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Abstract: Egg white protein is a non-toxic and biodegradable biopolymer that forms a gel easily via
simple thermal denaturation treatment. A novel aerogel on the basis of egg white protein crosslinked
with graphene oxide was prepared via a facile freeze-drying method. The structure and physicochem-
ical characteristics of the aerogels were characterized by scanning electron microscopy (SEM), Fourier
transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–
Teller (BET) analysis. The adsorption properties of the aerogels were investigated by studying the
influencing factors such as the solution pH, dose, temperature and contact time. The adsorption
capacity of methylene blue onto the aerogels was tested, whose maximum adsorption capacity,
calculated by the Langmuir isotherm equation, reached 91.7 mg/g. Adsorption kinetics studies
showed that the adsorption followed the pseudo-second-order kinetic model. Thermodynamic data
implied that methylene blue adsorbed by the aerogels was an exothermic and spontaneous process.

Keywords: graphene oxide; egg white protein; aerogel; adsorption; methylene blue

1. Introduction

Dyes as an important part of industrial production are applied to a variety of applica-
tions such as paper-making, cosmetic, textile, leather and printing. Many dyes contain quite
complex molecular structures of aromatic compounds that are stable and non-degradable
under heat or light, even in the presence of oxidants [1], so the discharge of water contain-
ing dyes into water body will pose a serious risk to humans as well as other creatures [2].
Therefore, the effective elimination of various dyes in wastewater is an important issue to
solve the environmental pollution.

Methylene blue (MB) is a widely applied pigment in the industrial production. The
dyes can enter the blood through the respiratory system, skin, and hair follicles, especially
ingested through drinking water. MB will stimulate the gastrointestinal, nausea, vomiting,
and diarrhea, even causing severe aplastic anemia or leukemia [3,4]. Therefore, it is
essential to reduce aqueous methylene blue to acceptable levels prior to release into the
environment, to adapt to increasingly standardized sewage discharge guidelines and
strengthen the protection of natural ecology. Various physico-chemical processes such as
photocatalytic degradation [5], ion exchange [6], biological treatment [7], electrochemical
oxidation [8], flocculation-coagulation [9], and adsorption [10] have been contributing to
sewage purification [11]. Due to the higher efficiency of the adsorption method, with the
quite low application cost and the simpler operation, adsorption has become an effective
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method to remove low concentration dyes [12,13]. Therefore, it is urgently necessary and
important to find more efficient adsorbents in the field of wastewater purification.

Graphene, an optimal two-dimensional nanomaterial with periodic honeycomb lattice
structure, shows unique chemical and physical properties [14], thereby allowing it to be
applied in a wide range of applications and various fields in fine detail, such as super capac-
itors [15,16], drug transport [17], sensors [18], batteries [19,20] and solar cells [21,22]. Supe-
rior to graphene in thermal properties, graphene oxide (GO) is a derivative of graphene with
relatively prominent mechanical strength, large specific surface area, oxygen-containing
molecular functional groups and rich hydrophilic groups [23]. With these characteristics,
GO has become excellent absorbent to dyes and metal ions in recent years. However, its
microscopic structure is quite small, and it cannot be completely separated from water
via conventional methods after adsorption in sewage; moreover, its toxicity uncertainty to
organisms prevents it from being used as adsorbent in practical environmental applications.

More recently, studies have been focused on searching for suitable carrier to pre-
pare various GO nanocomposites. Polyacrylamide [24], cellulose [23], agar [25], xanthan
gum [26], polyvinyl alcohol [27], chitosan [28], polystyrene [29], etc., have been screened to
prepare GO macro composites, which separated the absorbents from the aqueous solution
easily, reducing the potential risks of micro-sized GO to aquatic organisms. Egg white
protein, a biomaterial, is a non-toxic and biodegradable biopolymer. It is not only rich in
functional groups conducive to adsorption of amino (–NH2), hydroxyl (–OH) and carboxyl
(–COOH) [30], but can also easily be coagulated to form a gel after thermal denatura-
tion [31]. In this study, GO was dispersed into egg white protein solution in different
weight ratios to fabricate egg white protein/graphene oxide (PGO) 3D aerogels. The im-
portant parameters affecting the adsorption of dye pollutants on PGO 3D aerogel, such as
initial dye concentration, pH, dose, contact time and temperature were investigated.

2. Materials and Methods
2.1. Materials

Egg white protein was separated from eggs. Expandable graphite was purchased
from Hengli Graphite Company (Qingdao, China). Methylene blue (C16H18ClN3S·3H2O)
with a purity greater than 99% was purchased from China Sinopagic Chemical Reagents
Co., Ltd. (Beijing, China). Potassium permanganate (KMnO4, 99.5%) and sodium nitrate
(NaNO3, 99%) were purchased from Shanghai Jinlu Chemical Co., Ltd. (Shanghai, China).
Sulfuric acid (H2SO4, 98%), hydrochloric acid (HCl) and hydrogen peroxide (H2O2) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China), with all reagents
of analytical grade.

2.2. Preparation of GO

GO was prepared from expandable graphite via the improved Hummer method [32].
In the ice bath, H2SO4 (230 mL) was taken, NaNO3 (5 g) and KMnO4 (30 g) were added
and completely immersed, and then the expansible graphite (5 g) was dispersed uniformly
through continuous agitation. Subsequently, the temperature was set to 273 K, keeping
the mixture at the temperature for 24 h. Afterwards, the mixture was stirred quickly until
smooth and diluted slowly with deionized water at 308 K for 30 min. Whereafter, the
reaction continued for 15 min at 371 K. The suspension changed from black to yellow by
adding H2O2 (30%) to the mixed suspension slowly. Finally, the mixture was washed with
HCl (5%) and centrifuged and purified with deionized water repeatedly to obtain GO.

2.3. Preparation of PGO Aerogels

As the primary method of preparing aerogel, the freeze-drying method is employed to
prepare PGO aerogel. The protein content of egg white measured by freeze-drying method
was 12%. First, the temperature was set to 293 K, 20 mL egg white was added to each beaker
of 20 mL deionized water, whisking with a magnetic mixer for 1 h. Then, the prepared
GO was added to the protein solution in proportions of 0, 10, 30, 50, 70 to 90 wt% in each
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beaker, stirring fully with a magnetic stirrer to obtain a uniform mixture. The mixture was
placed in a Bain Marie at 373 K for 30 min until stable PGO hydrogel was obtained. Finally,
the PGO aerogel was prepared through freeze-drying mechanism and freeze-dried for 48 h
under vacuum (less than 20 Pa, −50 ◦C). PGO aerogels with various GO contents ranging
from 0, 10, 30, 50, 70 to 90 wt% were labeled as PGO-0, PGO-10, PGO-30, PGO-50, PGO-70,
and PGO-90, respectively.

2.4. Characterization of the Aerogels

The surface of PGO aerogel with various proportions was characterized by SEM (JSM
6700 F). The functional groups of PGO aerogel in different proportions were recorded
employing FTIR spectrometer (Nicolet 5700), with the wave number set in the range of
4000~500 cm−1. The FTIR adopts ATR mode and diamond crystal. During TGA analysis
which was carried out in a high-purity nitrogen atmosphere, the heating rate of the sample
was 10 ◦C/min, and the curve did not change significantly in the range from 1073 K
to 1273 K, so 1073 K was selected as the final temperature. The thermal stability was
investigated at the temperature ranging from 303 to 1073 K on a thermogravimetric analyzer
(METTLER TGA2, Columbus, OH, USA). The BET surface area of the adsorbent from the
N2 adsorption isotherm at 77 K was measured by the Brunuer–Emmet–Teller equation
(Quantachrome Autosorb-IQ-MP/XR, Boynton Beach, FL, USA). The specific surface area
was measured by employing BET Micromeritics (Norcross, GA, USA). The machine model
was ASAP.

2.5. Batch Adsorption Experiments

First, 1000 mg/L MB solution was prepared. In the adsorption experiment, samples
were selected as cube-shaped integral aerogel adsorbents, each weighing 10 mg. Sub-
sequently, the sample was added to a conical flask containing MB solution. A 50 mL
conical flask was put into the water bath oscillator to oscillate according to the experimen-
tal variables. In the experiment, the sample was completely immersed in MB solution
without collapse. After the adsorption experiment reached equilibrium, the concentration
of different variables of MB solution was employing by using UV/Visible spectropho-
tometer (TU-1810). The adsorption capacity of MB to adsorbent can be calculated by the
following formula:

qe =
C0 − Ce

m
V (1)

where Ce is the equilibrium concentration of MB solution (mg/L), C0 is the initial concentra-
tion of MB solution (mg/L); m is the weight of the adsorbent used (g) and V is the volume
of the working solution (L).

In order to probe into the influence of initial pH value of solution on adsorption
performance, 10 mg sample was added into 20 mL MB solution of 30 mg/L, and NaOH
and HCl was added to adjust the initial pH of the solution from 2 to 10.

To investigate the effect of adsorbent dose on adsorption performance, a variety of
mass samples (5–30 mg) were added into 20 mL MB solution with a concentration of
50 mg/L.

Aiming at studying the effect of different temperatures on the adsorption of MB
solution, 10 mg samples were added to 20 mL solution, and the concentration of MB
solution ranging from 5 to 50 mg/L, at 293, 303 and 313 K, respectively. Furthermore, the
effect of exposure time was investigated by exposing 10 mg samples to 40 mL solutions
with 15 and 20 mg/L MB. After the experiment setting time, the concentration of MB in the
solution after adsorption was determined. At the current adsorption capacity, the adsorbent
is calculated by the following formula:

qt =
C0 − Ct

m
V (2)

where Ct (mg/L) is the concentration of MB of the solution at time.
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3. Results and Discussion
3.1. Characterization of the Samples

Figure 1 shows the optical photographs and SEM images of PGO aerogels. All the
samples prepared through freeze drying demonstrate 3D structures (Figure 1a). PGO
aerogels show good formability at GO weight percent ranging from 0 to 30%, whereas
the formability becomes weak when the percent exceeds 50%. Figure 1b–g show that all
of PGO aerogels present porous structure. In terms of the process of freeze drying, the
sample is first frozen into a solid as the water turns into ice which then sublimates directly
to remove water without changing its solid state at low and low temperatures. Due to
sublimated water molecules, the first position occupied by ice becomes porous.
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Figure 1. (a) The optical photographs of PGO aerogels, SEM images of PGO aerogels: (b) PGO-0,
(c) PGO-10, (d) PGO-30, (e) PGO-50, (f) PGO-70, and (g) PGO-90.

The FTIR spectra of PGO-0, GO and PGO-30 aerogels were measured, as shown in
Figure 2a. There are peak values at 3420, 2980, 1640, 1520, 1260 and 1050 cm−1 in the FTIR
spectrum of PGO-0, corresponding to O–H, C–H, C=C, N–H, C=C, and C–O flexion and
extension vibration, respectively [33]. The FTIR spectra of GO contain peaks of 3400, 1710,
1630, 1420 and 1070 cm−1, corresponding to flexion and extension vibration of O–H, C=O,
C=C and C–O, respectively [34]. All peaks in FT-IR spectra of PGO-0 and GO appear in the
FT-IR spectrum of PGO-30 aerogels, indicating that the egg white protein combine well
with GO to form a novel composite.
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The TGA curve of PGO aerogels (PGO-30) is shown in Figure 2b. During TGA
analysis which was carried out in a high-purity nitrogen atmosphere, the heating rate of
the sample was 10 ◦C/min, and the curve did not change significantly in the range from
1073 K to 1273 K, so 1073 K was selected as the final temperature. The results showed that
the pyrolysis process of PGO aerogel exhibited three obvious degradation stages. To be
specific, the dehydration and desiccation process in the first stage resulted in an 8.6 percent
weight loss from 293 K to 357 K. In the second stage, oxygen-containing functional groups
gradually disappeared in GO gradually, causing a little weight loss (3.2%) from 357 K to
453 K. In the final stage, a large amount of pyrolysis of the egg white protein and oxidation
of GO brought in a dramatic increase in weight loss (60.4%) from 453 K to 1073 K [35].

Figure 3 shows the nitrogen adsorption–desorption isotherms of the sample. The
specific surface area was measured by employing BET Micromeritics (USA). The machine
model was ASAP. The specific surface area of PGO-30 aerogels was 43 m2/g, respectively.
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3.2. Adsorption of MB

To investigate the disparate effects of GO content in aerogel on MB adsorption, the
temperature was set at 293 K, and 10 mg of different adsorbents were added into 20 mL MB
solution with an initial concentration of 50 mg/L. The adsorption capacity of pure egg white
protein aerogel (PGO-0), which is only 47.6 mg/g, is shown in Figure 4. As 10 wt% GO
mixed with the egg white protein, the adsorption capacity increased significantly, reaching
61.8 mg/g, which increased it continually with the increase of GO content, reaching
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88.4 mg/g at GO content of 90 wt%. Although the higher GO content in aerogel could
contribute to improving the adsorption of MB, the mechanical property of the aerogels with
higher GO content become weak. After the adsorption, the aerogels were easily dispersed
into the solution and difficult to be removed via conventional separation method, helping
explain that PGO-30 was selected as the main experimental sample.
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3.2.1. Effect of Initial pH

As a key parameter affecting the adsorption performance of dyes [36], the initial pH
value in solution affects not only the properties of adsorbents, but also the surface charge
of adsorbents. The influence of the initial pH value of the solution on the adsorption MB
of PGO-30 aerogel is shown in Figure 5a. Obviously, the removal percentage raises from
increased 31.1 to 93.6% as the initial pH increased from 2.0 to 10.0. The lower removal rate
at lower initial pH may be attributed to the competition between hydrogen ions and MB
molecules at available binding sites [37]. With an increase in initial pH, the carboxyl group
and part of the hydroxyl group of PGO aerogel may be deprotonated to form –COO– and
part of –O– groups. The mutual electrostatic attraction between the MB cation and the
negatively charged surface of PGO aerogel may help explain the increase in adsorption
capacity [38].

3.2.2. Effect of Adsorbent Dose

The effects of absorbent dose on removal percentage and adsorption capacity are
shown in Figure 5b. With the increase of adsorbent dose, the removal rate of MB on PGO
aerogel increased from 58.5 to 97.2%, which was attributed to a large increase in numerous
adsorption sites and a large increase in surface area [39]. Nevertheless, the adsorption
capacity gradually decreased with the increasing adsorption dose. It may be owing to the
reduced utilization rate of the adsorbents, and only parts of active sites on PGO aerogels
were employed to adsorb MB molecules [40,41].

3.2.3. Effect of Temperature

The influence of temperature on the equilibrium adsorption capacity at 293 K, 303 K
and 313 K is shown in Figure 5c. With the temperature rising from 293 K to 313 K, the
maximum adsorption capacity of PGO aerogels decreased from 73.3 mg/g to 59.0 mg/g.
The experimental results indicate that the adsorption process of MB on PGO aerogel
is exothermic.
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3.2.4. Effect of Contact Time

Figure 5d shows the influence of contact time of PGO aerogel on adsorption at two
different initial concentrations. It can be observed that the adsorption rate was quite
fast within the initial 100 min, which can be attributed to the exposed surface area of
MB molecule PGO aerogel and the rapid contact with the active site. Thereafter, the
adsorption rate increased gradually until equilibrium [42]. The long-distance diffusion of
dye molecules into the inner pores of the adsorbent particles could help explain the decrease
in the final adsorption rate. Moreover, Figure 5d demonstrates that the adsorption capacity
and equilibrium adsorption time were significantly affected by initial MB concentration.
As the initial concentration of MB increased from 15 to 20 mg/L, they increased from
38.2 mg/g to 55.4 mg/g and from 400 min to 750 min, respectively.
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3.3. Adsorption Isotherms

The adsorption properties of adsorbents were characterized by adsorption isotherm
model and the relationship between adsorbents and adsorbents was described. The Lang-
muir model assumed that adsorption occurs on a uniform and noninteracting plane. The
Langmuir isotherm equation follows:

1
qe

=
1

qmax
+

1
qmaxkLCe

(3)

where kL (L/g) is Langmuir constant, Ce (mg/L) is the equilibrium concentration, qe
(mg/g) is the amount adsorbed at equilibrium, and qmax (mg/g) represents the maximum
adsorption capacity. Ce and Ce/qe can be obtained from experimental data, qmax as well as
kL are calculated by linear fitting. Figure 6a shows the Langmuir isotherms at 293, 303 and
313 K, and the parameters are shown in Table 1.
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Figure 6. (a) Langmuir and (b) Freundlich models of adsorption MB on PGO aerogels at
different temperatures.

Table 1. Isothermal constants for MB adsorption on PGO aerogels.

Temp (K)
Langmuir Freundlich

qmax (mg/g) kL (L/mg) R2 RL kF (L/mg) 1/n R2

293 91.7 3.26 0.987 0.0579 20.8 0.57 0.962
303 83.3 4.98 0.940 0.0386 15.7 0.54 0.982
313 73.8 5.87 0.900 0.0330 13.4 0.51 0.972

The dimensionless equilibrium parameter RL can be expressed by Langmuir isotherms:

RL =
1

1 + kLC0
(4)

where RL value indicates whether Langmuir isotherms are irreversible (RL = 0), favorable
(0 < RL <1), linear (RL = 1) or unfavorable (RL > 1). As can be seen from Table 1, since the
RL value is between 0 and 1, PGO aerogel is a favorable adsorbent for removing MB.

The Freundlich model shows that adsorption is carried out at molecular level through
adsorption sites and functional groups. The Freundlich isothermal equation follows:

Lnqe = LnkF +
1
n

Lnce (5)

where kF (L/g) is the Freundlich constant related to adsorption capacity, and n is the
Freundlich constant related to adsorption strength. Lnqe and LnCe can be obtained from
experimental data, LnkF as well as 1/n are calculated by linear fitting. Figure 6b shows the
Freundlich isotherm plots at 293 K, 303 K and 313 K, whose parameters are listed in Table 1.
The determination coefficient R2 of the Freundlich isotherm was greater than that of the
Langmuir isotherm, so the Freundlich adsorption model was more appropriate to describe
the adsorption data. The adsorption has a favorable removal condition because the value
of 1/n obtained from the Freundlich model equation is less than 1.

3.4. Kinetic Studies

Adsorption kinetics serves as an important index for analyzing the experimental
process of adsorption in evaluating the performance of adsorbents. The adsorption data
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were fitted based on the model of intra-particle diffusion, pseudo-first-order model and
pseudo-second-order model.

The pseudo-first-order model equation is expressed by the following formula [43]:

log(qe − qt) = log qe −
k1

2.303
t (6)

where k1 (min−1) is the rate constant of the pseudo-first-order model. As shown in Table 2,
parameters qe and k1 can be calculated by fitting the intercept and slope of the graph with
experimental data (Figure 7a,d), respectively. The values of R2 were 0.784 (C0 = 20 mg/L)
and 0.733 (C0 = 15 mg/L), respectively. The lower values of R2 show that the adsorption of
PGO aerogel does not conform to the pseudo-first-order kinetic model.

Table 2. The kinetic constant of adsorption of MB on PGO aerogels.

C0 (mg/L) 20 50

Pseudo-first-order model
k1 (min−1) 2.88 × 10−3 3.62 × 10−3

qe (mg/g) 29.6 37.1
R2 0.733 0.784

Pseudo-second-order model
k2 (g/mg·min) 4.79 × 10−4 3.20 × 10−4

qe (mg/g) 41.6 59.8
R2 0.995 0.998

Intraparticle diffusion model

kid1 4.87 4.64
C1 −6.02 −5.05
R1

2 0.991 0.986
kid2 0.493 0.449
C2 42.1 43.3
R2

2 0.944 0.976
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The pseudo-second-order model equation is expressed by the following formula [44]:

t
qt

=
1

k2qe2 +
t
qe

(7)

where k2 (g/mg min) represents the rate constant of the pseudo-second-order model.
As shown in Table 2, the values of k2 and qe can be obtained by fitting the experimental

slope and intercept data of the graph (Figure 7b,e). The comparison between the two
models indicates obviously that the coefficient values of the pseudo-first-order dynamics
model are not as consistent as the determined coefficient values of the pseudo-second-order
dynamics model. Therefore, the kinetic adsorption data of PGO aerogel adsorption MB is
more consistent with the pseudo-second-order kinetic model.

Compared with other models, the intra-particle diffusion model is more suitable to
show the kinetics of the diffusion process of intra-particle adsorption, and the equation of
the intra-particle diffusion model is shown as follows [45]:

qt = kidt1/2 + Ci (8)

where kid (mg/g min1/2) is the diffusion rate constant within the particle, t1/2 and C
represent the square root of time and boundary layer have a great influence on molecular
diffusion, respectively. The slope and intercept of the fitting graph of the experimental data
(Figure 7c,f) were calculated to obtain the rate constants kid and Ci (Table 2).

Obviously, the value of C is not equal to zero, with the fitting line being non-linear.
The intra-particle diffusion can be classified into two stages by the fitting the graph. The
first stage of adsorption is instantaneous adsorption or surface adsorption, where the high
removal rate of MB is attributed to the large specific surface area and large active adsorption
site. The second stage is a slow adsorption process, suggesting that MB molecules are
absorbed into the inner pores of PGO aerogel controlled by the diffusion rate.

3.5. Adsorption Thermodynamic

The adsorption thermodynamic parameters of MB on PGO aerogel were measured at
different temperatures in order to study the influence on the adsorption process. Entropy
change (∆S) and enthalpy change (∆H) are calculated by van’t Hoff equation [46,47]. The
formula is as follows:

Ln
(

qe

Ce

)
= −∆H

RT
+

∆S
R

(9)

The Gibbs free energy change (∆G) is calculated as follows:

∆G = ∆H − T∆S (10)

where T is the temperature in Kelvin (K), qe (mg/g) and R are the adsorption capacity
and the universal gas constant (8.314 J/mol·K), respectively. Using the slope of the linear
fitting graph and the intercept of the linear line, the values of −∆H/R and ∆S/R are further
calculated. Calculate the values of ∆G, ∆H, and ∆S as shown in Table 3.

Table 3. Thermodynamic parameters at different temperatures.

T/K ∆G (kJ/mol) ∆H (kJ/mol) ∆S (J/mol·K)

293 −4.13 −24.6 −69.9
303 −3.43
313 −2.73

Since the negative enthalpy change (∆H = −24.6 KJ/mol) means that the absorbed
energy is less than the released energy, adsorption is proved to be an exothermic process.
With the rising temperature, the adsorption capacity decreases gradually, thus supporting
the conclusion of temperature effect. The change of negative entropy (∆S = −69.90 J/mol·K)
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indicates that the adsorption at the solid-solute interface increases randomly during the
adsorption process. Negative ∆G indicates that MB adsorption on PGO aerogel is a sponta-
neous reaction.

In Table 4, the maximum removal rate of MB by different adsorbents is compared. Wu
et al. studied the adsorption performance of Composite response hydrogels of Huangshui
polysaccharide, polyvinyl alcohol and carboxymethyl sodium cellulose for MB, and obtained
paramagnetic porous hydrogels through physical cross-linking, with the maximum adsorp-
tion capacity of MB being 71.07 mg/g [48]. Noori, M. et al. prepared Clinoptilolite/Fe3O4
(Clin/Fe3O4) nanocomposite powders and Alginate/Clinoptilolite/Fe3O4 (Alg/Clin/Fe3O4)
nanocomposite beads to remove MB, and investigated the effects of contact time, tem-
perature, pH, amount of adsorbent and initial concentration on adsorption performance.
The maximum adsorption capacity was 45.662 mg/g and 12.484 mg/g, respectively [49].
Mekuria, D. et al. selected barley (Hordeum Vulgare) bran (BB) and Enset (Ensete ventricu-
lar middle costal leaf, EVML) as adsorbents to study the removal of MB from wastewater.
The adsorbent has good adsorption performance in a wide range of Ph values. The
maximum adsorption capacity for MB is 63.2 mg/g (BB) and 35.5 mg/g (EVML), respec-
tively [50]. Wu et al. studied the adsorption of copper and methylene blue (MB) in aqueous
solution using natural wheat straw as adsorbent. There is no significant difference in ad-
sorption capacity for MB when the pH range is 4.0~10.0. The adsorption of MB accords with
the Redlich–Peterson model. The maximum adsorption capacity of MB is 60.66 mg/g [51].
The effects of pH, temperature, contact time, amount of adsorbent and initial concentration
of dye on the adsorption properties have been investigated in all the above articles. The
thermodynamic parameter analysis shows that the parameter ∆ G of all samples is negative,
indicating that the process is spontaneous. By comparison, it is similar to the experimental
process in this paper. The egg white protein/GO composite aerogel whose maximum
adsorption capacity to MB is 91.7 mg/g has a broad application prospect in MB removal.

Table 4. Comparison of maximum removal capacities of different adsorbent materials for MB.

Adsorbent Material Removal Capacity
(mg·g−1) Ref.

Hydrogels loaded with Huangshui
polysaccharides, polyvinyl alcohol, and sodium
carboxyl methyl cellulose

71.07 [48]

Clinoptilolite/Fe3O4(Clin/Fe3O4) nanocomposite
powders 45.662 [49]

Alginate/Clinoptilolite/Fe3O4 (Alg/Clin/Fe3O4)
nanocomposite beads 12.484 [49]

Barley Bran 63.2 [50]
Enset Midrib Leaf 35.5 [50]
Wheat Straw 60.66 [51]
Egg White Protein/Graphene Oxide
Bionanocomposite Aerogels 91.7 This study

4. Conclusions

In summary, novel PGO composite aerogels were prepared by egg white protein cross-
linking with GO. The potential application of PGO aerogel for dye removal in wastewater
was described. The adsorption kinetics of MB on PGO aerogel follows the pseudo-second-
order kinetic model. The adsorption isotherm data fit well with Freundlich model. Accord-
ing to thermodynamic parameters, the adsorption of MB by PGO aerogel is a spontaneous
exothermic process. The results show that PGO aerogel can be used as an excellent adsor-
bent for MB removal from wastewater.
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