylinders
(diameter of ~20 nm and depth ~28 nm) can be considered are selective for inclusion as PS is
of hydrophobic nature excluding the probability of solution swelling and the insertion of the
metal ions. The PEO-cationic chemical coordination chemistry improves the incorporation
process through chemical bonding of included ions [47]. The UV/ozone treatment removes
any residual solvent and organic components, and cross-links and oxidizes the metal
ions simultaneously. In the UV/Ozone treatment, ozone, an active oxidizing agent, is
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generated in situ from atmospheric oxygen by exposure to 185 nm UV light. The ozone
produced subsequently photo dissociates into molecular oxygen and atomic oxygen upon
exposure to 254 nm light. The latter specie reacts with the polymer to form free radicals
and activated species that eventually remove organic portions of the polymer in the form
of carbon dioxide, water, and a small amount of volatile organic compounds. Figure 6
shows the AFM, SEM and cross-sectional TEM images of well-ordered iron oxide nanodots
formed after the UV/ozone treatment. The measured average centre-to-centre nanodot
spacing remains unchanged as seen from the AFM and SEM images as these are formed
via direct templating of the PS-b-PEO film. Figure 6a (AFM) and 6b (SEM) show iron oxide
nanodots of uniform diameter of ~21 nm. The structural arrangement and interfaces with
the substrate were analysed further by cross-sectional TEM (Figure 6c). The cross-sectional
TEM image shows well-separated nanodots. Limited numbers of defects or cracks were
observed. The hemispherical type structure of the nanodots is seen for all those imaged.
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These iron oxide nanodots were then used as a hard mask for the formation of meso-
porous silica nanopillars by pattern transfer into the MPS film. Briefly, a rapid silica etch
process was used to remove the exposed mesoporous silica layer at the substrate surface
whilst the layer below the iron oxide nanodots (mask) remained unaffected. This process
results in the formation of mesoporous silica nanopillars with iron oxide at their uppermost
surface. The top-down SEM image (Figure 7a) demonstrates a densely packed, uniform,
ordered arrangement of pores over large areas after the pattern transfer. The high resolution
SEM image also reveals that the hexagonally ordered pillars have an average diameter of
~21 nm at a spacing of ~42 nm. This implies that the etching does not damage the original
pattern to any extent. The average height of the mesoporous silica nanopillars is found
to be around 25 nm and mesoporous silica thin film thickness was estimated at 60 nm
(measured from the cross-sectional TEM image shown in Figure 7b) after a silica etch for
10 s. These data clearly show that the mesoporous surface is robust enough to survive
during etching.
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4. Conclusions

A simple, generic and cost-effective route was demonstrated to synthesize 2D meso-
porous silica thin films over wafer scale dimensions. A morphological study showed that
the mesoporous silica thin film has hexagonally arranged pores with uniform pore diameter.
The dimensional and structural ordering can be altered by varying the amount of silica
precursor and different molecular weight of the surfactants. Lithographic resist and in
situ hard mask block copolymer approaches were utilized followed by ICP dry etching
to fabricate mesoporous silica channels. In comparison, BCP approach leads to lower
dimension, high aspect ratio MPS channels. The width of the channels can be varied by
using variety of commercially available lithographic resists whereas depth of the meso-
porous silica channels varied by varying the etch time. Large area ordered mesoporous
silica nanopillar arrays with smooth vertical sidewall profiles can be fabricated using an
in situ hard mask block copolymer approach. The width and height of the nanopillars
could be precisely varied depending on the diameter of the nanodots and the etching time
respectively without altering their shape. The MPS channels or nanopillars arrays has a
good coverage throughout the wafer scale area with direct access to the pore structures.
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